• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vectorial approximations of infinite-dimensional covariance descriptors for image classification

    2018-01-08 05:10:08JieYiRenXiaoJunWu
    Computational Visual Media 2017年4期

    Jie-Yi Ren,Xiao-Jun Wu

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    Vectorial approximations of infinite-dimensional covariance descriptors for image classification

    Jie-Yi Ren1,Xiao-Jun Wu1

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    The class of symmetric positive de finite(SPD)matrices,especially in the form of covariance descriptors(CovDs),have been receiving increased interest for many computer vision tasks.Covariance descriptors offer a compact way of robustly fusing different types of features with measurement variations.Successful examples of applying CovDs addressing various classification problems include object recognition,face recognition,human tracking,texture categorization,visual surveillance,etc.

    As a novel data descriptor,CovDs encode the second-order statistics of features extracted from a finite number of observation points(e.g.,the pixels of an image)and capture the relative correlation of these features along their powers as a means of representation.In general,CovDs are SPD matrices and it is well known that the space of SPD matrices(denoted bySym+)is not a subspace in Euclidean space but a Riemannian manifold with nonpositive curvature.As a consequence,conventional learning methods based on Euclidean geometry are not the optimal choice for CovDs,as proven in several prior studies.

    In order to better cope with the Riemannian structure of CovDs,many methods based on non-Euclidean metrics(e.g.,affine-invariant metrics,log-Euclidean metrics,Bregman divergence,and Stein metrics)have been proposed over the last few years.In particular,the log-Euclidean metric possesses several desirable properties which are beneficial for classification:(i)it is fast to compute;(ii)it de fines a true geodesic onSym+;and(iii)it comes up witha broad variety of positive definite kernels.

    More recently, in finite-dimensional RCovDsbased methods have shown encouraging results in image classification,as opposed to low-dimensional RCovDs[1].It has been demonstrated that several types of Riemannian metrics for in finite-dimensional RCovDs can be computed with a mapping from the low-dimensional Euclidean space to a reproducing kernel Hilbert space(RKHS)and the corresponding Gram matrices. Normally, in finite-dimensional CovDs offer better discriminatory power than their low-dimensional counterparts. Nevertheless,all in finite-dimensional CovDs are rank-deficient because it is impossible to have an in finite number of observations in practice.Although this problem may,to some degree,be relieved by matrixregularization (adding a small perturbation to avoid matrix singularity),it prevents the utilization of Riemannian geometry directly.Moreover,the computational complexity of analyzing infinitedimensional CovDs is non-negligible.

    Faraki et al.[2]used two specific feature mappings(random Fourier features and the Nystr?m method)for estimating in finite-dimensional CovDs,and derived resulting approximate in finite-dimensional CovDs as an alternative, to overcome the aforementioned issues.Motivated by this novel idea of estimating in finite-dimensional CovDs,we propose a method to obtain low-dimensional vectorial approximations of in finite-dimensional CovDs instead.We have two main contributions.Firstly,in contrast to the approximate in finite dimensional CovDs generated from estimated data of certain kernels based on Euclidean distance,our vectorial approximations are directly estimated from valid kernels based on Riemannian metrics.More specifically,the proposed approach estimates data on an RKHS of the Riemannian manifold rather than an RKHS of the original vectorial feature space and thus preserves the Riemannian geometry information of in finite-dimensional CovDs better.Secondly,the subsequent vectorial approximations are in a more compact form than the approximate in finite-dimensional CovDs.The proposed approach can be considered as a dimensionality reduction from in finite-dimensional CovDs to low-dimensional vectors. In addition,classical learning methods based on Euclidean geometry can be directly implemented without difficulties.We use the Nystr?m method to learn the feature mapping from the RKHS of in finite dimensional CovDs to a low-dimensional Euclidean space.With this feature mapping and valid kernels for in finite-dimensional CovDs,our approach not only preserves the intrinsic Riemannian geometry but also reduces the dimensionality,and is therefore better suited for classification.We have evaluated our approach on several standard datasets for image classification.Experimental results show the accuracy improvements of vectorial approximations over covariance approximations.Figure 1 shows the entire procedure of our approach and Faraki et al.’s approach[2].

    1 Review of covariance descriptor

    Region covariance matrices were introduced as a novel region descriptor for human face detection and classification.The process of generating CovDs from images is illustrated in Fig.2.The data matrixconsists ofnobservations extracted from an image sample,denoting theith observation.The CovDs is defined as

    Assume we have an implicit mappingfromd-dimensional Euclidean space to the RKHSH,whose dimensionalitycould be considered as potentially in finite.With the mapped data matrixand Eq.(1),a CovDsCφin the RKHSis de fined as

    Fig.1 Conceptual comparison of our approach and Faraki et al.’s approach for image classification.Faraki et al.’s approach follows(a)–(d),(a) first mapping image features in low-dimensional Euclidean space to an in finite-dimensional Hilbert space(b)and then applying the Nystr?m method to learn a feature mapping from Hilbert space to another low-dimensional Euclidean space(c),which can be used to obtain the finite-dimensional approximations of in finite-dimensional CovDs(d).In contrast,the proposed approach follows the path(a)–(b)–(e)–(f)to learn a feature mapping from the Riemannian manifold of in finite-dimensional CovDs(e)to a new low-dimensional Euclidean space(f)to obtain the vectorial approximations.

    Fig.2 Conceptual illustration of generating CovDs from images.F(x,y)is the feature vector at position(x,y)in the image sample,and is composed of information from different features such as intensity,gradient,Gabor wavelets,etc.

    This type of data embedding into an RKHS is common in many applications and seems to lead to impressive results.However,the use of infinitedimensional CovDs is restricted in practice.Sincethe CovDsis always rank-deficient and thus may only be positive semi-de finite,with rank at mostn?1,which means it is on the boundary of the positive cone and at an in finite distance from any SPD matrices.In order to apply the theory ofSym+,regularization is applied asNow,is strictly positive and invertible,which are necessary for Riemannian metrics.

    2 Vectorial approximations of CovDs

    In this section,we present the proposed approach for obtaining vectorial approximations of infinitedimensional CovDs.The key idea is to estimate in finite-dimensional CovDs via valid kernels based on Riemannian metrics,resulting in low-dimensional vectors,to obtain better classification accuracy.Before delving into the detail,we start with a brief description of the metrics and corresponding kernels for CovDs.

    2.1 Riemannian metrics

    AnSPD matrixisa symmetric matrix with the property that all its eigenvalues are positive.As mentioned above,the space of SPD matrices is not a Euclidean space but a Riemannian manifold.Each point on the Riemannian manifold has a well-de fined continuous collection of scalar products de fined on its tangent space and is endowed with an associated Riemannian metric.A Riemannian metric makes it possible to define various geometric notions on the Riemannian manifold,such as angles,distances,etc.Since the manifold is curved,the distances specify the length of the shortest curve that connects the points,also known as geodesics.

    Log-Euclidean metric.One of the most commonly encountered Riemannian metricsonSym+is the log-Euclidean metric,which results in classical Euclidean computations as

    whereC1,C2∈Sym+,anddenotes the matrix Frobenius form.log(·)is the common matrix logarithm operator.The eigen-decomposition of a CovDsCis given byand the logarithm is calculated using logAs shown in Ref.[3],Sym+endowed with a log-Euclidean metric is also an inner product space,with inner productA broad variety of kernels can be developed.

    Log-Hilbert–Schmidt metric.A generalization of the log-Euclidean metric on the Riemannian manifold of positive de finite matrices to the in finite dimensional setting is the log-Hilbert–Schmidt metric.It is applied in particular to compute distances between CovDs in an RKHS,for which explicit formulae and the inner product are obtained via the Gram matrices induced by an implicit mappingφand the corresponding positive de finite kernelK.LetX=be two data matrices,andare CovDs in the RKHSas de fined in Section 2.LetKx,Ky,andKx,ybe then×nGram matrices of the positive de finite kernelK.Letso thatLetNAandNBbe the numbers of nonzero eigenvalues of spectral decompositionsandThe log-Hilbert–Schmidt metric betweenis de fined as

    where°denotes the Hadamard(element-wise)product and the log-Hilbert–Schmidt inner product is defined as+(logα)(logβ).

    2.2 Nystr?m method

    The Nystr?m method was used in Ref.[2]for learning a feature mappingto obtain D×D in finite-dimensional CovDs estimates. Letbe the mapped data matrix de fined in Section 2, so thatIn other words,a rank D approximation of kernelcan be computed as ZTZ,Z=[Σ1/2V]. Σ and V are the top D eigenvalues and corresponding eigenvectors ofd ≤ D ≤ n.Estimates ofcan be obtained with the mapping ζ(·)by

    The corresponding estimates of CovDs in H are obtained as

    To achieve the aim of effective and compact in finite-dimensional CovDs estimation,we propose a revised scheme. Rather than kernels based on Euclidean distance,we use kernels based on Riemannian metrics to learn a mapping ζ′:Sym+→with the Nystr?m method. Given a setof m CovDs,we obtain a D′-dimensional vector representation by modifying Eq.(5)to

    Obviously,we can extend this approach to estimate in finite-dimensional CovDs. Given a set of m in finite-dimensional CovDs,its D′-dimensional vectorial approximationcan be obtained as the same in Eq.(7)by and kLHSMis a valid kernel based on the log-Hilbert–Schmidt metric,ΣLHSMand VLHSMare the top D′eigenvalues and corresponding eigenvectors of the m×m kernel matrixD′≤ m. The process of estimating in finite dimensional CovDs using the Nystr?m method and kernels based on log-Hilbert–Schmidt metric is schematically represented in Algorithm 1.

    3 Evaluation

    The proposed approach has been evaluated on standard datasets for three image classification tasks: material texture categorization,virus cell identification,and human face recognition.Figure 3 shows image samples from different datasets.

    3.1 Implementation details

    In order to demonstrate the empirical performance of our approach, we compare the accuracy of low-dimensional CovDs,approximate in finite dimensional CovDs and vectorial approximations of in finite-dimensional CovDs with a simple nearest neighbor classifier,and we also provide classification results of partial least squares (PLS) basedtechniques.In particular,low-dimensional CovDs combined with kernelized PLS is similar to the method of covariance discriminant learning(CDL)[3],which can be considered as the state-of-the-art for CovDs-based classification.Different algorithms compared in our experiments are as follows:

    ?

    ?Cov·NNLEM:Low-dimensional CovDs with log-Euclidean metric based NN classifier.

    ?Approximate in finite-dimensional CovDs obtained by the Nystr?m method with log-Euclidean metric based NN classifier,which is the same as the method in Ref.[2]but replacing the affine-invariant metric with the log-Euclidean metric.

    ?Vectorial approximations of in finite-dimensional CovDs with Euclidean metric based NN classifier.

    ?Cov·KPLS: Low-dimensional CovDs with kernelized PLS.

    ?Approximate in finite-dimensional CovDs with kernelized PLS.

    ?Vectorial approximations of in finite dimensional CovDs with PLS.

    Following standard practice[2],we extracted original features from each image sample and utilized a Gaussian kernel to generate in finite-dimensional CovDs.Gaussian kernels based on the log-Euclidean metric and log-Hilbert–Schmidt metric were adopted as valid Riemannian kernels for low-dimensional CovDs and in finite-dimensional CovDs respectively.All parameters and the target dimensionality were determined by cross-validation.All algorithms were performed with MATLAB software and a quad-core 3.0GHz CPU.

    3.2 Material texture categorization

    For the first task,we used the UIUC Material dataset[4],which contains 18 categories of materials taken in the wild.Each category has 12 images of various sizes with various geometric details included.For each pixel at coordinate(x,y)in an image sampleI,we extract a feature vector:

    whereare the color intensities,followed by the magnitude of intensity gradients and the magnitude of Laplacians,and is the response of a 2D Gabor wavelet with orientationuand scalev.We setu=4,v=3 here,and therefore the dimensionality ofFx,yis 19.Following standard practice,we randomly chose half of the images from each category for training,and the rest were used for testing.This random selection procedure was repeated 10 times and the average classification accuracy with standard deviation is reported.

    3.3 Virus cell identification

    For this task,we used the Virus dataset[5],which contains images of 15 different virus classes.Each class has 100 segmented grayscale images,with a resolution of 41×41 pixels,all formed by transmission electron microscopy.We applied a similar setting as used for the previous dataset in Eq.(9),extracting 25-dimensional feature vectors at each pixel of an image to generate CovDs given by

    whereIx,yis the intensity and the 2D Gabor wavelet was used at 4 orientations and 5 scales here.We employed the original 10 splits provided by the Virus dataset and performed experiments with 9 splits for training and 1 split for testing. The average classification accuracy with standard deviation for all 10 gallery/probe combinations is reported.

    3.4 Human face recognition

    The last dataset we used is the FERET dataset[6].We selected the b subset of FERET dataset for evaluation,which comprises 200 persons,each having 7 images with expression and illumination variations.We again applied a similar setting as used for the previous dataset in Eq.(9),extracting 43-dimensional feature vectors with 5 orientations and 8 scales for 2D Gabor wavelets to generate CovDs given by

    We randomly selected 3 images of each person for training and used the remaining images for testing,repeating the entire procedure 10 times.

    3.5 Discussion of results

    Tables 1–3 give the classification accuracies of all algorithms on these three datasets.As wecan see,the vectorial approximations,estimated from in finite-dimensional CovDs,are superior to low-dimensional CovDs and approximate in finite dimensional CovDs for all datasets,using the nearest neighbor classifier.The improvement of the vectorial approximations over the low-dimensional CovDs is up to 9.3%for these datasets,which is consistent with the claim that in finite-dimensional CovDs offer better discriminatory power over their low-dimensional counterparts. Our approach also out performs the method of Ref.[2]based on the log-Euclidean metric by at least 0.6%.We believe that estimating the in finite-dimensional CovDs with kernels based on proper Riemannian metrics can better reveal the intrinsic geometry than kernels based on a Euclidean metric,as the empirical results demonstrate.Interestingly,our approach even obtained comparable performance to more complicated kernelized PLS learning.With PLS,the classification accuracies of our vectorial approximations were slightly boosted to 47.7%±3.0% and79.4%±3.3% for UIUC and Virus datasets,respectively.This indicates that vectorial approximations are well-suited for CovDs-based classification.

    Table 1 Classification accuracies for the UIUC Material dataset

    Table 2 Classification accuracies for the Virus dataset

    Table 3 Classification accuracies for the FERET dataset

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China(No.61373055).

    [1]Harandi,M.;Salzmann,M.;Porikli,F.Bregman divergences for in finite dimensional covariance matrices.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1003–1010,2014.

    [2]Faraki,M.;Harandi,M.T.;Porikli,F.Approximate in finite-dimensional region covariance descriptors for image classification.In: Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing,1364–1368,2015.

    [3]Wang,R.;Guo,H.;Davis,L.S.;Dai,Q.Covariance discriminative learning: A natural and efficient approach to image set classification.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2496–2503,2012.

    [4]Liao, Z.; Rock, J.; Wang, Y.; Forsyth, D.Nonparametric filtering for geometric detail extraction and material representation.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,963–970,2013.

    [5]Kylberg,G.;Uppstr?m,M.;Sintorn,I.-M.Virus texture analysis using local binary patterns and radial density pro files.In:Progress in Pattern Recognition,Image Analysis,Computer Vision,and Applications.Martin,C.S.;Kim,S.-W.Eds.Springer,573–580,2011.

    [6]Phillips,P.J.;Moon,H.;Rizvi,S.;Rauss,P.J.The FERET evaluation methodology for face-recognition algorithms.IEEE Transactions on Pattern Analysis and Machine IntelligenceVol.22,No.10,1090–1104,2000.

    1School of IoT Engineering,Jiangnan University,Wuxi 214122,China.E-mail:J.-Y.Ren,alvisland@gmail.com;X.-J.Wu,xiaojunwu jnu@163.com

    2017-02-27;accepted:2017-07-12

    Jie-YiRenis currently a Ph.D.candidate in the School of IoT Engineering at Jiangnan University.His research interest is in computer vision and machine learning.

    Xiao-Jun Wuis a professor in the School of IoT Engineering at Jiangnan University.He has his Ph.D.degree in pattern recognition and intelligent systems.He has published more than 150 papers on pattern recognition,computer vision,fuzzy systems,neural networks,and intelligent systems.

    Open AccessThe articles published in this journal are distributed under the terms of the Creative

    Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095.To submit a manuscript,please go to https://www.editorialmanager.com/cvmj.

    亚洲精品,欧美精品| 99热6这里只有精品| videossex国产| 久久99热6这里只有精品| 免费少妇av软件| av福利片在线观看| 国内揄拍国产精品人妻在线| 亚洲婷婷狠狠爱综合网| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| 2022亚洲国产成人精品| 大片电影免费在线观看免费| 一个人观看的视频www高清免费观看| 又爽又黄无遮挡网站| 赤兔流量卡办理| 永久免费av网站大全| 亚洲精品乱久久久久久| 高清欧美精品videossex| 日本三级黄在线观看| 国产欧美亚洲国产| 久久久久精品久久久久真实原创| 亚洲精品久久午夜乱码| a级毛色黄片| 午夜视频国产福利| 日韩一本色道免费dvd| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 另类亚洲欧美激情| 男女边摸边吃奶| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 日本免费在线观看一区| 一级片'在线观看视频| 2021少妇久久久久久久久久久| 精品亚洲乱码少妇综合久久| 看十八女毛片水多多多| 亚洲av.av天堂| 王馨瑶露胸无遮挡在线观看| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 蜜桃久久精品国产亚洲av| 亚洲国产精品999| 亚洲av国产av综合av卡| 久久影院123| 久久精品夜色国产| 高清视频免费观看一区二区| 精品人妻视频免费看| 亚洲av免费在线观看| 国产精品人妻久久久影院| 91精品一卡2卡3卡4卡| 九草在线视频观看| 黄片无遮挡物在线观看| 国产一区二区在线观看日韩| 国产成人精品婷婷| videossex国产| 99热全是精品| 亚洲人与动物交配视频| 美女视频免费永久观看网站| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| 成人高潮视频无遮挡免费网站| 国产av码专区亚洲av| 日韩av在线免费看完整版不卡| 黄片无遮挡物在线观看| 日韩三级伦理在线观看| 99九九线精品视频在线观看视频| 国模一区二区三区四区视频| 水蜜桃什么品种好| 一级av片app| 99re6热这里在线精品视频| 国产精品成人在线| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 看免费成人av毛片| 国产伦精品一区二区三区视频9| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 少妇熟女欧美另类| 精品酒店卫生间| 少妇人妻 视频| 性插视频无遮挡在线免费观看| 国产一级毛片在线| 精品国产露脸久久av麻豆| av免费在线看不卡| 亚洲人与动物交配视频| 看免费成人av毛片| 一本色道久久久久久精品综合| 2021少妇久久久久久久久久久| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 一级毛片电影观看| 成人亚洲精品av一区二区| 五月开心婷婷网| 精品久久久久久电影网| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| av在线老鸭窝| 久久99精品国语久久久| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| av.在线天堂| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 80岁老熟妇乱子伦牲交| 男女边摸边吃奶| 亚洲av福利一区| av免费观看日本| 精品久久久久久久人妻蜜臀av| 五月开心婷婷网| 日韩欧美精品v在线| 亚洲欧洲日产国产| 久久99热这里只频精品6学生| 国产高清国产精品国产三级 | 人体艺术视频欧美日本| 国产精品偷伦视频观看了| 国产欧美另类精品又又久久亚洲欧美| 亚洲,一卡二卡三卡| av女优亚洲男人天堂| 亚洲精品乱码久久久v下载方式| 成人美女网站在线观看视频| 国产毛片a区久久久久| 亚洲av中文av极速乱| 18禁裸乳无遮挡动漫免费视频 | 色5月婷婷丁香| 纵有疾风起免费观看全集完整版| 亚洲自拍偷在线| 高清av免费在线| 欧美激情在线99| videos熟女内射| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 老熟女久久久| 男女下面插进去视频免费观看| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩av久久| 免费看不卡的av| 日本色播在线视频| 亚洲精品日本国产第一区| 免费看不卡的av| 99精品久久久久人妻精品| 美国免费a级毛片| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| xxxhd国产人妻xxx| 国产xxxxx性猛交| 超色免费av| 久久 成人 亚洲| 少妇精品久久久久久久| 如日韩欧美国产精品一区二区三区| 国产1区2区3区精品| 亚洲欧美色中文字幕在线| 亚洲精品视频女| 久久精品久久精品一区二区三区| 美女午夜性视频免费| 日韩大码丰满熟妇| 亚洲国产欧美网| 久久狼人影院| bbb黄色大片| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 99久久精品国产亚洲精品| 国产国语露脸激情在线看| 91精品国产国语对白视频| tube8黄色片| 十八禁人妻一区二区| 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av | 伊人久久大香线蕉亚洲五| 男女之事视频高清在线观看 | 黄色毛片三级朝国网站| 美女中出高潮动态图| 欧美精品一区二区免费开放| netflix在线观看网站| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| av不卡在线播放| 热99久久久久精品小说推荐| 亚洲国产av影院在线观看| 欧美日韩av久久| 国产欧美亚洲国产| 国产片内射在线| 丝瓜视频免费看黄片| 国产成人精品无人区| 9色porny在线观看| 成年动漫av网址| 哪个播放器可以免费观看大片| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| 亚洲精品国产av蜜桃| 人成视频在线观看免费观看| 午夜91福利影院| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 国产精品国产三级国产专区5o| 久久毛片免费看一区二区三区| 欧美精品一区二区大全| 午夜久久久在线观看| 丝袜脚勾引网站| 成年动漫av网址| 看非洲黑人一级黄片| 国产精品久久久久久精品电影小说| 国产一区二区三区综合在线观看| 欧美少妇被猛烈插入视频| 18禁观看日本| 亚洲精品久久久久久婷婷小说| 亚洲婷婷狠狠爱综合网| 亚洲精品美女久久久久99蜜臀 | av不卡在线播放| 在线精品无人区一区二区三| 夫妻午夜视频| 亚洲图色成人| 黄片无遮挡物在线观看| 水蜜桃什么品种好| 欧美日韩亚洲综合一区二区三区_| 丰满乱子伦码专区| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 一本久久精品| 精品亚洲成国产av| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 人成视频在线观看免费观看| 大片电影免费在线观看免费| a 毛片基地| 亚洲人成网站在线观看播放| 十八禁人妻一区二区| 久久综合国产亚洲精品| 婷婷成人精品国产| 国产精品.久久久| 精品久久久久久电影网| av不卡在线播放| 不卡视频在线观看欧美| 久久ye,这里只有精品| 国产野战对白在线观看| 国产国语露脸激情在线看| 久热爱精品视频在线9| 老司机影院毛片| 国产日韩一区二区三区精品不卡| 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 精品国产超薄肉色丝袜足j| 国产男女超爽视频在线观看| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 一边亲一边摸免费视频| netflix在线观看网站| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 亚洲av在线观看美女高潮| 国产熟女欧美一区二区| 大片电影免费在线观看免费| 99热全是精品| 啦啦啦 在线观看视频| 国产一区二区在线观看av| 日本欧美国产在线视频| avwww免费| av在线观看视频网站免费| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 黄色 视频免费看| 波野结衣二区三区在线| 十分钟在线观看高清视频www| 午夜激情av网站| 99国产精品免费福利视频| 人人妻人人澡人人看| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 日韩精品有码人妻一区| 久久精品久久久久久久性| 人体艺术视频欧美日本| 久久ye,这里只有精品| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 看非洲黑人一级黄片| 女人爽到高潮嗷嗷叫在线视频| 男女无遮挡免费网站观看| 91国产中文字幕| 啦啦啦在线免费观看视频4| 91成人精品电影| 亚洲av国产av综合av卡| 亚洲 欧美一区二区三区| 新久久久久国产一级毛片| av网站免费在线观看视频| 国产精品女同一区二区软件| 伊人久久大香线蕉亚洲五| 在线看a的网站| 多毛熟女@视频| 超碰97精品在线观看| 午夜福利在线免费观看网站| 黑人猛操日本美女一级片| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 不卡视频在线观看欧美| 欧美精品av麻豆av| 赤兔流量卡办理| 大片电影免费在线观看免费| 青春草视频在线免费观看| 十分钟在线观看高清视频www| 自线自在国产av| 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影 | 亚洲熟女精品中文字幕| 久久久久久免费高清国产稀缺| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 中文字幕高清在线视频| av有码第一页| 亚洲成人手机| 大陆偷拍与自拍| av国产精品久久久久影院| 精品一品国产午夜福利视频| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 十八禁人妻一区二区| 日日摸夜夜添夜夜爱| 亚洲欧美色中文字幕在线| 成人手机av| 99久久99久久久精品蜜桃| 赤兔流量卡办理| 精品一区二区免费观看| 欧美日韩av久久| 国产精品.久久久| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 国产亚洲午夜精品一区二区久久| 亚洲国产成人一精品久久久| 最近最新中文字幕大全免费视频 | 久久精品国产综合久久久| 久久久欧美国产精品| 国产97色在线日韩免费| 亚洲精品在线美女| 亚洲国产精品一区二区三区在线| 亚洲精品av麻豆狂野| 在线观看人妻少妇| 亚洲一码二码三码区别大吗| 成人国产麻豆网| 777米奇影视久久| 亚洲一区中文字幕在线| 国产日韩欧美亚洲二区| 久久99一区二区三区| 9色porny在线观看| 无遮挡黄片免费观看| 又大又爽又粗| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 99香蕉大伊视频| 在线免费观看不下载黄p国产| 99国产综合亚洲精品| 人人澡人人妻人| 久久婷婷青草| 性少妇av在线| 国产日韩欧美视频二区| 黑丝袜美女国产一区| 成人影院久久| 午夜福利乱码中文字幕| 国产精品人妻久久久影院| 人人妻,人人澡人人爽秒播 | 女人久久www免费人成看片| 亚洲精品国产色婷婷电影| videos熟女内射| 如日韩欧美国产精品一区二区三区| 国产精品嫩草影院av在线观看| 男女免费视频国产| 最近2019中文字幕mv第一页| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 女人被躁到高潮嗷嗷叫费观| 日韩制服骚丝袜av| 波多野结衣av一区二区av| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 国产片内射在线| 亚洲国产精品999| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 高清不卡的av网站| 国产av精品麻豆| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 欧美日韩精品网址| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 精品一区二区三区四区五区乱码 | 秋霞伦理黄片| 中国国产av一级| 免费在线观看完整版高清| 观看美女的网站| 欧美激情极品国产一区二区三区| 咕卡用的链子| 交换朋友夫妻互换小说| 久久人人爽人人片av| 一区二区三区精品91| 国产精品久久久久久久久免| 极品人妻少妇av视频| tube8黄色片| 美女扒开内裤让男人捅视频| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 在线天堂中文资源库| 久久韩国三级中文字幕| 黄频高清免费视频| 九色亚洲精品在线播放| 两性夫妻黄色片| 久久久久久久国产电影| 操美女的视频在线观看| 久久婷婷青草| 欧美日韩视频高清一区二区三区二| 岛国毛片在线播放| 91精品国产国语对白视频| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 精品亚洲成国产av| 观看av在线不卡| 久久人人爽人人片av| 久久99一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 校园人妻丝袜中文字幕| 久久女婷五月综合色啪小说| 国产老妇伦熟女老妇高清| 视频在线观看一区二区三区| 国产精品蜜桃在线观看| 成人国语在线视频| 国产精品国产av在线观看| 黄色怎么调成土黄色| 亚洲av日韩精品久久久久久密 | 久久人人爽人人片av| 亚洲天堂av无毛| 如何舔出高潮| 国产一区二区三区av在线| 性色av一级| 大话2 男鬼变身卡| 咕卡用的链子| 在线天堂中文资源库| 精品第一国产精品| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 少妇人妻精品综合一区二区| 亚洲色图 男人天堂 中文字幕| 飞空精品影院首页| 亚洲精品乱久久久久久| 免费看不卡的av| av国产精品久久久久影院| 99国产综合亚洲精品| 国产 精品1| 亚洲成人国产一区在线观看 | 一区二区三区激情视频| 国产国语露脸激情在线看| videos熟女内射| 男女边吃奶边做爰视频| 国产探花极品一区二区| 99九九在线精品视频| 精品福利永久在线观看| 啦啦啦啦在线视频资源| e午夜精品久久久久久久| 秋霞伦理黄片| 啦啦啦在线免费观看视频4| videosex国产| 久久国产亚洲av麻豆专区| 亚洲,欧美,日韩| 一边亲一边摸免费视频| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 只有这里有精品99| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 无限看片的www在线观看| 老司机影院毛片| 热re99久久国产66热| 国产成人精品福利久久| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9 | 在线观看一区二区三区激情| 亚洲av电影在线观看一区二区三区| 午夜福利乱码中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 一本—道久久a久久精品蜜桃钙片| 国产在线一区二区三区精| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线| 日本午夜av视频| 激情视频va一区二区三区| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 色网站视频免费| 在线观看免费高清a一片| 捣出白浆h1v1| 免费观看性生交大片5| 成年人免费黄色播放视频| 午夜免费鲁丝| 男女床上黄色一级片免费看| 天堂8中文在线网| 成年人免费黄色播放视频| 日日爽夜夜爽网站| 伦理电影大哥的女人| 黄色毛片三级朝国网站| 亚洲中文av在线| 中文字幕av电影在线播放| 欧美日本中文国产一区发布| 一区二区三区四区激情视频| 黄色视频不卡| 啦啦啦视频在线资源免费观看| 亚洲在久久综合| 日本av手机在线免费观看| 人妻一区二区av| 我的亚洲天堂| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 中文字幕人妻丝袜一区二区 | 女人高潮潮喷娇喘18禁视频| 操美女的视频在线观看| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 成人国产麻豆网| 国产野战对白在线观看| e午夜精品久久久久久久| tube8黄色片| 美女扒开内裤让男人捅视频| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 亚洲在久久综合| 老司机深夜福利视频在线观看 | 日韩av不卡免费在线播放| 九九爱精品视频在线观看| 国产精品欧美亚洲77777| 午夜福利免费观看在线| 一边摸一边做爽爽视频免费| 色婷婷av一区二区三区视频| 久久av网站| av不卡在线播放| 美女主播在线视频| 人妻 亚洲 视频| 毛片一级片免费看久久久久| 男女边摸边吃奶| av在线app专区| 欧美另类一区| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 五月开心婷婷网| 午夜福利视频精品| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 婷婷色综合大香蕉| 欧美黑人精品巨大| 午夜91福利影院| 欧美精品一区二区免费开放| 男人添女人高潮全过程视频| 国产成人a∨麻豆精品| 亚洲av国产av综合av卡| av在线老鸭窝| 日日爽夜夜爽网站| 婷婷色麻豆天堂久久| 丝袜喷水一区| 亚洲,一卡二卡三卡| 亚洲精品自拍成人| 新久久久久国产一级毛片| 观看美女的网站| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 精品一区二区三区av网在线观看 | 男男h啪啪无遮挡| 国产黄色免费在线视频| 无遮挡黄片免费观看| 亚洲色图综合在线观看| 日韩一本色道免费dvd| 亚洲成人免费av在线播放| 午夜免费鲁丝| 国产精品 国内视频| 在线观看人妻少妇| 啦啦啦在线免费观看视频4| 亚洲精品视频女| av在线老鸭窝| 久久国产亚洲av麻豆专区| av在线观看视频网站免费| 日韩 欧美 亚洲 中文字幕| 好男人视频免费观看在线| 制服诱惑二区| 久久婷婷青草| 一本久久精品| 看非洲黑人一级黄片| 亚洲成人国产一区在线观看 | 精品一品国产午夜福利视频| 一级毛片我不卡|