• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains

    2018-01-05 02:54:30ButianZhangMengLiLiliYuYimengDaiShaonanYuJinlanJiang

    Bu-tian Zhang, Meng Li, Li-li Yu, Yi-meng Dai, Shao-nan Yu, Jin-lan Jiang

    China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China

    Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains

    Bu-tian Zhang, Meng Li, Li-li Yu, Yi-meng Dai, Shao-nan Yu, Jin-lan Jiang*

    China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China

    Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains (RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence signi ficantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle (C4–6) and lower (C7–T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were signi ficantly higher in white matter than in gray matter. Our study veri fied that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.

    nerve regeneration; diffusion tensor imaging; cervical spinal cord; microstructure; gray matter; white matter; readout segmentation of long variable echo-train sequence; signal-to-noise ratio; fractional anisotropy; neural regeneration

    Introduction

    Diffusion tensor imaging (DTI) is an advanced noninvasive magnetic resonance imaging (MRI) method that can qualitatively and quantitatively analyze the diffusion of water within a voxel in three-dimensional space (S?siadek et al., 2012).Because of the sheath’s structure, water molecules tend to move along the longitudinal axis of axons in neural tissues(Beaulieu, 2002). This feature strongly favors the utility of DTI for the assessment of spinal cord diseases. A previous study has reported that DTI can detect cord damage, which is easily misdiagnosed on T2-weighted images (Banaszek et al., 2014). Most research has generally focused on clinical applications (Demir et al., 2003; Petersen et al., 2012; Ellingson et al., 2014). Only a few studies have focused on the detailed structure of the spinal cord, and most did not precisely characterize the anatomical microstructure because of the con fined spatial resolution or relatively low signal-to-noise ratio (SNR) (Rossi et al., 2008). The low SNR also affected the accuracy of DTI parameters (Jones and Basser, 2004).DTI is useful in clinical diagnosis and outcome assessment of patients with cervical cord diseases, and it is necessary to establish the baseline microstructure of the cervical spinal cord with a high spatial resolution DTI sequence.

    The readout segmentation of long variable echo-trains(RESOLVE) sequence is a novel scanning magnetic resonance (MR) technique, based on a readout segmented echo planar imaging (EPI) strategy. Our study applied RESOLVE sequences with DTI techniques to improve image quality at the technical level and to clearly distinguish gray matter and white matter funiculi of the spinal cord in a large number of healthy individuals. We collected foundation data for the further study of cervical spinal cord diseases.

    Participants and Methods

    Participants

    We studied 45 healthy, asymptomatic subjects from the physical examination center of our hospital: 19 men and 26 women with ages ranging from 20 to 63 years (average 39.15 years). Participants underwent a neurological evaluation and MRI. In this cross-sectional study, patients with neurological disorders, congenital spinal canal narrowing,central spinal canal widening, previous spinal surgery, and those with any incidental findings on plain MR images suggestive of a neurological disorder were excluded from this study. The study protocols were approved by the Ethics Committee of China-Japan Union Hospital of Jilin University of China. The research followed the international and national guidelines in accordance with the procedures of theHelsinki Declarationof 1975 as revised in 2000. All voluntary participants were fully informed about the experimental process, and provided signed consent.

    Image acquisition

    MR examinations were performed with a 3.0 Tesla (T) clinical MR scanner (MAGNETOM Skyra; Siemens Medical Systems, Berlin, Germany), using a 32-channel coil dedicated to neck and head imaging (Siemens Medical Systems). The MR protocol consisted of a sagittal T1-weighted image (T1WI;repetition time/echo time = 600/20 ms), sagittal T2-weighted image (T2WI; repetition time/echo time = 2,800/120 ms),sagittal proton density-weighted image (repetition time/echo time = 2,600/15 ms), and axial proton density-weighted image (repetition time/echo time = 2,700/20 ms), followed by an axial DTI sequence.

    The DTI sequence was acquired using the RESOLVE sequence over the entire cervical spine (C1–T1). Diffusion weighted images were obtained using the following scanning parameters: (1) axial slices were acquired to distinguish white matter and gray matter, which was perpendicular to the spinal cord with diffusion gradients in 20 equidistant directions with ab= 1,000 s/mm2; (2) phase encoding direction, anterior-posterior; (3) repetition time/echo time =2,800/89 ms; (4) slice thickness = 3 mm; (5) number of slices= 15; (6) interslice gap = 0 mm; (7) number of excitations =2; (8) matrix size = 256 × 256; field of view = 220 mm × 220 mm; (9) generalized autocalibrating partially parallel acquisitions acceleration factor = 2; and (10) readout segments =5. The total acquisition time was controlled at an appropriate level of 6 minutes and 39 seconds.

    Regions of interest (ROIs)

    DTI images were processed using Neuro 3D engine on a Siemens workstation, and three slices per cervical level were selected for analysis. Five fields of view for each slice were covered on the ventral, lateral, and dorsal funiculi as well as the central gray substance on axial T2WI images. Then the ROI information was coregistered to all maps of DTI parameters with MRIcron software (McCausland Center for Brain Imaging of University of South Carolina, Columbia, SC,USA) (Figure 1). The small ROIs were designed with at least two voxels inside the cord edge to avoid the partial volume effect of cerebrospinal fluid. The measurement results of the right and left lateral funiculi were averaged.

    Figure 1 Axial slice of the cervical spinal cord of a 28-year-old man.

    Three regions were defined in the cervical cord: upper segment (upper border of C1–lower border of C3), middle segment (upper border of C4–lower border of C6), and lower segment (upper border of C7–lower border of T1) (Figure 2).The SNR of all the cervical spinal cord regions was calculated fromb= 1,000 s/mm2images. Signal ROIs were selected at a consistent location inside the body, while noise ROIs were selected in air, and were obtained at least 10 voxels away from the borders of the image.

    Data processing

    SNR and DTI parameters of all levels were estimated and analyzed on a Siemens workstation. The median SNR of each region was calculated using the following equations:

    where SI is signal intensity and SD is standard deviation.

    Fractional anisotropy (FA), apparent diffusion coefficient and three eigenvalues (λ1, λ2, λ3) were derived from each ROI. Axial diffusivity (λ‖) and radial diffusivity (λ⊥) were calculated using the following equations:

    Axial diffusivity is correlated with axon diameter, and radial diffusivity is positively correlated with axon spacing.Both of them reflect distinct histological parameters and characterize tissue integrity beyond the general measure of anisotropic water diffusion with additional information.

    Statistical analysis

    Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA).To compare the SNR data of each region, Mann-WhitneyUtest was used. The difference was determined between left and right lateral funiculi by Student’st-test. One-way analysis of variance was used to compare DTI measures of spinal fibers,and Tukey’spost hoctest was performed to compare subgroups of each funiculus. Data were recorded as the mean ±SD. A value ofP< 0.05 was considered statistically signi ficant.

    Results

    We enrolled 50 participants in the study, 5 participants were excluded because routine neurological exam was positive.The residual participants showed signi ficant cord disease on T2WI and proton density–weighted image. All of the axial DTI parameter maps were compared with the corresponding axial T2WI in a representative subject.

    Figure 2 Axial fractional anisotropy maps and T2-weighted images at individual levels of the cervical spinal cord of a 28-year-old man.

    Table 1 Signal-to-noise ratio and fractional anisotropy values of each cervical spinal cord segment

    SNR

    The median SNR of the diffusion images was 7.3 across all levels. The median SNR of the upper, middle, and lower cervical cord segments are shown in Table 1. The SNR had no signi ficant difference in different segments of the cervical spinal cord (Mann-WhitneyUtest;P= 0.13).

    White matter and gray matter

    The mean FA, λ‖and λ⊥of all white matter tracts and gray matter are shown in Tables 1 and 2. There was no signi ficant difference between left and right lateral funiculi; therefore, we combined both lateral funiculi as one group with average data.The whole-cord FA of the upper group was higher than in other groups (P= 0.00 < 0.01) (Table 1). The λ‖of the ventral funiculi in all groups was higher than other regional funiculi(P= 0.003 < 0.01) (Table 2). The FA and λ⊥of the gray matter were signi ficantly lower than in the white matter (P= 0.004 <0.01). Table 2 shows each regional difference between DTI parameters of gray matter and individual white matter funiculi.

    Discussion

    Diffusivities of gray and white matter in the normal human spinal cord have been measured and evaluated (Onu et al.,2010). However, important limitations of DTI for the cervical spinal cord have emerged. Because of the poor spatial resolution and little data, DTI parameters of the individual white matter funiculi were found to be inaccurate (Ellingson et al.,2007). In other reports, because of an underestimation of diffusion anisotropy, the results of DTI parameters were affected by the SNR (Dietrich et al., 2001; Jones and Basser, 2004). In our study, RESOLVE sequencing was used with the preliminary DTI technique and then veri fied to improve the spatial resolution and SNR in the cervical spinal cord. Compared with other DTI sequences, the RESOLVE sequence is based on the multishot EPI, including a sampling stand readout segmental EPI and a 2D navigate echo, which could minimize phase-encode distortion artifacts and T2*blurring through fast k-space filling, while SNR efficiency increases substantially(Frost et al., 2014). This sequence could also be combined with the generalized autocalibrating partially parallel acquisitions technique, which could allow direct reduction of the acquisition time (Yamada et al., 2016). Because of these advantages,this sequence is clearly bene ficial and demonstrates FA differences; further, sequences provide better results in a short time period (Banaszek et al., 2014; Middleton et al., 2014), even though the images are not as visually impressive. The SNR of all segmental groups of the cervical spinal cord was improved in our study, especially in the lower group, which was easily affected by swallowing or body morphology. Therefore, the accuracy of all DTI parameters signi ficantly improved.

    In our study, the effect of SNR was minimized, and the trend in SNR values across the cervical spinal cord was uniform. However, the whole-cord FA value of the upper cervical group was still higher than in the middle group and the lower group. This result may involve the fiber density,which correlated with extracellular spaces (Takahashi et al.,2002; Ong et al., 2008). Because of cervical enlargement, the fiber density of the upper group may be higher than in the middle and lower groups. The mean white matter FA value in the cervical cord was similar to that in some previous reports, and the larger sample size of our study could explain minor variations in DTI parameters. Similar to the study by Vedantam et al. (2013), our results revealed that signi ficant differences between the FA in each area of individual white funiculi and the FA value of ventral funiculi were lowest compared with lateral and dorsal funiculi through all the white matter bundles. We also found that axial diffusion was highest in the ventral funiculi. Previous studies suggest that radial diffusivity strongly associates with the diameter of axons and to the fiber packing density. For example, the vestibulospinal tract with the largest axons also had the highest radial diffusivity values (Schwartz et al., 2005). Thus, axon diameter of the ventral funiculi increases and axons are less densely packed relative to the lateral and dorsal funiculi. The general pattern of gray matter is similar to that reported by Onu et al. (2010), and the FA of gray matter is lower than that of white matter through the whole cervical spinal cord.

    In conclusion, the RESOLVE sequence improves spatial resolution of DTI imaging in clinical applications and provides DTI baseline data for the gray matter and different white matter funiculi throughout the cervical spinal cord.

    Table 2 Fractional anisotropy, λ‖ and λ⊥ values of all regions of interest of each cervical spinal cord segment

    Author contributions:BTZ participated in study design and paper writing. ML, LLY, YMD, and SNY were in charge of data collection. JLJ gave research guidance. All authors approved the final version of the paper.

    Con flicts of interest:None declared.

    Research ethics:The study protocol was approved by Ethics Committee of China-Japan Hospital of Jilin University. The study followed international and national regulations in accordance with the Declaration of Helsinki. Written informed consent was provided by each participant after they indicated that they had fully understood the treatment plan.

    Declaration of participant consent:The authors certify that they have obtained all appropriate participant consent forms. In the form,participants have given their consent for their images and other clinical information to be reported in the journal. Participants understand that their names and initials will not be published and while due efforts will be made to conceal their identity, anonymity cannot be guaranteed.

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review: Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Banaszek A, Bladowska J, Szewczyk P, Podgorski P, Sasiadek M (2014)Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J 23:1523-1530.

    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435-455.

    Demir A, Ries M, Moonen CT, Vital JM, Dehais J, Arne P, Caillé JM,Dousset V (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229:37-43.

    Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448-453.

    Ellingson BM, Ulmer JL, Schmit BD (2007) Gray and white matter delineation in the human spinal cord using diffusion tensor imaging and fuzzy logic. Acad Radiol 14:847-858.

    Ellingson BM, Salamon N, Grinstead JW, Holly LT (2014) Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J 14:2589-2597.

    Frost R, Jezzard P, Douaud G, Clare S, Porter DA, Miller KL (2014) Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla. Magn Reson Meddoi:10.1002/mrm.25391.

    Jones DK, Basser PJ (2004) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979-993.

    Middleton DM, Mohamed FB, Barakat N, Hunter LN, Shellikeri S, Finsterbusch J, Faro SH, Shah P, Samdani AF, Mulcahey MJ (2014) An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging 32:433-439.

    Ong HH, Wright AC, Wehrli SL, Souza A, Schwartz ED, Hwang SN,Wehrli FW (2008) Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies. Neuroimage 40:1619-1632.

    Onu M, Gervai P, Cohen-Adad J, Lawrence J, Kornelsen J, Tomanek B,Sboto-Frankenstein UN (2010) Human cervical spinal cord funiculi:investigation with magnetic resonance diffusion tensor imaging. J Magn Reson Imaging 31:829-837.

    Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Naja fiY,Dietz V, Kollias S (2012) Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 29:1556-1566.

    Rossi C, Boss A, Steidle G, Martirosian P, Klose U, Capuani S, Maraviglia B, Claussen CD, Schick F (2008) Water diffusion anisotropy in white and gray matter of the human spinal cord. J Magn Reson Imaging 27:476-482.

    S?siadek MJ, Szewczyk P, Bladowska J (2012) Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit 18:RA73-79.

    Schwartz ED, Cooper ET, Fan Y, Jawad AF, Chin CL, Nissanov J, Hackney DB (2005) MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport 16:73-76.

    Takahashi M, Hackney DB, Zhang G, Wehrli SL, Wright AC, O’Brien WT, Uematsu H, Wehrli FW, Selzer ME (2002) Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord. Proc Natl Acad Sci U S A 99:16192-16196.

    Vedantam A, Jirjis MB, Schmit BD, Wang MC, Ulmer JL, Kurpad SN(2013) Characterization and limitations of diffusion tensor imaging metrics in the cervical spinal cord in neurologically intact subjects. J Magn Reson Imaging 38:861-867.

    Yamada H, Yamamoto A, Okada T, Kanagaki M, Fushimi Y, Porter DA,Tanji M, Hojo M, Miyamoto S, Togashi K (2016) Diffusion tensor imaging of the optic chiasm in patients with intra- or parasellar tumor using readout-segmented echo-planar. Magn Reson Imaging 34:654-661.

    How to cite this article:Zhang BT, Li M, Yu LL, Dai YM, Yu SN, Jiang JL (2017) Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains. Neural Regen Res 12(12):2067-2070.

    Graphical Abstract

    *Correspondence to:Jin-lan Jiang, M.D.,zbt0417@outlook.com;jiangjl2003@hotmail.com.

    orcid:0000-0003-0891-3464(Jin-lan Jiang)

    10.4103/1673-5374.221166

    2017-09-18

    Copyedited by Yu J, Li CH, Qiu Y, Song LP, Zhao M

    91在线精品国自产拍蜜月| 午夜日本视频在线| 丝瓜视频免费看黄片| 国产精品久久久久久精品古装| av女优亚洲男人天堂| av不卡在线播放| 久久精品国产亚洲网站| 一级片'在线观看视频| 国产午夜精品久久久久久一区二区三区| 男女边摸边吃奶| 欧美精品一区二区大全| 国产欧美亚洲国产| 精品一品国产午夜福利视频| 国产乱来视频区| 我的女老师完整版在线观看| 3wmmmm亚洲av在线观看| 人体艺术视频欧美日本| 亚洲人成网站在线观看播放| 内地一区二区视频在线| 性色av一级| 亚洲色图综合在线观看| 成人影院久久| 最黄视频免费看| 只有这里有精品99| 男女啪啪激烈高潮av片| av.在线天堂| 全区人妻精品视频| 久久女婷五月综合色啪小说| 一区二区日韩欧美中文字幕 | 99热国产这里只有精品6| 少妇人妻 视频| 亚洲av成人精品一二三区| 精品久久久久久电影网| 亚洲内射少妇av| 2018国产大陆天天弄谢| 啦啦啦在线观看免费高清www| 女人精品久久久久毛片| 国产日韩欧美在线精品| av黄色大香蕉| 亚洲不卡免费看| 国产日韩欧美亚洲二区| 久久精品国产鲁丝片午夜精品| 99热6这里只有精品| 欧美xxxx性猛交bbbb| 三级国产精品片| 秋霞在线观看毛片| 欧美3d第一页| 久久精品夜色国产| 久久人人爽人人片av| 丝袜在线中文字幕| 国产精品久久久久久精品古装| 亚洲国产欧美日韩在线播放| 国产精品蜜桃在线观看| 亚洲国产成人一精品久久久| 成年av动漫网址| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 美女视频免费永久观看网站| 特大巨黑吊av在线直播| 久久久久久久国产电影| 成年av动漫网址| 天天影视国产精品| 亚洲丝袜综合中文字幕| 伊人久久国产一区二区| 一级毛片aaaaaa免费看小| 18+在线观看网站| 久久精品国产亚洲av涩爱| 亚洲国产日韩一区二区| 欧美+日韩+精品| 日韩精品免费视频一区二区三区 | 一区二区三区四区激情视频| 久久97久久精品| 久久国产亚洲av麻豆专区| av卡一久久| 国产精品久久久久成人av| 日韩亚洲欧美综合| 熟女人妻精品中文字幕| 熟女人妻精品中文字幕| 国产亚洲一区二区精品| 自线自在国产av| 午夜影院在线不卡| h视频一区二区三区| 国产精品不卡视频一区二区| 欧美人与善性xxx| 一个人看视频在线观看www免费| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 最近中文字幕2019免费版| 免费观看av网站的网址| 永久网站在线| 男女啪啪激烈高潮av片| 又大又黄又爽视频免费| 各种免费的搞黄视频| 免费久久久久久久精品成人欧美视频 | 国产爽快片一区二区三区| 美女视频免费永久观看网站| 国产爽快片一区二区三区| 国产亚洲av片在线观看秒播厂| 制服丝袜香蕉在线| 欧美日本中文国产一区发布| 伦理电影大哥的女人| 亚洲第一区二区三区不卡| 久久久午夜欧美精品| 一区在线观看完整版| 日日撸夜夜添| 狂野欧美激情性xxxx在线观看| 国产成人av激情在线播放 | 丝瓜视频免费看黄片| 夜夜爽夜夜爽视频| 免费看光身美女| 99国产综合亚洲精品| 伊人亚洲综合成人网| 91aial.com中文字幕在线观看| 亚洲精品日韩av片在线观看| 99热网站在线观看| 中文字幕最新亚洲高清| 日韩成人av中文字幕在线观看| av电影中文网址| 欧美xxxx性猛交bbbb| 久久久久久人妻| 久久婷婷青草| 不卡视频在线观看欧美| 欧美日韩一区二区视频在线观看视频在线| 日韩,欧美,国产一区二区三区| 永久网站在线| 久久久午夜欧美精品| 又大又黄又爽视频免费| 国产亚洲最大av| 久久久久久久精品精品| 简卡轻食公司| 成年av动漫网址| 男女无遮挡免费网站观看| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 午夜福利在线观看免费完整高清在| 亚洲精品久久久久久婷婷小说| 成人国产麻豆网| 免费av中文字幕在线| 高清不卡的av网站| 熟女人妻精品中文字幕| 熟妇人妻不卡中文字幕| 一区二区日韩欧美中文字幕 | 精品99又大又爽又粗少妇毛片| 欧美一级a爱片免费观看看| 黄色一级大片看看| 国产免费福利视频在线观看| 2022亚洲国产成人精品| 亚洲国产av影院在线观看| 在线观看国产h片| 国产av国产精品国产| 亚洲四区av| 91精品国产九色| 久久久久久人妻| 久热这里只有精品99| 亚洲人成77777在线视频| 亚洲激情五月婷婷啪啪| 国产国语露脸激情在线看| 欧美另类一区| 午夜福利视频精品| 人妻少妇偷人精品九色| 国产在线一区二区三区精| 人妻 亚洲 视频| 久久久国产精品麻豆| 亚洲精品,欧美精品| 亚洲av福利一区| av在线播放精品| 丝袜脚勾引网站| 在线亚洲精品国产二区图片欧美 | 久久久久视频综合| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 在线观看www视频免费| 欧美97在线视频| 女人久久www免费人成看片| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 大片电影免费在线观看免费| 一区二区三区四区激情视频| 亚洲五月色婷婷综合| 亚洲不卡免费看| 精品一品国产午夜福利视频| 国产精品一区二区三区四区免费观看| 亚洲国产精品一区二区三区在线| 午夜av观看不卡| 欧美另类一区| 久久久久网色| 久久精品国产a三级三级三级| 亚洲欧美色中文字幕在线| 亚洲精品一二三| 寂寞人妻少妇视频99o| 亚洲美女视频黄频| 中国国产av一级| 免费日韩欧美在线观看| 国产深夜福利视频在线观看| 免费看不卡的av| 午夜福利在线观看免费完整高清在| 观看av在线不卡| 免费大片18禁| 久久久久精品性色| av在线老鸭窝| 亚洲精品美女久久av网站| 男的添女的下面高潮视频| 97超视频在线观看视频| 亚洲高清免费不卡视频| 欧美日韩亚洲高清精品| av专区在线播放| 三级国产精品欧美在线观看| 久久久久精品久久久久真实原创| 国产片内射在线| 亚洲国产av影院在线观看| 丰满迷人的少妇在线观看| 人妻少妇偷人精品九色| 丝袜喷水一区| 岛国毛片在线播放| 中文欧美无线码| 男女国产视频网站| 国产在视频线精品| 欧美 日韩 精品 国产| 美女中出高潮动态图| 亚洲成人av在线免费| 一区二区三区精品91| 成人国语在线视频| 18禁在线无遮挡免费观看视频| 欧美日韩亚洲高清精品| 午夜福利,免费看| 视频在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 能在线免费看毛片的网站| 99热这里只有精品一区| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 精品久久国产蜜桃| 能在线免费看毛片的网站| 18禁观看日本| 久久鲁丝午夜福利片| 哪个播放器可以免费观看大片| 精品久久久久久久久av| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 国产精品三级大全| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 一个人看视频在线观看www免费| 街头女战士在线观看网站| 久久ye,这里只有精品| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 国产永久视频网站| 亚洲综合色网址| 久久 成人 亚洲| 热re99久久精品国产66热6| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 亚洲精品自拍成人| 狂野欧美激情性xxxx在线观看| 国产 精品1| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 少妇人妻久久综合中文| 天堂8中文在线网| 亚洲精品中文字幕在线视频| 亚洲精品一二三| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 三级国产精品片| 亚洲精品一二三| 亚洲精品日韩在线中文字幕| √禁漫天堂资源中文www| 久久精品夜色国产| 久久婷婷青草| 欧美亚洲 丝袜 人妻 在线| 国国产精品蜜臀av免费| 下体分泌物呈黄色| av视频免费观看在线观看| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 欧美激情国产日韩精品一区| 制服诱惑二区| 啦啦啦中文免费视频观看日本| 国产精品蜜桃在线观看| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| av在线播放精品| 欧美日韩亚洲高清精品| 黄色配什么色好看| 欧美人与性动交α欧美精品济南到 | 国国产精品蜜臀av免费| 亚洲国产色片| 国产午夜精品一二区理论片| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 亚洲国产精品成人久久小说| 一级爰片在线观看| 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 亚洲四区av| 亚洲人成网站在线观看播放| 男女啪啪激烈高潮av片| 亚洲情色 制服丝袜| 国产亚洲一区二区精品| 看免费成人av毛片| 亚洲怡红院男人天堂| 成人无遮挡网站| 国产乱人偷精品视频| 熟女电影av网| 大片电影免费在线观看免费| 九色亚洲精品在线播放| 大又大粗又爽又黄少妇毛片口| av专区在线播放| 视频在线观看一区二区三区| 99九九线精品视频在线观看视频| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 免费看av在线观看网站| 十八禁高潮呻吟视频| 肉色欧美久久久久久久蜜桃| 18禁裸乳无遮挡动漫免费视频| 99久国产av精品国产电影| 一区二区日韩欧美中文字幕 | 久久亚洲国产成人精品v| 国产精品一国产av| 最后的刺客免费高清国语| 丝袜喷水一区| 交换朋友夫妻互换小说| 成人18禁高潮啪啪吃奶动态图 | 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 麻豆成人av视频| 国产极品粉嫩免费观看在线 | 高清毛片免费看| 中文字幕人妻丝袜制服| 97在线视频观看| 飞空精品影院首页| 亚洲成人av在线免费| 大片电影免费在线观看免费| 国产精品一二三区在线看| videosex国产| 亚州av有码| 久久人人爽人人片av| 黄色一级大片看看| 各种免费的搞黄视频| 青春草国产在线视频| 亚洲av二区三区四区| 五月玫瑰六月丁香| 性色avwww在线观看| 国产淫语在线视频| 亚洲一区二区三区欧美精品| 9色porny在线观看| 午夜精品国产一区二区电影| 在线天堂最新版资源| 久久久国产一区二区| 国产精品一二三区在线看| 黑丝袜美女国产一区| 国国产精品蜜臀av免费| 亚洲图色成人| 久久热精品热| 色视频在线一区二区三区| av线在线观看网站| 国产精品 国内视频| 免费大片18禁| av在线app专区| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 国产淫语在线视频| 69精品国产乱码久久久| 丝袜美足系列| 国产av一区二区精品久久| av福利片在线| 国产亚洲精品久久久com| 久久亚洲国产成人精品v| 少妇人妻久久综合中文| 最近2019中文字幕mv第一页| 国产成人精品福利久久| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 黑丝袜美女国产一区| 亚洲内射少妇av| 人妻系列 视频| 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 亚洲图色成人| 九九在线视频观看精品| 在线观看国产h片| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 免费少妇av软件| 一区在线观看完整版| 插阴视频在线观看视频| 国产不卡av网站在线观看| 亚洲欧美成人综合另类久久久| 熟女人妻精品中文字幕| 成人免费观看视频高清| 国产亚洲午夜精品一区二区久久| 18禁观看日本| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 老女人水多毛片| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 美女国产高潮福利片在线看| 性高湖久久久久久久久免费观看| 亚洲内射少妇av| 99热这里只有精品一区| 日韩人妻高清精品专区| 亚洲成人手机| 亚洲精华国产精华液的使用体验| 亚洲综合色惰| 亚洲精品成人av观看孕妇| 亚洲经典国产精华液单| 激情五月婷婷亚洲| 久久久久久久久久久丰满| 男的添女的下面高潮视频| 久久午夜福利片| 午夜免费观看性视频| 99热国产这里只有精品6| 久久久久精品性色| 国产成人精品在线电影| 国产视频首页在线观看| 国产高清三级在线| 制服诱惑二区| 狂野欧美白嫩少妇大欣赏| 国产高清不卡午夜福利| av天堂久久9| 丝袜喷水一区| 最新中文字幕久久久久| 最近2019中文字幕mv第一页| 久久久久久久久久人人人人人人| 色视频在线一区二区三区| 国产日韩欧美在线精品| 日本午夜av视频| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 中国国产av一级| 日韩一区二区视频免费看| 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 丝袜美足系列| 免费看光身美女| 一级毛片我不卡| 国产成人一区二区在线| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕 | 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 国产精品无大码| a级毛片黄视频| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 老女人水多毛片| 99热国产这里只有精品6| 久久久精品区二区三区| 91久久精品电影网| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产成人精品婷婷| 美女国产视频在线观看| 最近的中文字幕免费完整| 狠狠婷婷综合久久久久久88av| 国产黄片视频在线免费观看| 纯流量卡能插随身wifi吗| 免费高清在线观看视频在线观看| 99久国产av精品国产电影| 大香蕉久久网| 中国国产av一级| 国产av一区二区精品久久| 亚洲精品色激情综合| 国产乱人偷精品视频| 日韩中字成人| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 色哟哟·www| 欧美精品高潮呻吟av久久| 一级毛片 在线播放| 国产乱人偷精品视频| 亚洲欧美成人综合另类久久久| 晚上一个人看的免费电影| 最新的欧美精品一区二区| 亚洲国产色片| 亚洲成人av在线免费| 热re99久久国产66热| 91精品三级在线观看| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| xxx大片免费视频| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 成人二区视频| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 人成视频在线观看免费观看| 亚洲四区av| 久久人妻熟女aⅴ| 插阴视频在线观看视频| 亚洲成色77777| av在线播放精品| 亚洲,欧美,日韩| 欧美日韩视频高清一区二区三区二| kizo精华| 中国国产av一级| 国产精品国产av在线观看| 国国产精品蜜臀av免费| 少妇的逼水好多| 国产精品一区二区在线不卡| 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 考比视频在线观看| 一级a做视频免费观看| 男人添女人高潮全过程视频| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 2018国产大陆天天弄谢| 久久狼人影院| 高清av免费在线| 青春草视频在线免费观看| 亚洲综合色网址| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av片在线观看秒播厂| 亚洲国产精品专区欧美| 免费黄网站久久成人精品| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线 | 男男h啪啪无遮挡| 国产一区二区三区综合在线观看 | 18禁在线播放成人免费| 午夜福利,免费看| 99九九线精品视频在线观看视频| kizo精华| 人人澡人人妻人| 成年人免费黄色播放视频| av在线播放精品| 国产精品一区二区三区四区免费观看| 啦啦啦中文免费视频观看日本| 欧美激情极品国产一区二区三区 | 亚洲,一卡二卡三卡| 看免费成人av毛片| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说| av国产久精品久网站免费入址| 色94色欧美一区二区| 亚洲国产最新在线播放| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 满18在线观看网站| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 大香蕉久久成人网| 丰满饥渴人妻一区二区三| 国产 一区精品| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 亚洲少妇的诱惑av| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 黑人猛操日本美女一级片| 亚洲人成网站在线观看播放| 中文字幕最新亚洲高清| 91精品一卡2卡3卡4卡| 综合色丁香网| 伦理电影大哥的女人| 午夜91福利影院| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 国产69精品久久久久777片| 国产 一区精品| 熟妇人妻不卡中文字幕| 一本色道久久久久久精品综合| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 考比视频在线观看| 丰满乱子伦码专区| 秋霞伦理黄片| 成人国产av品久久久| .国产精品久久| 99久久精品国产国产毛片| 母亲3免费完整高清在线观看 | 欧美最新免费一区二区三区| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 国产成人aa在线观看| 成人手机av| 午夜精品国产一区二区电影| www.色视频.com| 精品一区二区三卡| 男女边吃奶边做爰视频| 在线播放无遮挡|