(成都理工大學(xué) 材料與化學(xué)化工學(xué)院,四川 成都 610059)
綜 述
柔性鋰氧電池的發(fā)展現(xiàn)狀
陳建中,舒朝著,龍劍平,候志前
(成都理工大學(xué) 材料與化學(xué)化工學(xué)院,四川 成都 610059)
柔性電子設(shè)備的飛速發(fā)展對(duì)可充式二次電池提出了越來(lái)越高的要求。柔性鋰氧電池憑借著超高的理論能量密度,成為目前電池領(lǐng)域的研究熱點(diǎn),開發(fā)出高效、穩(wěn)定、高機(jī)械強(qiáng)度及柔性的電池正極和負(fù)極是目前研究的關(guān)鍵。本文主要對(duì)柔性正極材料、鋰負(fù)極的開發(fā)與設(shè)計(jì)進(jìn)行簡(jiǎn)要介紹,并對(duì)該領(lǐng)域進(jìn)行總結(jié)、展望。
鋰氧電池;柔性正極材料;綜述;柔性鋰負(fù)極;催化劑;二次電池
隨著現(xiàn)代科技的持續(xù)進(jìn)步,可穿戴式電子設(shè)備越來(lái)越多地出現(xiàn)在人們的日常生活中,為人們帶來(lái)更多的便利,如智能手表、智能運(yùn)動(dòng)鞋、智能衣服以及電子皮膚和可折疊可彎曲的智能手機(jī)等[1]。這些設(shè)備的出現(xiàn)對(duì)化學(xué)電源提出了更高的要求,要讓可穿戴設(shè)備變得像智能手機(jī)、平板一樣流行,電池必須更小,續(xù)航時(shí)間必須更長(zhǎng),而且它還必須更輕薄更有彈性。
鋰氧電池憑借著超高的理論能量密度,其概念一經(jīng)提出便受到了科研界的廣泛關(guān)注,被認(rèn)為是最具應(yīng)用前景的新一代二次電池[3-6]。鋰氧電池主要由正極、鋰負(fù)極、電解液和隔膜組成,在放電過(guò)程中,電解液中的鋰離子與正極中的氧氣反應(yīng)生成過(guò)氧化鋰,放電產(chǎn)物沉積在正極表面;充電過(guò)程中,正極表面的過(guò)氧化鋰氧化分解,生成的氧氣重新釋放到工作環(huán)境中[2]。由此可見,鋰氧電池在充放電過(guò)程中,化學(xué)反應(yīng)主要發(fā)生在正極。因此,研究高效、穩(wěn)定的正極材料是開發(fā)柔性鋰氧電池的關(guān)鍵所在。
本文主要通過(guò)對(duì)最近幾年柔性鋰氧電池的發(fā)展現(xiàn)狀進(jìn)行總結(jié)與討論,對(duì)柔性正極及柔性鋰負(fù)極的結(jié)構(gòu)設(shè)計(jì)、柔性鋰氧電池的組裝等進(jìn)行闡述,并對(duì)該領(lǐng)域的未來(lái)發(fā)展趨勢(shì)進(jìn)行了討論。
正極材料包括基底材料與催化劑,基于鋰氧電池的作用機(jī)理,正極基底材料一般具有優(yōu)異的導(dǎo)電性和穩(wěn)定性。就目前而言,商業(yè)碳材料[8-15]如碳布、碳紙、碳纖維等,都具有良好的柔性和導(dǎo)電性,在柔性鋰氧電池中得到了廣泛的應(yīng)用。但是碳布、碳纖維材料存在比表面積小的缺點(diǎn),不能為放電產(chǎn)物提供充足的存儲(chǔ)空間,使柔性鋰氧電池的放電容量過(guò)低。碳材料本身對(duì)ORR及OER的催化效果有限,導(dǎo)致充放電電位在很大程度上偏離平衡時(shí)的理論電位值(2.96 V),極大地降低了電池的充放電效率[7]。催化劑主要通過(guò)增加放電容量、減小過(guò)電位、促進(jìn)放電產(chǎn)物的氧化分解來(lái)提升柔性鋰氧電池的電化學(xué)性能[7,16-17]。因此,開發(fā)出高效、穩(wěn)定的催化劑是實(shí)現(xiàn)更好電池性能的關(guān)鍵。
目前柔性鋰氧電池廣泛使用的催化劑包括過(guò)渡金屬氧化物[18-20]、金屬硫化物[21-23]、貴金屬[24]及碳材[25-30]等。碳材如 SP、KB碳、石墨烯、碳納米管等;過(guò)渡金屬氧化物如氧化錳、氧化鈦、氧化鈷等都能提升鋰氧電池的庫(kù)倫效率、循環(huán)性能和倍率性能。
Cetinkaya等[31]通過(guò)真空抽濾的方法制備出氧化石墨烯(GO)紙(如圖 1所示),相比其他薄膜類材料,氧化石墨烯紙具有良好的機(jī)械強(qiáng)度和韌性,也具有優(yōu)異的導(dǎo)電性,用作柔性鋰氧電池正極材料實(shí)現(xiàn)了很好的柔性及電化學(xué)性能。
圖1 氧化石墨烯電極及充放電曲線[31]Fig.1 Graphene oxide electrode and charge discharge curves[31]
如圖1所示,在穩(wěn)定循環(huán)的情況下,使用氧化石墨烯紙作正極,鋰氧電池的比容量為700 mAh/g,并且具有較好的能量效率,在循環(huán)至10圈時(shí)其能量效率接近100%。但使用氧化石墨烯紙作柔性鋰氧電池催化劑材料具有以下弊端:(1)電池的循環(huán)穩(wěn)定性較差,在循環(huán)至10圈時(shí)電池的容量損耗達(dá)到50%;(2)使用氧化石墨烯紙作正極的催化活性也較差,充電過(guò)電勢(shì)大,充電電壓接近4 V,而碳材料在充電電壓超過(guò)3.5 V情況下的穩(wěn)定性差,容易氧化分解,形成碳酸鹽等副產(chǎn)物,對(duì)電池性能造成極大影響。研究人員試圖通過(guò)引入金屬氧化物、金屬硫化物和貴金屬等作催化劑以期解決上述存在的問題,從而使鋰氧電池獲得更優(yōu)異的電化學(xué)性能。
Liu等[32]使用晶種沉積輔助水熱生長(zhǎng)的方法,在碳布表面生長(zhǎng)氧化鈦納米陣列,制備出具有高機(jī)械強(qiáng)度、催化活性良好的氧化鈦納米陣列碳布電極(TiO2/CT)。如圖 2所示,該電極為自支撐結(jié)構(gòu),氧化鈦納米陣列均勻地生長(zhǎng)在碳布表面,形成的多孔結(jié)構(gòu)為柔性鋰氧電池提供了充足的活性點(diǎn)位以及放電產(chǎn)物的存儲(chǔ)空間。Liu課題組對(duì)TiO2/CT電極組成的電池進(jìn)行了電化學(xué)性能的測(cè)試(圖2),相比純碳布作鋰氧電池正極,TiO2/CT鋰氧電池的電化學(xué)性能得到了顯著的提高,純碳布鋰氧電池的放電容量為770 mAh/g,而TiO2/CT鋰氧電池的放電容量達(dá)到了3000 mAh/g;TiO2/CT鋰氧電池具有優(yōu)異的催化活性,由首次充放電曲線可知,TiO2/CT鋰氧電池的放電電壓比純碳布鋰氧電池高160 mV,TiO2/CT鋰氧電池的充電電壓比純碳布鋰氧電池低 495 mV;TiO2/CT鋰氧電池具有良好的循環(huán)穩(wěn)定性,可穩(wěn)定循環(huán)300次以上,極大地提高了電池的使用壽命。
圖2 氧化鈦納米陣列/碳布電極(TiO2/CT)[32]Fig.2 TiO2 NAs/CT electrode[32]
Liu課題組對(duì)TiO2/CT鋰氧電池的柔性測(cè)試也得到了良好的結(jié)果(圖3),在不同彎曲角度的情況下,TiO2/CT鋰氧電池能夠穩(wěn)定循環(huán)100次以上,充放電電壓穩(wěn)定,這對(duì)于未來(lái)柔性鋰氧電池的實(shí)際應(yīng)用具有非常重要的意義。
與傳統(tǒng)鋰氧電池正極相比,TiO2/CT電極具有以下優(yōu)勢(shì)。首先,TiO2/CT電極是一種自支撐電極,無(wú)需使用聚合物粘接劑,消除了粘接劑對(duì)電子轉(zhuǎn)移的影響,同時(shí)也避免了在放電過(guò)程中與粘接劑相關(guān)的副反應(yīng)的發(fā)生,使電極具有更優(yōu)異的穩(wěn)定性;其次TiO2/CT電極可以有效避免由碳材作正極基底材料所引發(fā)的一系列問題,如碳材自身的分解以及由碳材所促進(jìn)的電解液的分解;最后,TiO2/CT電極具有非常好的柔性,這對(duì)于柔性鋰氧電池的組裝至關(guān)重要。
除以上自支撐鋰氧電池正極材料,Liu等[33]利用靜電紡絲技術(shù)制得多孔碳纖維,再用水熱合成的方式將鈷酸鎳納米片生長(zhǎng)在碳纖維上制備出分層鈷酸鎳納米片/碳纖維薄膜電極,獲得了較大的放電容量和良好的循環(huán)穩(wěn)定性;最近,Luo等[34]通過(guò)刻蝕法將碳化鉬納米顆粒生長(zhǎng)在碳纖維布上,制備的碳化鉬/碳纖維布電極(Mo2C/CF)表現(xiàn)出了優(yōu)異的電化學(xué)性能,金屬碳化物用作柔性鋰氧電池催化劑為柔性鋰氧電池的發(fā)展提供了新的思路。
圖3 鋰氧電池的彎曲和扭轉(zhuǎn)特性[32]Fig.3 The bending and twisting properties of the Li-O2 battery device[32]
為了開發(fā)出更好的柔性鋰氧電池,僅僅研究柔性正極材料是不足的,柔性金屬鋰負(fù)極以及柔性外殼的研發(fā)也是開發(fā)出性能更優(yōu)異的柔性鋰氧電池的關(guān)鍵。
目前柔性鋰氧電池的負(fù)極多用鋰片,但是,鋰片機(jī)械強(qiáng)度差,在反復(fù)彎曲折疊過(guò)程中必定對(duì)鋰片造成嚴(yán)重的損壞,對(duì)電池的容量、循環(huán)穩(wěn)定性和使用壽命造成很大的影響[35-37]。
為了解決以上問題,Yang等[38]通過(guò)硅橡膠設(shè)計(jì)出一種一體化自組裝柔性鋰氧電池(圖4),其所使用的柔性正極材料為氧化釕/氧化鈦納米陣列碳布電極(圖5);柔性負(fù)極材料為SLC負(fù)極(stainless steel mesh-Li-Cu負(fù)極),將銅片、鋰片和不銹鋼網(wǎng)壓片制得(圖4);以泡沫鎳為模板制備出硅橡膠氣體擴(kuò)散層。由此所制備出的柔性鋰氧電池不僅具有優(yōu)異的電化學(xué)性能,也具有良好的柔性。
圖4 一體化自支撐柔性鋰氧電池的制備示意圖[38]Fig.4 Schematic illustration of the fabrication of the integrated, flexible Li-O2 battery[38]
圖5 RTC正極和SLC負(fù)極的制備示意圖[38]Fig.5 Schematic representations of the design and preparation of the RTC cathode and SLC anode[38]
如圖5所示,以氧化釕/氧化鈦?zhàn)鳛殡p催化劑的柔性鋰氧電池,其首次充放電的過(guò)電勢(shì)僅為0.7 V,放電容量高達(dá)9017 mAh/g。Yang等對(duì)此種柔性鋰氧電池在不同彎曲條件下進(jìn)行了電化學(xué)性能的測(cè)試,在各種彎曲條件下,電池LED顯示屏正常供電,而且容量幾乎沒有變化,表現(xiàn)出良好的穩(wěn)定性,在充放電循環(huán)過(guò)程中,充放電電壓表現(xiàn)穩(wěn)定,沒有明顯的波動(dòng)。Yang等也對(duì)柔性鋰負(fù)極進(jìn)行了彎曲測(cè)試,與鋰片相比,彎曲300次后SLC負(fù)極的表面形貌幾乎沒有變化,而鋰片的表面已經(jīng)出現(xiàn)了形變、裂紋。通過(guò)優(yōu)化鋰負(fù)極及氣體擴(kuò)散層結(jié)構(gòu),能夠得到性能更加優(yōu)異的柔性鋰氧電池,為柔性鋰氧電池的研究提供了新的思路。
本文主要對(duì)近年來(lái)柔性鋰氧電池領(lǐng)域的研究成果進(jìn)行了總結(jié),分別從柔性電極材料和電池結(jié)構(gòu)進(jìn)行歸納,提出了柔性鋰氧電池發(fā)展的思路,即在保證電池性能的條件下,通過(guò)設(shè)計(jì)出具有良好的機(jī)械穩(wěn)定性和優(yōu)異的柔性電極材料,實(shí)現(xiàn)鋰氧電池在更廣泛領(lǐng)域的應(yīng)用,推動(dòng)柔性電子設(shè)備的發(fā)展。
[1] LAUKHIN V, LEBEDEV V, LAUKHINA E, et al. Fabrication and application of low cost flexible film-based sensors to environmental and biomedical monitoring scenarios[C]// International Internet of Things Summit. Berlin, Germany: Springer International Publishing, 2015.
[2] ABRAHAM K M, JIANG Z A. A polymer electrolyte-based rechargeable lithium/oxygen battery [J]. J Electrochem Soc, 1996, 143(1): 1-5.
[3] GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium-air battery: promise and challenges [J]. J Phys Chem Lett, 2010(14): 2193-2203.
[4] BEATTIE S D, MANOLESCU D M, BLAIR S L. High-capacity lithium-air cathodes[J]. J Electrochem Soc, 2009, 156(1): A44-A47.
[5] OGASAWARA T, DéBART A, HOLZAPFEL M, et al. Rechargeable Li2O2electrode for lithium batteries [J]. J Am Chem Soc, 2006, 128(4): 1390.
[6] ZHENG J P, LIANG R Y, HENDRICKSON M A, et al. Theoretical energy density of Li-air batteries [J]. J Electrochem Soc, 2008, 155(6): A432-A437.
[7] DéBART A, BAO J, ARMSTRONG G, et al. An O2, cathode for rechargeable lithium batteries: the effect of a catalyst [J]. J Power Sources, 2007, 174(2): 1177-1182.
[8] MIRZEAIAN M, HALL P J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries [J]. Electrochim Acta, 2009, 54(28): 7444-7451.
[9] TRAN C, YANG X Q, QU D. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity [J]. J Power Sources, 2010, 195(7): 2057-2063.
[10] CHENG H, SCOTT K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J]. J Power Sources, 2010, 195(5): 1370-1374.
[11] ZHANG G Q, ZHENG J P, LIANG R, et al. α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries [J]. J Electrochem Soc, 2011, 158(7): A822.
[12] ZHANG G Q, ZHENG J P, LIANG R, et al. Lithium-air batteries using SWNT/CNF buckypapers as air electrodes [J]. J Electrochem Soc, 2010, 157(8): A953-A956.
[13] ZHU W, ZHENG J P, LIANG R, et al. Durability study on SWNT/nanofiber buckypaper catalyst support for PEMFCs [J]. J Electrochem Soc, 2009, 156(9): B1099-B1105.
[14] LI Y, WANG J, LI X, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery [J]. Chem Commun, 2011, 47(33): 9438.
[15] DONG S, CHEN X, ZHANG K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2batteries [J]. Chem Commun, 2011, 47(40): 11291-11293.
[16] LU Y C, GASTEIGER H A, PARENT M C, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries [J]. Electrochem Solid State Lett, 2010, 13(6): 69-72.
[17] KRAYTSBERG A, EIN-ELI Y. Review on Li-air batteries-opportunities, limitations and perspective [J]. J Power Sources, 2011, 196(3): 886-893.
[18] CUI Y M, WEN Z Y, LIU Y. A free-standing-type design for cathodes of rechargeable Li-O2batteries [J]. Energy Environ Sci, 2011, 4(11): 4727-4734.
[19] LIU L, GUO H, HOU Y, et al. 3D hierarchical porous Co3O4nanotube network as efficient cathode for rechargeable lithium-oxygen batteries [J]. J Mater Chem A, 2017, 28(5): 14673-14681.
[20] MEI J, LIAO T, KOU L, et al. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries [J]. Adv Mater, 2017, 29: 1700176.
[21] ASADI M, KUMAR B, LIU C, et al. Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries [J]. ACS Nano, 2016, 10(2): 2167.
[22] ZHANG P, LU X, HUANG Y, et al. MoS2nanosheets decorated with gold nanoparticles for rechargeable Li-O2batteries [J]. J Mater Chem A, 2015, 3(28): 14562-14566.
[23] LYU Z, ZHANG J, WANG L, et al. CoS2nanoparticles-graphene hybrid as cathodes catalysts for aprotic Li-O2batteries [J]. Rsc Adv, 2016, 6(38): 723.
[24] XU J J, CHANG Z W, YIN Y B, et al. Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium-oxygen batteries [J]. ACS Cent Sci, 2017, 3(6): 598-604.
[25] WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices [J]. Adv Mater, 2016, 28(22): 4306.
[26] OZCAN S, TOKUR M, CETINKAYA T, et al. Free standing flexible graphene oxide + α-MnO2composite cathodes for Li-Air batteries [J]. Solid State Ionics, 2016, 286: 34-39.
[27] NAZARIANSAMANI M, LIM H D, HAGHIGHATSHISHAVAN S, et al. A robust design of Ru quantum dot/N-doped holey graphene for efficient Li-O2batteries [J]. J Mater Chem A, 2016, 5: 1-14.
[28] LIU T, XU J, LIU Q, et al. Ultrathin, lightweight, and wearable Li-O2battery with high robustness and gravimetric/volumetric energy density [J]. Small, 2017, 13(6): 1602952.
[29] SHUI J L, LIN Y, CONNELL JOHN W, et al. Nitrogen-doped holey graphene for high-performance rechargeable Li-O2batteries [J]. ACS Energy Lett, 2016, 1(1): 260-265.
[30] JING Y, ZHOU Z. Computational insights into oxygen reduction reaction and initial Li2O2nucleation on pristine and N-doped graphene in Li-O2batteries [J]. ACS Catal, 2015, 5(7): 4309-4317.
[31] CETINKAYA T, OZCAN S, UYSAL M, et al. Free-standing flexible graphene oxide paper electrode for rechargeable Li-O2, batteries [J]. J Power Sources, 2014, 267: 140-147.
[32] LIU Q C, XU J J, XU D, et al. Flexible lithium-oxygen battery based on a recoverable cathode [J]. Nat Commun, 2015, 6: 7892.
[33] LIU G, ZHANG L, WANG S, et al. Hierarchical NiCo2O4nanosheets on carbon nanofiber films for high energy density and long-life Li-O2batteries [J]. J Mater Chem A, 2017, 5(28): 14530-14536.
[34] LUO Y, JIN C, WANG Z, et al. A high-performance oxygen electrode for Li-O2batteries: Mo2C nanoparticles grown on carbon fibers [J]. J Mater Chem A, 2017, 5(12): 5690-5695.
[35] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J]. Solid State Ionics, 2002, 148(3/4): 405-416.
[36] YAMAKI J I, TOBISHIMA S I, HAYASHI K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte [J]. J Power Sources, 1998, 74(2): 219-227.
[37] AURBACH D, WEISSMAN I, ZABAN A, et al. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts [J]. Electrochim Acta, 1994, 39(1): 51-71.
[38] YANG X Y, XU J J, BAO D, et al. High-performance integrated self‐package flexible Li-O2battery based on stable composite anode and flexible gas diffusion layer [J]. Adv Mater, 2017, 29(26): 1700378.
Development of flexible lithium oxygen batteries
CHEN Jianzhong, SHU Chaozhu, LONG Jianping, HOU Zhiqian
(School of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China)
With the rapid development of flexible electronic devices, more and more requirements for rechargeable batteries are put forward. Flexible lithium oxygen battery with high energy density theory, have become a hot field of battery. To develop efficient stable and high mechanical strength flexible lithium oxygen battery, flexible anode and cathode is the key at present. In this paper, the development and design of flexible cathode material and lithium anode are briefly introduced, and the field is summarized and prospected.
lithium oxygen battery; flexible cathode material; review; flexible lithium anode; catalysts; storage battery
10.14106/j.cnki.1001-2028.2018.01.001
TM911.4
A
1001-2028(2018)01-0001-06
超純碲攻關(guān)資助項(xiàng)目(SHC128)
2017-09-28
龍劍平
龍劍平(1973-),男,湖南衡陽(yáng)人,教授,博士,主要從事新型金屬材料、復(fù)合材料、新型能源材料的基礎(chǔ)研究與應(yīng)用開發(fā)工作;陳建中(1993-),男,四川南充人,研究生,從事鋰氧電池催化劑研究。
(編輯:陳豐)