• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid with Weak Concentration over a Stretching/Shrinking Sheet

    2018-01-22 09:27:25KhanQasimNaeemaIshfaqandKhan
    Communications in Theoretical Physics 2017年4期

    Z.H.Khan,M.Qasim,Naeema Ishfaq,and W.A.Khan

    Department of Mathematics,University of Malakand,Chakdara,Dir(Lower),Khyber Pakhtunkhwa,Pakistan

    2Department of Mathematics,COMSATS Institute of Information Technology,Park Road,Chak Shahzad,Islamabad,Pakistan

    3School of Mathematical Sciences,Peking University,Beijing 100871,China

    4Department of Mechanical and Industrial Engineering College of Engineering,Majmaah University,Majmaah 11952,Kingdom of Saudi Arabia

    1 Introduction

    The boundary layer flows over a stretching surface are encountered in several engineering and industrial applications such as drawing of plastics, films and wires,crystal growing,continuous stretching,extrusion of polymer sheets,rolling and manufacturing plastic films and arti ficial fibers.In a melt spinning process,the extrudate from the die is generally drawn and simultaneously stretched into a sheet which is then solidi fied through quenching or gradually cooling by direct contact with water(Mahapatraet al.[1]).

    In viscous fluid dynamics,the equations governing the flow are called Navier–Stokes equations. These equations are non-linear partial differential equations and exact analytical solutions corresponding to such equations are few.This is because of non-linearity regarding the inertial part of equations in the three-components of velocity,in some special situations,by means of appropriate transformations;the system of partial differential equations is reduced to that of non-linear ordinary differential equations,[2?10]which on few occasions can admit analytical solutions in closed form.[4?7]On the other hand,the resulting equations for flow of non-Newtonian fluids are more complicated and nonlinear with higher order than the Navier–Stokes equations.[11?12]Such complications in fact stem because of extra rheological parameters occurring in constitutive equations of non-Newtonian fluid.Unlike the NS equations the nonlinearity in the governing equations even for incompressible flow of non-Newtonian fluids not only appears in the inertial part but also in the viscosity,elasticity and viscoplastic parts.

    The flow equation of micropolar fluid involves a microrotation vector in addition to classical velocity vector.In micropolar fluids,rigid particles in a small volume element can rotate about the centroid of the volume element.The micropolar fluids in fact can predict behavior at micro scale and rotation is independently explained by a microrotation vector.The fluid motion of the micropolar fluid is characterized by the concentration laws of mass,momentum and constitutive relationships describing the effect of couple stress,spin-inertia and micromotion.[13?17]Khanet al.[18]investigated boundary layer flow and heat transfer of a micropolar ferro fluid over a stretching surface.They considered microrotation of the ferroparticles and examined the effects of pertinent parameters on the dimensionless velocity,temperature,skin friction and Nusselt numbers for both weak and strong concentrations of ferro fluids.

    Turkyilmazoglu[19]studied the flow of micropolar fluid and heat transfer past a porous shrinking sheet. He determined the bounds of multiple existing solutions and proved the presence of dual solutions for the flow field.Later,Turkyilmazoglu[20]obtained the dual solution for the flow due to a permeable stretching sheet.Besides this solution,dual solutions in the boundary layer flow of different fluids have been obtained by manyresearchers.[21?25]In this study,we obtained dual solutions for the heat transfer and flow of a micropolar fluid over stretching/shrinking sheet under the in fluence of the lf ow governing parameters.Closed-form exact solutions for the velocity,temperature and microrotation pro files are also obtained for the case of weak concentration.

    2 Problem Formulation

    2.1 Governing Equations

    Consider the steady MHD boundary layer flow past a stretching/shrinking surface.It is assumed that sheet is stretched with a linearly velocityuw(x)=cx,wherecis a positive constant for stretching and negative for shrinking sheet.The governing boundary layer equations are

    whereuandvare the velocity components parallel to thex-andy-axes,respectively,ρthe fluid density,νthe kinematic viscosity,Nthe microrotation or angular velocity,cpthe speci fic heat,kthe thermal conductivity of the fluid,j=(ν/c)is microinertia per unit mass,γ?=(μ+κ/2)jandκare the spin gradient viscosity and vortex viscosity,respectively.

    2.2 Boundary Conditions

    The boundary conditions for the proposed model are

    wherevwsurface mass transfer velocity withvw<0 corresponds to suction andvw>0 to injection velocity.

    The boundary parameternin Eq.(6)varies in the range 0≤n≤1.Heren=0 corresponds to the situation when microelements at the stretching sheet are unable to rotate and denotes weak concentrations of the microelements at sheet.The casen=1/2 corresponds to the vanishing of anti-symmetric part of the stress tensor and it shows weak concentration of microelements and the casen=1 is for turbulent boundary layer flows.[13?15]

    2.3 Similarity Transformations

    In order to transform the governing partial differential equations into a system of non-linear ordinary differential equations,we introduce the following dimensionless and similarity variables into Eqs.(2)–(4)

    Using the transformations in Eq.(8),the governing boundary layer equations can be written as

    where primes denote differentiation with respect toη,Kis the microrotation parameter,Pris the Prandtl number,andMis the Hartman number.These parameters and dimensionless numbers are defined as follows

    The transformed boundary conditions become

    whereSis the suction/injection parameter andαis the stretching/shrinking parameter.The quantities of practical interest,are the local skin friction coeきcientCfx,and the local Nusselt numberNuxwhich are defined as

    In dimensionless form,local skin friction coeきcient and the reduced local Nusselt can be written as

    whereRex=ax2/νdenotes the local Reynolds number.

    3 Method of Solution

    3.1 Solution of Momentum Equation

    For weak concentration i.e.,whenn=1/2,Eqs.(9)and(10)along with boundary conditions(13)and(14)has the exact solutions of the form

    Substituting(17)in Eq.(9),we get

    Solving Eq.(18)we have

    Thus,the exact solution of Eq.(9)and(10)subject to the corresponding boundary conditions(13)and(14)are given by

    The velocity pro file is determined after differentiating Eq.(20)once,

    The skin friction coeきcient in closed form is obtained as

    3.2 Solution of Energy Equation

    To obtain the solution of Eq.(11),we introduce intermediate variableχas follows

    Substituting(20)and(22)into Eq.(11),we get a secondorder decoupled boundary value problem

    whereA=1 ?Pr(α+βS)/β2and the corresponding boundary conditions take the form

    Asχ=0 is the regular singular point of Eq.(22),we can apply the Frobenius method to seek an in finite power series solution of the form,

    Differentiating(25)twice,we get

    Substituting Eq.(26)in Eq.(23),we obtain

    From Eq.(28),we get the indicial polynomial

    which is quadratic inmand having the indicial roots

    From Eq.(28),the recurrence relation takes the form

    Form=0,Eq.(29)becomes

    Above relation givesC1=C2= ···=Cr=0.Indicial rootm=0 gives constant solution,i.e.,θ1=constant.For the indicial rootm=1?Athe relation in Eq.(29)becomes

    which on expanding gives

    Using Pochhammer symbol,we can have

    similarly,we can also have

    Using the above so-called Pochhammer symbols,Eq.(30)takes the form

    Hence the solution for indicial rootm=1?Abecomes

    whereH(1?A,2?A,?αχ)is the con fluent hypergeometric function.Thus,the general solution of Eq.(25)is

    The boundary conditionθ(0)=0 givesB1=0 and the second boundary conditionθ(Pr/β2)=1 gives

    Finally,substitutingB1,B2and the intermediate variableχin Eq.(32),we obtained the exact solution of energy equation

    4 Results and Discussion

    The solution domain forβis determined by different parameters,as shown in Figs.1 and 2.In each case,interesting behavior is observed.For the selected range of mass suction/injection,micropolar fluid parameter,stretching/shrinking parameters,and Hartman number,two solution branches(dual solutions)are found in each case.The characteristic polynomial of nonlinear boundary value problem possesses at least two distinct real roots.The upper branch corresponds to positive sign(+)and lower branch corresponds to negative sign(?)in Eq.(19).

    Fig.1 The solution domain for β as function of(a)mass suction/injection parameter,S,(b)micropolar fluid parameter,K.

    Fig.2 The solution domain for β as function of(a)stretching/shrinking parameter α and magnetic field parameter,M.

    Fig.3 Variations of skin friction with suction/injection and stretching/shrinking parameters.

    Fig.4 Variations of skin friction with microrotation fluid parameter and magnetic field parameter.

    Fig.5 Variations of velocity pro files with suction and stretching/shrinking parameters.

    Figures 3 and 4 illustrate the variations of skin friction coeきcient with different physical parameters.Skin friction coeきcient decreases by increasingα(for shrinking case).Further it is noticed that by increasing the velocity ratio parameters skin friction coeきcient increases for both upper and lower branch cases(Fig.3(a)).From Fig.4(a),it is noticed that the values of skin friction coeきcient are larger for the suction case as compared to injection case.This figure also shows that the skin friction coeきcient also increases by increasing the micropolar fluid parameterK.Skin friction coeきcient increases by increasing Hartman number for both suction and injection cases(Fig.4(b)).

    Fig.6 Variations of velocity pro files with microrotation fluid parameter and magnetic field.

    Fig.7 Variations of dimensionless microrotation pro file with suction and stretching/shrinking parameters.

    Fig.8 Variations of dimensionless microrotation pro file with microrotation fluid parameter and magnetic field parameter.

    The effects of suction,stretching/shrinking parameter on the dimensionless velocity(for shrinking case)are displayed in Figs.5(a)and 5(b)for both upper and lower branches.In the upper branch solution,suction parameter decreases the dimensionless velocity and thus the hydrodynamic boundary layer thickness decreases.The lower branch solution shows the opposite behavior.Similar,effects are observed from Fig.5(b)for the shrinking parameter on velocity.Figures 6(a)and 6(b)boundary layer thickness decreases by increasing the micropolar fluid parameter and Hartman number.The effects of microrotation parameter and Hartman number on the dimensionless velocity pro files are depicted in Figs.7(a)and 7(b)respectively.Figures 7(a)and 7(b)show that the behavior of micropolar fluid parameter and Hartman number are same.Inside the hydrodynamic boundary layer thickness,the effects of parameters are just opposite in both branch solutions.Boundary layer thickness increases by increasing the Harman number.Microrotation pro file decreases by increasing the microrotation fluid parameterKwhere as it increases by increasing the Hartman numberM.In Fig.9,Stream lines are plotted for different values ofS(for shrinking sheet).Flow pattern is different for upper branch case as compared to lower branch case.Figures 10 and 11 are plotted for the variation of local Nusselt number with stretching/shrinking,suction,Harman number and micropolar fluid parameter.Nusselt number increases by increasing the microrotation parameter(for both upper and lower branch).Further,we observed that Nusselt number is larger for the mass suction parameter.The effects of suction parameter,microrotation parameter and stretching/shrinking parameter on the dimensionless temperature are presented in Figs.12(a)and 12(b)respectively.The suction parameter reduces the dimensionless temperature within the thermal boundary layer,as shown in Fig.12(b)for both branch solutions.The same effect is observed for the stretching/shrinking parameter(Fig.13(a)).Thermal boundary layer increases by increasing the Hartman number(Fig.13(b)).

    Fig.9 Streamlines for different values of Suction parameter(shrinking case).

    Fig.10 Variations of Nusselt number with fluid flow parameters.

    Fig.11 Variations of Nusselt number with fluid flow parameters.

    Fig.12 Variations of temperature pro file with suction and microrotation fluid parameters.

    Fig.13 Variations of temperature pro file with stretching/shrinking and magnetic field parameters.

    5 Conclusions

    In this paper,we have studied the dual nature of MHD micropolar fluid flow and heat transfer over stretching/shrinking under the in fluence of suction and injection.Exact solutions for velocity,temperature,skin friction and Nusselt number have been developed and discussed along with a detailed graphical visualization.We have shown that velocity,temperature pro files exhibits dual solutions for stretching/shrinking,suction/injection,micropolar fluid and magnetic field parameters.It is also observed that the suction and stretching/shrinking parameters reduce the dimensionless temperature within the thermal boundary layer,whereas the Hartman number increases both hydrodynamic and thermal boundary layer thickness and hence increases the overall resistance.

    [1]T.R.Mahapatra,S.Dholey,and A.S.Gupta,Int.J.Non-Linear Mech.42(2007)4849.

    [2]A.Ishak,R.Nazar,and I.Pop,Heat Mass Transf.44(2008)921.

    [3]M.Z.Salleh,R.Nazar,and I.Pop,J.Taiwan Inst.Chem.Eng.41(2010)651.

    [4]T.Fang and J.Zhang,Commun.Nonlinear Sci.Numer.Simul.14(2009)2853.

    [5]S.Yao,T.Fang,and Y.Zhong,Commun.Nonlinear Sci.Numer.Simul.16(2011)752.

    [6]T.Fang,S.Yao,and I.Pop,Int.J.Non-Linear Mech.46(2011)1116.

    [7]M.Qasim,Alexandria Eng.J.52(2013)571.

    [8]M.Qasim and S.Noreen,Eur.Phys.J.Plus 129(2014)1.

    [9]S.Nadeem,R.Haq,and Z.Hayat,Alexandria Eng.J.53(2014)219–224.

    [10]O.D.Makinde,W.A.Khan,and Z.H.Khan,Int.J.Heat Mass Transf.62(2013)526.

    [11]Y.Lin,L.Zheng,X.Zhang,L.Ma,and G.Chen,Int.J.Heat Mass Transf.84(2015)903.

    [12]Y.Lin,L.Zheng,and G.Chen,Powder Technol.274(2015)324.

    [13]R.Nazar,N.Amin,D.Filip,and I.Pop,Int.J.Nonlinear Mech.39(2004)1227.

    [14]A.Ishak,R.Nazar,and I.Pop,Can.J.Phys.84(2006)399.

    [15]A.Ishak,R.Nazar,and I.Pop,Phys.Lett.A 372(2008)559.

    [16]N.A.Yacob and A.Ishak,Meccanica 47(2012)293.

    [17]M.Qasim,I.Khan,and S.Sha fie,PloS One 4(2013)e59393.

    [18]W.A.Khan,Z.H.Khan,and M.Qasim,J.Nano fluids,5(2016)567.

    [19]M.Turkyilmazoglu,Int.J.Heat Mass Transf.72(2014)388.

    [20]M.Turkyilmazoglu,Int.J.Non-Linear Mech.83(2016)59.

    [21]K.Bhattacharyya,Int.J.Heat Mass Transf.7(2011)917.

    [22]N.S.Akbar,S.Nadeem,R.Ul Haq,and S.Ye,Ain Shams Eng.J.5(2014)1233.

    [23]S.V.Subhashini and R.Sumathi,Int.J.Heat Mass Transf.71(2014)117.

    [24]M.A.El-Aziz,Journal of the Egyptian Mathematical Society 24(2016)479.

    [25]N.Freidoonimehr and A.B.Rahimi,Adv.Powder Technol.28(2016)685.

    av在线播放免费不卡| 激情在线观看视频在线高清| 看黄色毛片网站| 欧美绝顶高潮抽搐喷水| 黄色成人免费大全| 亚洲三区欧美一区| 伊人久久大香线蕉亚洲五| 男女午夜视频在线观看| 婷婷六月久久综合丁香| 亚洲性夜色夜夜综合| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 精品久久蜜臀av无| 亚洲欧美日韩高清在线视频| 老司机深夜福利视频在线观看| 身体一侧抽搐| 亚洲欧美精品综合一区二区三区| 手机成人av网站| 亚洲午夜精品一区,二区,三区| 老司机在亚洲福利影院| 国产激情欧美一区二区| 大码成人一级视频| 成人手机av| 啪啪无遮挡十八禁网站| 亚洲av成人不卡在线观看播放网| 性欧美人与动物交配| 亚洲av电影在线进入| 变态另类成人亚洲欧美熟女 | 欧美另类亚洲清纯唯美| 极品人妻少妇av视频| 亚洲欧美精品综合久久99| www.熟女人妻精品国产| 丝袜美足系列| 精品一区二区三区视频在线观看免费| 国产野战对白在线观看| 亚洲激情在线av| 俄罗斯特黄特色一大片| 制服诱惑二区| 桃色一区二区三区在线观看| 国产高清videossex| 欧美乱色亚洲激情| 在线观看免费视频日本深夜| 色婷婷久久久亚洲欧美| 少妇熟女aⅴ在线视频| 精品国产亚洲在线| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 欧美日韩亚洲综合一区二区三区_| 18禁裸乳无遮挡免费网站照片 | 叶爱在线成人免费视频播放| av视频在线观看入口| 亚洲七黄色美女视频| 午夜亚洲福利在线播放| 男女下面插进去视频免费观看| 高清黄色对白视频在线免费看| 色精品久久人妻99蜜桃| 亚洲成av人片免费观看| 久久香蕉激情| 黄色片一级片一级黄色片| 精品久久蜜臀av无| 国内久久婷婷六月综合欲色啪| 黑人欧美特级aaaaaa片| 可以在线观看毛片的网站| 无限看片的www在线观看| 757午夜福利合集在线观看| 亚洲电影在线观看av| 国产在线观看jvid| 免费高清视频大片| 久久香蕉激情| 日日夜夜操网爽| 亚洲全国av大片| 亚洲精品国产精品久久久不卡| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清 | e午夜精品久久久久久久| 色综合婷婷激情| 日韩精品青青久久久久久| 视频区欧美日本亚洲| 99久久国产精品久久久| 日韩国内少妇激情av| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 欧美日韩亚洲国产一区二区在线观看| 中文亚洲av片在线观看爽| 88av欧美| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 黄色视频不卡| 成人国语在线视频| 午夜激情av网站| 国产高清激情床上av| 一级片免费观看大全| 欧美国产日韩亚洲一区| 亚洲精品国产区一区二| 嫩草影院精品99| 女人精品久久久久毛片| 老熟妇乱子伦视频在线观看| 国产精品,欧美在线| 午夜免费激情av| 国内精品久久久久精免费| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 无人区码免费观看不卡| 又黄又爽又免费观看的视频| 久久精品aⅴ一区二区三区四区| 久久精品91无色码中文字幕| 脱女人内裤的视频| 免费看a级黄色片| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 男人舔女人的私密视频| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 欧美av亚洲av综合av国产av| a在线观看视频网站| 久久人妻av系列| 不卡一级毛片| 俄罗斯特黄特色一大片| 天堂影院成人在线观看| 日韩欧美国产一区二区入口| 69av精品久久久久久| av天堂久久9| 国产一区二区三区视频了| 久久久久久国产a免费观看| 亚洲欧美激情综合另类| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 国产精品秋霞免费鲁丝片| 国产亚洲精品一区二区www| 一级a爱片免费观看的视频| cao死你这个sao货| 99精品在免费线老司机午夜| 国产精品影院久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av电影不卡..在线观看| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| 亚洲第一电影网av| 97碰自拍视频| 一级,二级,三级黄色视频| 欧美久久黑人一区二区| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费| 99国产综合亚洲精品| 午夜久久久在线观看| 一区二区三区激情视频| 亚洲,欧美精品.| 欧美乱妇无乱码| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 精品久久久久久久人妻蜜臀av | 人人妻人人澡人人看| 9191精品国产免费久久| 午夜免费观看网址| 成人国语在线视频| 老汉色∧v一级毛片| 99国产综合亚洲精品| svipshipincom国产片| 激情视频va一区二区三区| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 黑人巨大精品欧美一区二区mp4| 日韩三级视频一区二区三区| 多毛熟女@视频| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 亚洲免费av在线视频| 免费无遮挡裸体视频| 在线免费观看的www视频| x7x7x7水蜜桃| 国产亚洲精品久久久久久毛片| 啦啦啦 在线观看视频| 国产97色在线日韩免费| 老汉色∧v一级毛片| 免费观看人在逋| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 久久久久精品国产欧美久久久| 老司机靠b影院| 亚洲狠狠婷婷综合久久图片| 人人澡人人妻人| 亚洲精品在线观看二区| 麻豆av在线久日| 日日摸夜夜添夜夜添小说| 中文字幕人成人乱码亚洲影| 国产成人av教育| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色 | 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 不卡一级毛片| 亚洲精品中文字幕一二三四区| 久久影院123| 久久欧美精品欧美久久欧美| 一本久久中文字幕| 超碰成人久久| 90打野战视频偷拍视频| 淫妇啪啪啪对白视频| 日韩成人在线观看一区二区三区| 久久久久国内视频| 精品国产国语对白av| 久久精品国产亚洲av香蕉五月| av福利片在线| 黑人巨大精品欧美一区二区mp4| 午夜福利免费观看在线| 国产成人啪精品午夜网站| 久久人人97超碰香蕉20202| 一级片免费观看大全| 男男h啪啪无遮挡| avwww免费| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| av有码第一页| 淫妇啪啪啪对白视频| 美女免费视频网站| 午夜老司机福利片| 妹子高潮喷水视频| a级毛片在线看网站| 99久久99久久久精品蜜桃| 欧美老熟妇乱子伦牲交| www.精华液| 此物有八面人人有两片| 久久精品91无色码中文字幕| 国产熟女xx| 一区二区日韩欧美中文字幕| 亚洲无线在线观看| 国产精品亚洲一级av第二区| 欧美中文日本在线观看视频| 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 国产精品久久久人人做人人爽| 最近最新免费中文字幕在线| 日本在线视频免费播放| 欧美日韩精品网址| 在线永久观看黄色视频| 亚洲精品久久国产高清桃花| 成人18禁在线播放| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 91精品国产国语对白视频| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女| 免费在线观看亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 此物有八面人人有两片| 黄频高清免费视频| 午夜久久久在线观看| 男人舔女人的私密视频| 好男人在线观看高清免费视频 | 亚洲国产欧美日韩在线播放| 国产成人影院久久av| av电影中文网址| 在线免费观看的www视频| 狂野欧美激情性xxxx| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 丝袜美足系列| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 在线视频色国产色| 久99久视频精品免费| 久热爱精品视频在线9| 丝袜美腿诱惑在线| 热re99久久国产66热| 色综合亚洲欧美另类图片| 亚洲成国产人片在线观看| 成人av一区二区三区在线看| 91国产中文字幕| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av | www.精华液| 亚洲精品一区av在线观看| 桃红色精品国产亚洲av| 国语自产精品视频在线第100页| 91av网站免费观看| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 国产91精品成人一区二区三区| 亚洲精品国产一区二区精华液| 人人妻,人人澡人人爽秒播| tocl精华| 亚洲精品在线美女| a级毛片在线看网站| 天天一区二区日本电影三级 | 欧美激情久久久久久爽电影 | 校园春色视频在线观看| 村上凉子中文字幕在线| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看 | 欧美成人一区二区免费高清观看 | 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 欧美日韩乱码在线| 亚洲一区二区三区不卡视频| 亚洲av日韩精品久久久久久密| 9色porny在线观看| 精品乱码久久久久久99久播| 制服人妻中文乱码| 国产精品久久久久久精品电影 | 亚洲av五月六月丁香网| 午夜亚洲福利在线播放| 色综合婷婷激情| www.999成人在线观看| 欧美中文综合在线视频| 午夜a级毛片| 欧美丝袜亚洲另类 | 校园春色视频在线观看| 美女午夜性视频免费| e午夜精品久久久久久久| 精品电影一区二区在线| 日韩有码中文字幕| 午夜福利高清视频| 麻豆国产av国片精品| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 久久人妻熟女aⅴ| 久久久久久久久中文| 深夜精品福利| 我的亚洲天堂| 免费在线观看完整版高清| 午夜久久久久精精品| 一区福利在线观看| 欧美黄色淫秽网站| av天堂在线播放| 99香蕉大伊视频| 身体一侧抽搐| 日韩有码中文字幕| 成人国产一区最新在线观看| 性少妇av在线| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 久久国产乱子伦精品免费另类| 女警被强在线播放| 自线自在国产av| tocl精华| 久久久久久免费高清国产稀缺| 午夜福利视频1000在线观看 | 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 久久香蕉激情| 国产精品久久久久久亚洲av鲁大| 日韩一卡2卡3卡4卡2021年| 大型黄色视频在线免费观看| 操出白浆在线播放| 嫩草影视91久久| 人人妻人人澡人人看| www.自偷自拍.com| 欧美日韩福利视频一区二区| 嫩草影视91久久| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 日本vs欧美在线观看视频| 天天躁夜夜躁狠狠躁躁| 精品无人区乱码1区二区| 999精品在线视频| 午夜精品在线福利| 大型黄色视频在线免费观看| 国产区一区二久久| 色在线成人网| 亚洲avbb在线观看| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲| 国产麻豆成人av免费视频| 亚洲五月色婷婷综合| 成人国产综合亚洲| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 日韩三级视频一区二区三区| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区在线av高清观看| 亚洲成国产人片在线观看| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 美女 人体艺术 gogo| 久热爱精品视频在线9| 国产精品精品国产色婷婷| 法律面前人人平等表现在哪些方面| 在线观看66精品国产| 亚洲成av片中文字幕在线观看| 精品欧美国产一区二区三| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 国产精品久久电影中文字幕| 久久久久久免费高清国产稀缺| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 午夜福利免费观看在线| 欧美大码av| 一级a爱片免费观看的视频| av福利片在线| 一二三四在线观看免费中文在| 嫩草影院精品99| 精品一区二区三区av网在线观看| 日本欧美视频一区| 操出白浆在线播放| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 欧美最黄视频在线播放免费| 欧美黑人精品巨大| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 国产熟女xx| 女性生殖器流出的白浆| 黄色a级毛片大全视频| www.999成人在线观看| 国产激情欧美一区二区| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 国产成人精品久久二区二区91| 欧美精品亚洲一区二区| 一本久久中文字幕| 精品电影一区二区在线| 在线av久久热| av在线播放免费不卡| 在线播放国产精品三级| 免费高清视频大片| 久久国产亚洲av麻豆专区| 亚洲狠狠婷婷综合久久图片| 少妇熟女aⅴ在线视频| 一级片免费观看大全| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区mp4| 9热在线视频观看99| 亚洲精品粉嫩美女一区| 久久热在线av| 亚洲第一av免费看| 69精品国产乱码久久久| 9热在线视频观看99| 久久中文字幕人妻熟女| 黄色毛片三级朝国网站| 精品乱码久久久久久99久播| 亚洲男人的天堂狠狠| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 在线观看www视频免费| 欧美成人一区二区免费高清观看 | 身体一侧抽搐| 一区二区三区精品91| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 色av中文字幕| 午夜福利18| 免费在线观看亚洲国产| 亚洲成人久久性| 国产色视频综合| 国产视频一区二区在线看| www.www免费av| 亚洲成人久久性| 亚洲成a人片在线一区二区| 日韩 欧美 亚洲 中文字幕| 欧美久久黑人一区二区| 国产av精品麻豆| 欧美精品亚洲一区二区| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| 午夜久久久久精精品| 国产一区二区在线av高清观看| 一本综合久久免费| 老鸭窝网址在线观看| 亚洲电影在线观看av| 无人区码免费观看不卡| av在线播放免费不卡| 欧美久久黑人一区二区| 久久久精品欧美日韩精品| 美女国产高潮福利片在线看| 男人的好看免费观看在线视频 | 亚洲熟女毛片儿| 99香蕉大伊视频| 亚洲自拍偷在线| 国内久久婷婷六月综合欲色啪| 国产一区二区三区综合在线观看| 久久精品亚洲精品国产色婷小说| 老鸭窝网址在线观看| 久久婷婷成人综合色麻豆| 女人精品久久久久毛片| 一进一出好大好爽视频| 麻豆一二三区av精品| 满18在线观看网站| 欧美日韩黄片免| 国产麻豆69| 精品一品国产午夜福利视频| 免费在线观看日本一区| 18禁美女被吸乳视频| 亚洲三区欧美一区| 两人在一起打扑克的视频| 午夜福利一区二区在线看| 可以在线观看毛片的网站| 精品免费久久久久久久清纯| 精品国产亚洲在线| 最新在线观看一区二区三区| 精品人妻在线不人妻| 免费观看精品视频网站| 欧美激情高清一区二区三区| 久久香蕉精品热| 精品一区二区三区四区五区乱码| 精品人妻在线不人妻| 日日爽夜夜爽网站| 国产成人精品久久二区二区91| 国产99白浆流出| 亚洲一区高清亚洲精品| 欧美午夜高清在线| 亚洲精品av麻豆狂野| 欧美成人性av电影在线观看| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 18禁国产床啪视频网站| 一本综合久久免费| 午夜福利视频1000在线观看 | 最近最新中文字幕大全电影3 | 日韩高清综合在线| www.自偷自拍.com| 久久伊人香网站| 国产精品爽爽va在线观看网站 | 女人被躁到高潮嗷嗷叫费观| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 欧美性长视频在线观看| 亚洲五月婷婷丁香| 久久国产乱子伦精品免费另类| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品在线美女| 久久草成人影院| 亚洲熟妇中文字幕五十中出| 天天一区二区日本电影三级 | 亚洲国产精品999在线| 黄片播放在线免费| 久久中文字幕一级| 亚洲午夜精品一区,二区,三区| 老鸭窝网址在线观看| 午夜免费鲁丝| 老司机在亚洲福利影院| 亚洲av第一区精品v没综合| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 在线观看午夜福利视频| 亚洲电影在线观看av| 操出白浆在线播放| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 亚洲国产精品合色在线| 丝袜人妻中文字幕| 国产欧美日韩一区二区三区在线| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| 狂野欧美激情性xxxx| 精品国产美女av久久久久小说| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| 成人精品一区二区免费| 久久精品人人爽人人爽视色| 亚洲最大成人中文| 男人的好看免费观看在线视频 | 国产亚洲欧美98| 成人三级黄色视频| 日本在线视频免费播放| 十八禁网站免费在线| 亚洲午夜理论影院| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 欧美色视频一区免费| 国产精品久久久久久亚洲av鲁大| 国产成人欧美在线观看| 两个人免费观看高清视频| 精品一区二区三区av网在线观看| 女生性感内裤真人,穿戴方法视频| netflix在线观看网站| 最近最新中文字幕大全免费视频| 久久国产精品影院| 如日韩欧美国产精品一区二区三区| 一区二区三区高清视频在线| 免费不卡黄色视频| 国产不卡一卡二| 欧美国产日韩亚洲一区| 国产欧美日韩精品亚洲av| 9191精品国产免费久久| 男女下面插进去视频免费观看| 亚洲熟女毛片儿|