傅應(yīng)強(qiáng),方佳佳,嚴(yán) 謹(jǐn),馬 森,唐定興
(安徽工程大學(xué) 生物與化學(xué)工程學(xué)院,安徽 蕪湖 241000)
人工神經(jīng)網(wǎng)絡(luò)催化動(dòng)力學(xué)光度法同時(shí)測(cè)定硒和鐵
傅應(yīng)強(qiáng),方佳佳,嚴(yán) 謹(jǐn),馬 森,唐定興
(安徽工程大學(xué) 生物與化學(xué)工程學(xué)院,安徽 蕪湖 241000)
在酸性介質(zhì)中,硒(Ⅳ)和鐵(Ⅲ)同時(shí)催化H2O2氧化二甲基黃褪色反應(yīng).研究發(fā)現(xiàn):兩者對(duì)H2O2氧化二甲基黃褪色反應(yīng)的催化作用不具有加和性. 根據(jù)這一現(xiàn)象,結(jié)合人工神經(jīng)網(wǎng)絡(luò),建立了一種新的不經(jīng)分離可同時(shí)測(cè)定硒(Ⅳ)和鐵(Ⅲ)混合物中硒(Ⅳ)和鐵(Ⅲ)各自含量的分析方法. 方法應(yīng)用于合成樣品及煙草樣品中硒(Ⅳ)和鐵(Ⅲ)的測(cè)定,結(jié)果滿意.
人工神經(jīng)網(wǎng)絡(luò);硒;鐵;催化動(dòng)力學(xué)光度法
硒是一種人體必需的微量元素. 作為人體中一些抗氧化酶的重要組成部分,其具有提高免疫力的作用,但過量的硒可引起硒中毒,使人患上脫甲、脫發(fā)、偏癱等癥狀. 目前,硒的測(cè)定方法有原子熒光法[1-3]、X射線熒光法[4-5]、ICP-MS[6-8]、ICP-OES[9-10]、伏安法[11-12]、原子吸收法[13-14]、熒光猝滅法[15]、紫外可見分光光度法[16-17]、萃取分光光度法[18-20]和催化動(dòng)力學(xué)光度法[21]等. 其中催化動(dòng)力學(xué)光度法利用硒對(duì)某種氧化還原反應(yīng)具有催化效果,通過測(cè)定反應(yīng)速率來測(cè)定催化劑的含量,因此具有較高的靈敏度高且操作也很簡(jiǎn)便. 但是其測(cè)定過程中常常會(huì)有一些常見元素,比如Cu2+、Pb2+、Fe3+等會(huì)對(duì)測(cè)定造成干擾. 人工神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的非線性處理能力,目前已經(jīng)有很多成功應(yīng)用人工神經(jīng)網(wǎng)絡(luò)結(jié)合動(dòng)力學(xué)光度法實(shí)現(xiàn)多組分同時(shí)測(cè)定的文獻(xiàn)報(bào)道[22-26]. 作者通過引入BP人工神經(jīng)網(wǎng)絡(luò),結(jié)合硒和鐵對(duì)H2O2氧化二甲基黃褪色反應(yīng)催化作用,成功實(shí)現(xiàn)了硒(Ⅳ)和鐵(Ⅲ)含量的同時(shí)測(cè)定而無需分離、掩蔽. 通過人工混合樣品的測(cè)定驗(yàn)證以及煙草、茶葉中硒和鐵含量的回收試驗(yàn),結(jié)果令人滿意.
MATLAB6.5軟件, UV-5500紫外可見分光光度計(jì)(上海元析儀器有限公司); KQ-50B型超聲波清洗器(昆山市超聲儀器有限公司). 試驗(yàn)所用試劑如表1 所列;煙草樣品來源于蕪湖卷煙廠.
表1 試驗(yàn)試劑Table1 Experimentalreagents
分別配制5 μg/mL的硝酸鐵和硝酸硒標(biāo)準(zhǔn)溶液備用;二甲基黃的無水乙醇溶液:1.0×10-3mol/L;0.1 mol/L的硝酸溶液; H2O2溶液:20%. 所用試劑均為分析純,分析用水為二次蒸餾水.
分別移取0.1、0.2、0.5、1.0、1.2、1.5、2.0、2.5 mL的標(biāo)準(zhǔn)硒溶液和0.1、0.2、0.5、1.0、1.2、1.5、2.0、2.5 mL的標(biāo)準(zhǔn)鐵溶液,將兩種離子溶液一一混合加入25 mL比色管中,依次加入二甲基黃、硝酸、過氧化氫,再用蒸餾水定容至刻度,制得64組混合溶液.
取4支25 mL具塞比色管,一支依次加入二甲基黃1.0 mL、硝酸1.0 mL、過氧化氫2.0 mL,以重蒸水定容至25 mL,搖勻. 另三支在第一支的基礎(chǔ)上,定容前分別加入標(biāo)準(zhǔn)硒溶液1.0 mL,或者標(biāo)準(zhǔn)鐵溶液1.0 mL及標(biāo)準(zhǔn)鐵、標(biāo)準(zhǔn)硒各1.0 mL. 然后將4支具塞比色管同時(shí)放入100 ℃水浴鍋中加熱4 min,迅速取出比色管,在流動(dòng)冷水中冷卻3 min,再分別將溶液倒入1 cm比色皿中,以重蒸水為參比,采用UV-5500紫外可見分光光度計(jì)測(cè)量,在440~580 nm范圍內(nèi)進(jìn)行掃描,測(cè)得并計(jì)算各波長(zhǎng)下的的吸光度差值(加入硝酸硒和硝酸鐵標(biāo)準(zhǔn)溶液的反應(yīng)體系吸光度與不加硝酸硒和硝酸鐵標(biāo)準(zhǔn)溶液的反應(yīng)體系吸光度之差). 測(cè)出一系列組數(shù)據(jù)后,再用人工神經(jīng)網(wǎng)絡(luò)進(jìn)行數(shù)據(jù)處理.
按試驗(yàn)方法,配制不同體系作吸收曲線,如圖 1 所示. 由圖1可見:比較曲線B與C,硒在一定條件下對(duì)H2O2氧化二甲基黃具有明顯的催化作用;比較曲線B與D,鐵在一定條件下對(duì)H2O2氧化二甲基黃也具有明顯的催化作用;比較曲線C與D,鐵的催化效果比硒更好;比較曲線B與E,可以看出在此條件下,濃度不變,混合體系中兩種物質(zhì)對(duì)氧化褪色反應(yīng)的催化作用并不等于他們各自單獨(dú)存在時(shí)的催化作用之和;對(duì)比曲線C、D和E發(fā)現(xiàn),混合體系的催化作用并不具有加和性,用普通方法難以解決同時(shí)測(cè)定二者濃度問題. 因此本文采用人工神經(jīng)網(wǎng)絡(luò)方法對(duì)測(cè)定的吸光度值進(jìn)行處理. 從圖1還可發(fā)現(xiàn),反應(yīng)體系最大吸收峰都在510 nm左右,因此,選擇測(cè)定波長(zhǎng)在440~580 nm范圍內(nèi).
圖1 不同反應(yīng)體系的吸光度隨波長(zhǎng)變化曲線Fig.1 Absorbance versus wavelength in different reaction systems (B) dimethyl yellow 1.0 mL+HNO3 1.0 mL+H2O2 2.0 mL, (C) B+Se(IV) 1.0 mL,(D) B+Fe(III) 1.0 mL, (E) B+ Se(IV) 1.0 mL +Fe(III) 1.0 mL
二甲基黃作為指示劑,其用量的多少直接關(guān)系到反應(yīng)體系的吸光度及吸光度差異的大小. 取兩組 25 mL比色管,依次加入二甲基黃、硝酸1.0 mL、標(biāo)準(zhǔn)硒和標(biāo)準(zhǔn)鐵溶液1.0 mL、過氧化氫2.0 mL,其中二甲基黃的用量分別是 0.8、0.9、1.0、1.1、1.2 mL,用蒸餾水稀釋到刻度,搖勻. 然后在100 ℃的水浴中加熱4 min,迅速取出比色管,在流動(dòng)冷水中冷卻3 min,終止反應(yīng). 再分別將溶液倒入1 cm比色皿中,以二次蒸餾水為參比,在最大吸收波長(zhǎng) 510 nm 處測(cè)其吸光度,找出指示劑二甲基黃用量和催化和非催化體系的吸光度之差ΔA 的關(guān)系. 結(jié)果如圖2所示.
圖2 二甲基黃用量與吸光度ΔA的變化曲線Fig.2 ΔA versus quantity of dimethyl yellow
由圖2可以看出,當(dāng)二甲基黃用量為1.0 mL時(shí)反應(yīng)體系的ΔA最大. 當(dāng)超過1.0 mL時(shí),ΔA又變小. 因此,選擇1.0 mL作為最佳的二甲基黃指示劑用量.
氧化劑過氧化氫具有很強(qiáng)的氧化能力. 尤其是在酸性溶液中,隨著酸用量的增多或者濃度的加大,過氧化氫的氧化性也明顯增強(qiáng). 于是過氧化氫的用量多少,將直接影響吸光度值的變化,其用量將直接影響測(cè)定的靈敏度. 按探索最佳指示劑用量類似方案控制其它試劑加入量不變,依次加入現(xiàn)稀釋至20%的過氧化氫,其量分別為1.7、1.8、1.9、2.0、2.1、2.2、2.3 mL,探索氧化劑用量與催化和非催化體系的吸光度之差ΔA 的關(guān)系. 結(jié)果如圖3所示.
圖3 過氧化氫的用量與ΔA的關(guān)系曲線Fig.3 ΔA versus quantity of hydrogen peroxide
由圖3可以看出,當(dāng)過氧化氫的用量為 2.0 mL時(shí),催化體系與非催化體系的A的差值最大,即ΔA最大. 所以過氧化氫的最佳用量選為2.0 mL.
按上述探索最佳指示劑和最佳氧化劑用量方法,分別對(duì)體系的其它試驗(yàn)條件進(jìn)行了探索. 結(jié)果表明:硝酸的最佳用量為1.0 mL,反應(yīng)時(shí)間為4 min,反應(yīng)溫度為100 ℃,用冷水淋洗3 min后開始測(cè)量較為適宜.
配制一系列含有不同濃度的硝酸硒和硝酸鐵溶液,按上述方法的最佳條件進(jìn)行試驗(yàn). 在波長(zhǎng)范圍為440~580 nm內(nèi)隨機(jī)選取20個(gè)波長(zhǎng),將所測(cè)得的催化體系和非催化體系的吸光值差作為人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練輸入,對(duì)應(yīng)的硝酸硒和硝酸鐵的濃度為訓(xùn)練輸入. 采用matlab編寫構(gòu)建三層BP神經(jīng)網(wǎng)絡(luò),神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖如圖4 所示. BP神經(jīng)網(wǎng)絡(luò)采用誤差反向傳播算法,該算法可以逼近任意連續(xù)函數(shù),具有很強(qiáng)的非線性映射能力,而且網(wǎng)絡(luò)的中間層數(shù)、各層的處理單元數(shù)及網(wǎng)絡(luò)的學(xué)習(xí)系數(shù)等參數(shù)可根據(jù)具體情況設(shè)定,靈活性很大,所以它在許多應(yīng)用領(lǐng)域中起到重要作用. 由2.1節(jié)可知硒(Ⅳ)和鐵(Ⅲ)同時(shí)催化H2O2氧化二甲基黃褪色反應(yīng),二者的催化作用不具有加和性. 而BP神經(jīng)網(wǎng)絡(luò)良好的非線性映射能力為解決這一類問題提供了有效途徑. 我們通過改變輸入層和隱含層的傳遞函數(shù)、神經(jīng)元數(shù)目來優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu),利用訓(xùn)練誤差平方和函數(shù)及訓(xùn)練輸出來驗(yàn)證模型的可靠性.
圖4 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖Fig.4 Structure of network
因輸出層要使得輸出變量范圍為[-∞~+∞]之間必須為線性傳遞函數(shù)PURELIN,因此需要調(diào)節(jié)的只有輸入層和隱含層的傳遞函數(shù). 研究發(fā)現(xiàn)不管是輸入層還是隱含層,對(duì)于我們的訓(xùn)練樣本來說,兩層均采用對(duì)數(shù)傳遞函數(shù)LOGSIG的話,誤差下降較快,網(wǎng)絡(luò)能在短時(shí)間內(nèi)達(dá)到很好的仿真性能. 因此,這里采用的輸入層和隱含層傳遞函數(shù)均為對(duì)數(shù)函數(shù). 輸入層為20個(gè)神經(jīng)元,隱含層也為20個(gè)神經(jīng)元.
利用所測(cè)得的訓(xùn)練集數(shù)據(jù)對(duì)人工神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練. 固定其他參數(shù)不變的情況下,我們發(fā)現(xiàn)當(dāng)訓(xùn)練步數(shù)設(shè)為200時(shí),誤差平方和在最初的140步之內(nèi)下降較緩慢,訓(xùn)練步數(shù)接近150步時(shí),誤差才降至10-2左右,150步之后變化突然加快,185步時(shí)已經(jīng)達(dá)到10-6了,滿足初始設(shè)定的10-5的目標(biāo). 當(dāng)訓(xùn)練步數(shù)設(shè)定為更多時(shí),研究發(fā)現(xiàn)訓(xùn)練步數(shù)從200增至300,誤差平方和變化很小數(shù)量級(jí)上基本沒有變化. 但訓(xùn)練耗時(shí)很長(zhǎng),說明此時(shí)增大訓(xùn)練步數(shù)對(duì)調(diào)節(jié)網(wǎng)絡(luò)性能作用已不大,因此,我們?cè)O(shè)定最大訓(xùn)練步數(shù)為200. 誤差下降曲線如圖5 所示.
圖5 神經(jīng)網(wǎng)絡(luò)誤差訓(xùn)練變化曲線圖Fig.5 Training errors versus epochs for artificial neural network
訓(xùn)練達(dá)標(biāo)的神經(jīng)網(wǎng)絡(luò),輸入相同條件下測(cè)試的未知樣品光譜數(shù)據(jù)即可反饋出樣品中Se(IV)和Fe(III)的濃度.
按照1.4節(jié)試驗(yàn)方法,分別對(duì)6組不同比例的標(biāo)準(zhǔn)硒和硝酸鐵的人工混合樣品進(jìn)行測(cè)定,測(cè)定結(jié)果如表2所列.
由表2可知,使用該法對(duì)6組標(biāo)準(zhǔn)硒和硝酸鐵人工混合試驗(yàn)樣品進(jìn)行測(cè)定,回收率均在95%~105%之間,滿足痕量分析要求.
準(zhǔn)確稱取干燥處理后的煙樣10.000 0 g 于坩鍋內(nèi)干法灰化,將坩鍋放在電熱板上炭化至無煙后移入箱形電爐中, 在650 ℃的溫度下恒溫灼燒至灰白色,取出冷卻至室溫,加水潤(rùn)濕, 沿坩鍋壁加HNO3(1+1) 10.0 mL 溶解殘?jiān)?,過濾后將濾液小心移入50 mL 容量瓶中,用二次蒸餾水稀釋至刻度, 搖勻. 每次測(cè)定移取5.0 mL溶液按上述試驗(yàn)方法進(jìn)行測(cè)定,并做加入回收試驗(yàn),結(jié)果如表3所列.
表2 混合樣品組分實(shí)際含量與神經(jīng)網(wǎng)絡(luò)分析結(jié)果Table2 Analyticalresultsofneuralnetworkandactualcontentsofmixsamples
表3 煙草樣品測(cè)定結(jié)果及回收率(n = 5) Table3 Determinationresultsoftobaccosamplesandrecoveries
本試驗(yàn)基于在酸性介質(zhì)中,硒(Ⅳ)和鐵(Ⅲ)同時(shí)催化H2O2氧化二甲基黃褪色反應(yīng),結(jié)合人工神經(jīng)網(wǎng)絡(luò)建立了一種能同時(shí)測(cè)定樣品中硒(Ⅳ)和鐵(Ⅲ)的分析方法. 該方法有效解決了動(dòng)力學(xué)光度法測(cè)定硒時(shí)Fe3+離子的干擾問題,無需事先分離、掩蔽Fe3+離子. 通過已知待測(cè)物準(zhǔn)確濃度的人工合成樣品測(cè)試驗(yàn)證以及煙草樣品中硒(Ⅳ)和鐵(Ⅲ)的加標(biāo)回收試驗(yàn)結(jié)果,表明該方法滿足痕量分析要求,且可以同時(shí)測(cè)定硒(Ⅳ)和鐵(Ⅲ)的含量.
[1] Chen Y W, Alzahrani A, Deng T L, et al. Valence properties of tellurium in different chemical systems and its determination in refractory environmental samples using hydride generation-atomic fluorescence spectroscopy[J]. Analytica Chimica Acta, 2015, 905(1):42-50.
[2] Walter dos Santos, Dannuza Cavalcante, Paula Gomes, et al. Determination of selenium in eggs of different birds using sample digestion in a reflux system and hydride generation atomic fluorescence spectrometry[J]. Current Analytical Chemistry, 2016, 12(2):102-107.
[3] Xiao Zhi-ming, Song Rong, Jia Zheng, et al. Determination of selenium species in se-enriched yeast using liquid chromatography-hydride generation atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(9): 1314-1319.
[4] Kocot K, Leardi R, Walczak B, et al. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction[J]. Talanta, 2015, 134(1):360-365.
[5] Romero V, Costasmora I, Lavilla I, et al. Silver nanoparticle-assisted preconcentration of selenium and mercury on quartz reflectors for total reflection X-ray fluorescence analysis[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(4):696-706.
[6] Jagtap R, Maher W. Determination of selenium species in biota with an emphasis on animal tissues by HPLC-ICP-MS[J]. Microchemical Journal, 2015, 124(1):422-529
[7] Cao Yu-pin, Yan Li-Zhen, Huang Hong-Li, et al. Determination of selenium species in burdock and panax notoginseng using ultrasonic assistant extraction combined with high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9):1329-1334.
[8] Jackson B, Liba A, Nelson J. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods[J]. Journal of Analytical Atomic Spectrometry, 2015,5(1):1179-1183.
[9] Thangavel S, Dash K, Dhavile S M, et al. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES)[J]. Talanta, 2015, 131(1):505-509.
[10] Welna M, Szymczycha-Madeja A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES[J]. Food Chemistry, 2014, 159(6):414-419.
[11] Shahbazi, Yasser, Farhad Ahmadi, et al. Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals[J]. Food chemistry, 2016, 192(1): 1060-1067.
[12] Piech R, Szlósarczyk M, Opoka W, et al. Application of hanging copper amalgam drop electrode for voltammetric determination of selenium content in fruiting bodies of selected mushrooms[J]. International Journal of Environmental Analytical Chemistry, 2014, 94(3):269-276.
[13] Schneider M, Pereira é R, Castilho I N, et al. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry[J]. Microchemical Journal, 2016, 125(1): 50-55.
[15] Song Cai-rui, Fei Qiang, Shan Hong-yan, et al. A novel 2-(2-Formyl-4-methyl-phenoxy)-N-phenyl-acetamide-based fluorescence turn-on chemosensor for selenium determination with high selectivity and sensitivity[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 116(12):497-500.
[16] Kuchekar, Shashikant R R MNaval, S H Han. Selective determination of selenium(IV) from environmental samples by UV-visible spectrophotometry using O-methoxyphenyl thiourea as a chelating ligand[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(7):1-17
[17] Ulusoy, Halil Ibrahim. Simple and useful method for determination of inorganic selenium species in real samples based on UV-VIS spectroscopy in a micellar medium[J]. Analytical Methods, 2015, 7(7):953-960.
[18] Tadayon F, Mehrandoost S. Determination and speciation of Se(IV), Se(VI), and selenomethionine in iranian walnut samples by spectrophotometry after cloud point extraction[J]. Journal of Analytical Chemistry, 2015, 70(11):1336-1341.
[19] Fadeeva V P, Panin D O, Nikulicheva O N, et al. Extraction-spectrophotometric determination of selenium in organoselenium compounds using aromatic o-diamines[J]. Journal of Analytical Chemistry, 2014, 69(5):432-437.
[20] Dadfarnia S, Shabani A M H, Nozohor M. Dispersiveliquid-liquid microextraction-solidified floating organic drop combined with spectrophotometry for the speciation and determination of ultratrace amounts of selenium[J]. Journal of Interdisciplinary Cycle Research, 2013, 25(2):229-237.
[21] Chebotarev A N, Raboshvil E V, Snigur D V, et al. Karmoazin as a single redox reagent for spectrophotometric determination of Mn, Cr, Se, and V in different categories of water[J]. Journal of Water Chemistry & Technology, 2015, 37(4):172-178.
[22] 傅應(yīng)強(qiáng), 陳寧生, 王勝忠. 人工神經(jīng)網(wǎng)絡(luò)阻抑動(dòng)力學(xué)光度法同時(shí)測(cè)定鄰苯二酚和間苯二胺[J]. 計(jì)算機(jī)與應(yīng)用化學(xué), 2010,26(11):734-737.[FU Ying-qiang, CHEN Ning-sheng, WANG Sheng-zhong.Simultaneous determination of pyrocatechol and m-dihydroxy-benzene with artificial neural networks by inhibitory kinetic spectrophotometry[J]. Computers & Applied Chemistry , 2010 , 26 (11) :734-737.]
[23] 傅應(yīng)強(qiáng),姚嵐,方瑞萍,等. 人工神經(jīng)網(wǎng)絡(luò)動(dòng)力學(xué)光度法同時(shí)測(cè)定煙草中的Cr3+,Al3+和Fe3+[J]. 煙草科技, 2011(1):56-59.[FU Ying-qiang, YAO Lan, FANG Rui-ping, et al. Simultaneous determination of chromium aluminum and iron in tobacco with artificial neural networks by catalytic kinetic spectrophotometry[J]. Tobacco Science & Technology, 2011(1):56-59.]
[24] 申金山, 張新申, 陳榮義,等. 人工神經(jīng)網(wǎng)絡(luò)催化動(dòng)力學(xué)光度法同時(shí)測(cè)定鐵和銻[J]. 分析化學(xué),2004,32(4):497-499.[SHEN Jin-shan, ZHANG Xin-shen, CHEN Rong-yi, et al. Simultaneous determination of iron and antimony by artificial neural network catalytic kinetic spectrophotometry[J]. Analytical chemistry, 2004, 32 (4): 497-499.]
[25] 傅應(yīng)強(qiáng),陳寧生,王勝忠. 人工神經(jīng)網(wǎng)絡(luò)阻抑動(dòng)力學(xué)光度法同時(shí)測(cè)定鄰苯二酚和間苯二胺[J]. 應(yīng)用化學(xué),2009,26(6):734-737.[FU Ying-qiang, CHEN Ning-sheng, WANG Sheng-zhong.Simultaneous determination of pyrocatechol andm-phenylenediamin with artificial neural networks by inhibitory kinetic spectrophotometry[J]. Chinese Journal of Applied Chemistry,2009,26(6):734-737.]
[26] Hongwei J I, Yan XU, Shuang LI, et al. Simultaneous determination of iron and manganese in water using artificial neural network catalytic spectrophotometric method[J]. Journal of Ocean University of China, 2012, 11(3):323-330.
ArtificialNeuralNetworkandKineticSpectrophotometricDeterminationofSeleniumandIron
FU Ying-qiang, FANG Jia-jia, YAN Jin, MA Sen, TANG Ding-xing
(SchoolofBiologyandChemicalEngineering,AnhuiPolytechnicUniversity,Wuhu241000,AnhuiChina)
Selenium(IV) and iron(III) can catalyze the oxidation of dimethyl yellow discoloration reaction by hydrogen peroxide under acidic conditions. It also found that the catalytic effects of the two ions have no additive properties. Based on this research, the advantages of artificial neural network were adopted to handle the experimental data and a new catalytic kinetic spectrophotometric method for the simultaneous determination of selenium(IV) and iron(III) with artificial neural network was established. The best reaction conditions were discussed and the structure of the neural networks was optimized. The recovery were between 95%~105% of the determination in synthetic samples and the results showed that the method is sensitive, accurate and suitable for the determination of selenium and iron in tobacco samples.
artificial neural network; selenium; iron; catalytic kinetic spectrophotometry
分析測(cè)試新方法(201~207)
2017-10-11;
2017-12-04.
國(guó)家自然科學(xué)基金項(xiàng)目(21406001),國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201510363057),安徽省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(AH201510363057)資助
傅應(yīng)強(qiáng)(1980-),男,博士,副教授,研究方向:化學(xué)過程仿真與模擬、化學(xué)計(jì)量學(xué)及分析檢測(cè),E-mail: fyq@ahpu.edu.cn.
TQ014, O657.31
B
1006-3757(2017)04-0201-07
10.16495/j.1006-3757.2017.04.001