• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid with Weak Concentration over a Stretching/Shrinking Sheet

    2018-01-22 09:27:25KhanQasimNaeemaIshfaqandKhan
    Communications in Theoretical Physics 2017年4期

    Z.H.Khan,M.Qasim,Naeema Ishfaq,and W.A.Khan

    Department of Mathematics,University of Malakand,Chakdara,Dir(Lower),Khyber Pakhtunkhwa,Pakistan

    2Department of Mathematics,COMSATS Institute of Information Technology,Park Road,Chak Shahzad,Islamabad,Pakistan

    3School of Mathematical Sciences,Peking University,Beijing 100871,China

    4Department of Mechanical and Industrial Engineering College of Engineering,Majmaah University,Majmaah 11952,Kingdom of Saudi Arabia

    1 Introduction

    The boundary layer flows over a stretching surface are encountered in several engineering and industrial applications such as drawing of plastics, films and wires,crystal growing,continuous stretching,extrusion of polymer sheets,rolling and manufacturing plastic films and arti ficial fibers.In a melt spinning process,the extrudate from the die is generally drawn and simultaneously stretched into a sheet which is then solidi fied through quenching or gradually cooling by direct contact with water(Mahapatraet al.[1]).

    In viscous fluid dynamics,the equations governing the flow are called Navier–Stokes equations. These equations are non-linear partial differential equations and exact analytical solutions corresponding to such equations are few.This is because of non-linearity regarding the inertial part of equations in the three-components of velocity,in some special situations,by means of appropriate transformations;the system of partial differential equations is reduced to that of non-linear ordinary differential equations,[2?10]which on few occasions can admit analytical solutions in closed form.[4?7]On the other hand,the resulting equations for flow of non-Newtonian fluids are more complicated and nonlinear with higher order than the Navier–Stokes equations.[11?12]Such complications in fact stem because of extra rheological parameters occurring in constitutive equations of non-Newtonian fluid.Unlike the NS equations the nonlinearity in the governing equations even for incompressible flow of non-Newtonian fluids not only appears in the inertial part but also in the viscosity,elasticity and viscoplastic parts.

    The flow equation of micropolar fluid involves a microrotation vector in addition to classical velocity vector.In micropolar fluids,rigid particles in a small volume element can rotate about the centroid of the volume element.The micropolar fluids in fact can predict behavior at micro scale and rotation is independently explained by a microrotation vector.The fluid motion of the micropolar fluid is characterized by the concentration laws of mass,momentum and constitutive relationships describing the effect of couple stress,spin-inertia and micromotion.[13?17]Khanet al.[18]investigated boundary layer flow and heat transfer of a micropolar ferro fluid over a stretching surface.They considered microrotation of the ferroparticles and examined the effects of pertinent parameters on the dimensionless velocity,temperature,skin friction and Nusselt numbers for both weak and strong concentrations of ferro fluids.

    Turkyilmazoglu[19]studied the flow of micropolar fluid and heat transfer past a porous shrinking sheet. He determined the bounds of multiple existing solutions and proved the presence of dual solutions for the flow field.Later,Turkyilmazoglu[20]obtained the dual solution for the flow due to a permeable stretching sheet.Besides this solution,dual solutions in the boundary layer flow of different fluids have been obtained by manyresearchers.[21?25]In this study,we obtained dual solutions for the heat transfer and flow of a micropolar fluid over stretching/shrinking sheet under the in fluence of the lf ow governing parameters.Closed-form exact solutions for the velocity,temperature and microrotation pro files are also obtained for the case of weak concentration.

    2 Problem Formulation

    2.1 Governing Equations

    Consider the steady MHD boundary layer flow past a stretching/shrinking surface.It is assumed that sheet is stretched with a linearly velocityuw(x)=cx,wherecis a positive constant for stretching and negative for shrinking sheet.The governing boundary layer equations are

    whereuandvare the velocity components parallel to thex-andy-axes,respectively,ρthe fluid density,νthe kinematic viscosity,Nthe microrotation or angular velocity,cpthe speci fic heat,kthe thermal conductivity of the fluid,j=(ν/c)is microinertia per unit mass,γ?=(μ+κ/2)jandκare the spin gradient viscosity and vortex viscosity,respectively.

    2.2 Boundary Conditions

    The boundary conditions for the proposed model are

    wherevwsurface mass transfer velocity withvw<0 corresponds to suction andvw>0 to injection velocity.

    The boundary parameternin Eq.(6)varies in the range 0≤n≤1.Heren=0 corresponds to the situation when microelements at the stretching sheet are unable to rotate and denotes weak concentrations of the microelements at sheet.The casen=1/2 corresponds to the vanishing of anti-symmetric part of the stress tensor and it shows weak concentration of microelements and the casen=1 is for turbulent boundary layer flows.[13?15]

    2.3 Similarity Transformations

    In order to transform the governing partial differential equations into a system of non-linear ordinary differential equations,we introduce the following dimensionless and similarity variables into Eqs.(2)–(4)

    Using the transformations in Eq.(8),the governing boundary layer equations can be written as

    where primes denote differentiation with respect toη,Kis the microrotation parameter,Pris the Prandtl number,andMis the Hartman number.These parameters and dimensionless numbers are defined as follows

    The transformed boundary conditions become

    whereSis the suction/injection parameter andαis the stretching/shrinking parameter.The quantities of practical interest,are the local skin friction coeきcientCfx,and the local Nusselt numberNuxwhich are defined as

    In dimensionless form,local skin friction coeきcient and the reduced local Nusselt can be written as

    whereRex=ax2/νdenotes the local Reynolds number.

    3 Method of Solution

    3.1 Solution of Momentum Equation

    For weak concentration i.e.,whenn=1/2,Eqs.(9)and(10)along with boundary conditions(13)and(14)has the exact solutions of the form

    Substituting(17)in Eq.(9),we get

    Solving Eq.(18)we have

    Thus,the exact solution of Eq.(9)and(10)subject to the corresponding boundary conditions(13)and(14)are given by

    The velocity pro file is determined after differentiating Eq.(20)once,

    The skin friction coeきcient in closed form is obtained as

    3.2 Solution of Energy Equation

    To obtain the solution of Eq.(11),we introduce intermediate variableχas follows

    Substituting(20)and(22)into Eq.(11),we get a secondorder decoupled boundary value problem

    whereA=1 ?Pr(α+βS)/β2and the corresponding boundary conditions take the form

    Asχ=0 is the regular singular point of Eq.(22),we can apply the Frobenius method to seek an in finite power series solution of the form,

    Differentiating(25)twice,we get

    Substituting Eq.(26)in Eq.(23),we obtain

    From Eq.(28),we get the indicial polynomial

    which is quadratic inmand having the indicial roots

    From Eq.(28),the recurrence relation takes the form

    Form=0,Eq.(29)becomes

    Above relation givesC1=C2= ···=Cr=0.Indicial rootm=0 gives constant solution,i.e.,θ1=constant.For the indicial rootm=1?Athe relation in Eq.(29)becomes

    which on expanding gives

    Using Pochhammer symbol,we can have

    similarly,we can also have

    Using the above so-called Pochhammer symbols,Eq.(30)takes the form

    Hence the solution for indicial rootm=1?Abecomes

    whereH(1?A,2?A,?αχ)is the con fluent hypergeometric function.Thus,the general solution of Eq.(25)is

    The boundary conditionθ(0)=0 givesB1=0 and the second boundary conditionθ(Pr/β2)=1 gives

    Finally,substitutingB1,B2and the intermediate variableχin Eq.(32),we obtained the exact solution of energy equation

    4 Results and Discussion

    The solution domain forβis determined by different parameters,as shown in Figs.1 and 2.In each case,interesting behavior is observed.For the selected range of mass suction/injection,micropolar fluid parameter,stretching/shrinking parameters,and Hartman number,two solution branches(dual solutions)are found in each case.The characteristic polynomial of nonlinear boundary value problem possesses at least two distinct real roots.The upper branch corresponds to positive sign(+)and lower branch corresponds to negative sign(?)in Eq.(19).

    Fig.1 The solution domain for β as function of(a)mass suction/injection parameter,S,(b)micropolar fluid parameter,K.

    Fig.2 The solution domain for β as function of(a)stretching/shrinking parameter α and magnetic field parameter,M.

    Fig.3 Variations of skin friction with suction/injection and stretching/shrinking parameters.

    Fig.4 Variations of skin friction with microrotation fluid parameter and magnetic field parameter.

    Fig.5 Variations of velocity pro files with suction and stretching/shrinking parameters.

    Figures 3 and 4 illustrate the variations of skin friction coeきcient with different physical parameters.Skin friction coeきcient decreases by increasingα(for shrinking case).Further it is noticed that by increasing the velocity ratio parameters skin friction coeきcient increases for both upper and lower branch cases(Fig.3(a)).From Fig.4(a),it is noticed that the values of skin friction coeきcient are larger for the suction case as compared to injection case.This figure also shows that the skin friction coeきcient also increases by increasing the micropolar fluid parameterK.Skin friction coeきcient increases by increasing Hartman number for both suction and injection cases(Fig.4(b)).

    Fig.6 Variations of velocity pro files with microrotation fluid parameter and magnetic field.

    Fig.7 Variations of dimensionless microrotation pro file with suction and stretching/shrinking parameters.

    Fig.8 Variations of dimensionless microrotation pro file with microrotation fluid parameter and magnetic field parameter.

    The effects of suction,stretching/shrinking parameter on the dimensionless velocity(for shrinking case)are displayed in Figs.5(a)and 5(b)for both upper and lower branches.In the upper branch solution,suction parameter decreases the dimensionless velocity and thus the hydrodynamic boundary layer thickness decreases.The lower branch solution shows the opposite behavior.Similar,effects are observed from Fig.5(b)for the shrinking parameter on velocity.Figures 6(a)and 6(b)boundary layer thickness decreases by increasing the micropolar fluid parameter and Hartman number.The effects of microrotation parameter and Hartman number on the dimensionless velocity pro files are depicted in Figs.7(a)and 7(b)respectively.Figures 7(a)and 7(b)show that the behavior of micropolar fluid parameter and Hartman number are same.Inside the hydrodynamic boundary layer thickness,the effects of parameters are just opposite in both branch solutions.Boundary layer thickness increases by increasing the Harman number.Microrotation pro file decreases by increasing the microrotation fluid parameterKwhere as it increases by increasing the Hartman numberM.In Fig.9,Stream lines are plotted for different values ofS(for shrinking sheet).Flow pattern is different for upper branch case as compared to lower branch case.Figures 10 and 11 are plotted for the variation of local Nusselt number with stretching/shrinking,suction,Harman number and micropolar fluid parameter.Nusselt number increases by increasing the microrotation parameter(for both upper and lower branch).Further,we observed that Nusselt number is larger for the mass suction parameter.The effects of suction parameter,microrotation parameter and stretching/shrinking parameter on the dimensionless temperature are presented in Figs.12(a)and 12(b)respectively.The suction parameter reduces the dimensionless temperature within the thermal boundary layer,as shown in Fig.12(b)for both branch solutions.The same effect is observed for the stretching/shrinking parameter(Fig.13(a)).Thermal boundary layer increases by increasing the Hartman number(Fig.13(b)).

    Fig.9 Streamlines for different values of Suction parameter(shrinking case).

    Fig.10 Variations of Nusselt number with fluid flow parameters.

    Fig.11 Variations of Nusselt number with fluid flow parameters.

    Fig.12 Variations of temperature pro file with suction and microrotation fluid parameters.

    Fig.13 Variations of temperature pro file with stretching/shrinking and magnetic field parameters.

    5 Conclusions

    In this paper,we have studied the dual nature of MHD micropolar fluid flow and heat transfer over stretching/shrinking under the in fluence of suction and injection.Exact solutions for velocity,temperature,skin friction and Nusselt number have been developed and discussed along with a detailed graphical visualization.We have shown that velocity,temperature pro files exhibits dual solutions for stretching/shrinking,suction/injection,micropolar fluid and magnetic field parameters.It is also observed that the suction and stretching/shrinking parameters reduce the dimensionless temperature within the thermal boundary layer,whereas the Hartman number increases both hydrodynamic and thermal boundary layer thickness and hence increases the overall resistance.

    [1]T.R.Mahapatra,S.Dholey,and A.S.Gupta,Int.J.Non-Linear Mech.42(2007)4849.

    [2]A.Ishak,R.Nazar,and I.Pop,Heat Mass Transf.44(2008)921.

    [3]M.Z.Salleh,R.Nazar,and I.Pop,J.Taiwan Inst.Chem.Eng.41(2010)651.

    [4]T.Fang and J.Zhang,Commun.Nonlinear Sci.Numer.Simul.14(2009)2853.

    [5]S.Yao,T.Fang,and Y.Zhong,Commun.Nonlinear Sci.Numer.Simul.16(2011)752.

    [6]T.Fang,S.Yao,and I.Pop,Int.J.Non-Linear Mech.46(2011)1116.

    [7]M.Qasim,Alexandria Eng.J.52(2013)571.

    [8]M.Qasim and S.Noreen,Eur.Phys.J.Plus 129(2014)1.

    [9]S.Nadeem,R.Haq,and Z.Hayat,Alexandria Eng.J.53(2014)219–224.

    [10]O.D.Makinde,W.A.Khan,and Z.H.Khan,Int.J.Heat Mass Transf.62(2013)526.

    [11]Y.Lin,L.Zheng,X.Zhang,L.Ma,and G.Chen,Int.J.Heat Mass Transf.84(2015)903.

    [12]Y.Lin,L.Zheng,and G.Chen,Powder Technol.274(2015)324.

    [13]R.Nazar,N.Amin,D.Filip,and I.Pop,Int.J.Nonlinear Mech.39(2004)1227.

    [14]A.Ishak,R.Nazar,and I.Pop,Can.J.Phys.84(2006)399.

    [15]A.Ishak,R.Nazar,and I.Pop,Phys.Lett.A 372(2008)559.

    [16]N.A.Yacob and A.Ishak,Meccanica 47(2012)293.

    [17]M.Qasim,I.Khan,and S.Sha fie,PloS One 4(2013)e59393.

    [18]W.A.Khan,Z.H.Khan,and M.Qasim,J.Nano fluids,5(2016)567.

    [19]M.Turkyilmazoglu,Int.J.Heat Mass Transf.72(2014)388.

    [20]M.Turkyilmazoglu,Int.J.Non-Linear Mech.83(2016)59.

    [21]K.Bhattacharyya,Int.J.Heat Mass Transf.7(2011)917.

    [22]N.S.Akbar,S.Nadeem,R.Ul Haq,and S.Ye,Ain Shams Eng.J.5(2014)1233.

    [23]S.V.Subhashini and R.Sumathi,Int.J.Heat Mass Transf.71(2014)117.

    [24]M.A.El-Aziz,Journal of the Egyptian Mathematical Society 24(2016)479.

    [25]N.Freidoonimehr and A.B.Rahimi,Adv.Powder Technol.28(2016)685.

    97在线视频观看| 天天躁日日操中文字幕| 国产视频首页在线观看| 97超视频在线观看视频| 国产一区二区三区av在线| 国产精品一区二区性色av| 色综合色国产| 国产成人一区二区在线| 国产毛片a区久久久久| 成年版毛片免费区| av福利片在线观看| 精品国产一区二区三区久久久樱花 | 国产高清有码在线观看视频| av国产精品久久久久影院| 国产成人免费无遮挡视频| 美女内射精品一级片tv| 内地一区二区视频在线| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 色哟哟·www| 99热国产这里只有精品6| 国产成人精品婷婷| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一区久久| 国产黄片美女视频| 我的女老师完整版在线观看| 亚洲最大成人手机在线| av线在线观看网站| 国产一区二区三区综合在线观看 | 搡老乐熟女国产| 五月天丁香电影| 真实男女啪啪啪动态图| 寂寞人妻少妇视频99o| www.色视频.com| 色播亚洲综合网| 麻豆精品久久久久久蜜桃| 久热这里只有精品99| 夜夜看夜夜爽夜夜摸| 国产成人91sexporn| 亚洲国产精品成人综合色| 国产精品伦人一区二区| 午夜免费男女啪啪视频观看| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 欧美zozozo另类| 在线免费十八禁| 日韩 亚洲 欧美在线| 久久久久国产精品人妻一区二区| 在线免费观看不下载黄p国产| 欧美3d第一页| 国产日韩欧美亚洲二区| 亚洲在线观看片| 国产在线男女| www.av在线官网国产| 国产男女超爽视频在线观看| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 搡女人真爽免费视频火全软件| 亚洲精品色激情综合| 欧美国产精品一级二级三级 | 一级a做视频免费观看| 日韩亚洲欧美综合| 国产精品国产av在线观看| 国产永久视频网站| 久久人人爽av亚洲精品天堂 | 国产成人freesex在线| 街头女战士在线观看网站| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 一区二区av电影网| 精品久久久精品久久久| 成人一区二区视频在线观看| 久久精品人妻少妇| 嫩草影院新地址| 极品教师在线视频| 熟女电影av网| 久久久久久国产a免费观看| 久久国内精品自在自线图片| 久久久欧美国产精品| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 五月开心婷婷网| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| av线在线观看网站| 欧美精品人与动牲交sv欧美| 日本av手机在线免费观看| 一级av片app| 伊人久久精品亚洲午夜| 99热网站在线观看| 亚洲精品日本国产第一区| 成年女人在线观看亚洲视频 | 免费黄网站久久成人精品| 国产黄片美女视频| 欧美精品国产亚洲| 国产精品久久久久久精品电影小说 | av在线亚洲专区| 日韩欧美精品v在线| 国产黄片视频在线免费观看| 亚洲人与动物交配视频| 欧美97在线视频| 国内精品美女久久久久久| 国产精品无大码| 啦啦啦中文免费视频观看日本| 亚洲久久久久久中文字幕| .国产精品久久| 日韩大片免费观看网站| 久久精品夜色国产| 三级经典国产精品| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲网站| 亚洲色图av天堂| 99热网站在线观看| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 大码成人一级视频| 天堂俺去俺来也www色官网| 精品少妇黑人巨大在线播放| 亚洲自偷自拍三级| 免费黄色在线免费观看| 亚洲色图av天堂| 国产精品国产三级国产av玫瑰| 一本一本综合久久| 精品少妇黑人巨大在线播放| xxx大片免费视频| 少妇 在线观看| 免费看光身美女| 亚洲欧美成人综合另类久久久| 日韩免费高清中文字幕av| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区| 国产精品精品国产色婷婷| 晚上一个人看的免费电影| av福利片在线观看| 激情 狠狠 欧美| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 亚洲精品国产成人久久av| 婷婷色av中文字幕| 免费观看的影片在线观看| 在线亚洲精品国产二区图片欧美 | 99热全是精品| 波野结衣二区三区在线| 成人特级av手机在线观看| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 香蕉精品网在线| 免费av不卡在线播放| 黑人高潮一二区| 99热全是精品| 全区人妻精品视频| 国产视频首页在线观看| 真实男女啪啪啪动态图| 免费高清在线观看视频在线观看| 成人无遮挡网站| 成人欧美大片| 国产精品秋霞免费鲁丝片| 性色avwww在线观看| 午夜视频国产福利| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 夫妻午夜视频| 伊人久久国产一区二区| 国产黄频视频在线观看| 在线 av 中文字幕| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 中文字幕制服av| 亚洲第一区二区三区不卡| 激情 狠狠 欧美| 别揉我奶头 嗯啊视频| av网站免费在线观看视频| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 在线免费十八禁| 久久鲁丝午夜福利片| 在线观看三级黄色| 欧美极品一区二区三区四区| 午夜福利在线在线| 在现免费观看毛片| 女人久久www免费人成看片| 九色成人免费人妻av| 午夜精品国产一区二区电影 | 久久6这里有精品| 国产69精品久久久久777片| 日本三级黄在线观看| 中文乱码字字幕精品一区二区三区| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| av在线播放精品| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 成年版毛片免费区| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 亚洲av国产av综合av卡| 99热网站在线观看| 日韩成人av中文字幕在线观看| 嘟嘟电影网在线观看| av在线app专区| 赤兔流量卡办理| 亚洲电影在线观看av| 亚洲av成人精品一二三区| 六月丁香七月| 亚洲精品乱码久久久v下载方式| 成人免费观看视频高清| 国产一区二区在线观看日韩| 亚洲国产精品成人综合色| 日本三级黄在线观看| 插逼视频在线观看| 99久久中文字幕三级久久日本| 18禁裸乳无遮挡免费网站照片| 极品少妇高潮喷水抽搐| 在线a可以看的网站| 免费av毛片视频| 一本久久精品| 18禁裸乳无遮挡动漫免费视频 | 三级国产精品欧美在线观看| 嫩草影院入口| 国产一区二区三区综合在线观看 | 最近2019中文字幕mv第一页| 国产精品久久久久久久电影| 观看美女的网站| 免费少妇av软件| 亚洲精品日韩av片在线观看| 国产视频内射| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 亚洲成人av在线免费| 日韩强制内射视频| 国产精品麻豆人妻色哟哟久久| 日韩欧美精品v在线| 国产片特级美女逼逼视频| 九草在线视频观看| 国产一区亚洲一区在线观看| 一个人观看的视频www高清免费观看| 91精品国产九色| 久久亚洲国产成人精品v| 国产爱豆传媒在线观看| 日韩三级伦理在线观看| 国产亚洲av嫩草精品影院| 亚洲国产精品国产精品| 欧美变态另类bdsm刘玥| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 欧美zozozo另类| 97在线人人人人妻| 十八禁网站网址无遮挡 | 精品一区二区三区视频在线| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 嫩草影院精品99| 国产精品久久久久久久久免| 三级经典国产精品| 亚洲精品色激情综合| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 最新中文字幕久久久久| 在线 av 中文字幕| 色5月婷婷丁香| 91aial.com中文字幕在线观看| 国产精品精品国产色婷婷| 欧美xxxx性猛交bbbb| 国产成人a区在线观看| 国产欧美亚洲国产| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 日本三级黄在线观看| av天堂中文字幕网| 少妇人妻 视频| 偷拍熟女少妇极品色| 国产乱来视频区| 国产高清三级在线| 女人久久www免费人成看片| 亚洲精品成人久久久久久| 少妇的逼好多水| 下体分泌物呈黄色| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 最近的中文字幕免费完整| av在线亚洲专区| 国产精品秋霞免费鲁丝片| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| av免费观看日本| 最近手机中文字幕大全| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 久久人人爽人人片av| 亚洲精品aⅴ在线观看| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花 | 日韩精品有码人妻一区| 如何舔出高潮| 3wmmmm亚洲av在线观看| 欧美极品一区二区三区四区| 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 男的添女的下面高潮视频| 亚洲最大成人手机在线| 国内精品美女久久久久久| 一区二区三区乱码不卡18| 三级经典国产精品| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 人人妻人人看人人澡| 麻豆国产97在线/欧美| tube8黄色片| 久久久久久伊人网av| 九九爱精品视频在线观看| 国产 一区精品| 麻豆乱淫一区二区| 街头女战士在线观看网站| 少妇熟女欧美另类| 日产精品乱码卡一卡2卡三| 亚洲成人久久爱视频| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| .国产精品久久| 国产成人a∨麻豆精品| www.av在线官网国产| 日本爱情动作片www.在线观看| 伦精品一区二区三区| av在线天堂中文字幕| kizo精华| 国产精品精品国产色婷婷| 免费看不卡的av| a级毛片免费高清观看在线播放| 99热这里只有是精品50| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 成人国产av品久久久| 日韩不卡一区二区三区视频在线| 丝瓜视频免费看黄片| 国产一区二区在线观看日韩| 亚洲不卡免费看| 日韩伦理黄色片| 中文字幕制服av| 美女主播在线视频| 成年av动漫网址| 男女下面进入的视频免费午夜| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 热re99久久精品国产66热6| 国产精品成人在线| 韩国av在线不卡| 亚洲一区二区三区欧美精品 | 成人国产麻豆网| 99热这里只有精品一区| 精品久久久久久电影网| 丝袜喷水一区| 国产成人福利小说| 日韩在线高清观看一区二区三区| 综合色丁香网| 亚洲色图av天堂| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 日日摸夜夜添夜夜爱| 国产精品.久久久| 毛片一级片免费看久久久久| 国产男女超爽视频在线观看| 大香蕉97超碰在线| 三级国产精品欧美在线观看| 国产美女午夜福利| 国产精品成人在线| 亚洲精品国产av蜜桃| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 美女国产视频在线观看| 午夜精品一区二区三区免费看| 亚洲国产欧美在线一区| 欧美变态另类bdsm刘玥| 在线观看美女被高潮喷水网站| 人妻一区二区av| 久久久久久久精品精品| 伦理电影大哥的女人| 午夜福利视频精品| 插逼视频在线观看| 久久久久精品性色| 2021天堂中文幕一二区在线观| 久久99热6这里只有精品| av在线观看视频网站免费| 三级国产精品片| 国产精品成人在线| 午夜精品国产一区二区电影 | 久热久热在线精品观看| 99久久精品热视频| 精品久久久噜噜| 少妇的逼好多水| 欧美变态另类bdsm刘玥| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 一个人看的www免费观看视频| 国模一区二区三区四区视频| 亚洲欧美一区二区三区黑人 | 国产成人精品婷婷| 国产精品蜜桃在线观看| 三级国产精品欧美在线观看| 日本爱情动作片www.在线观看| 免费看不卡的av| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 街头女战士在线观看网站| 国产精品久久久久久av不卡| 天堂网av新在线| 国产伦精品一区二区三区视频9| 免费看日本二区| 国产亚洲5aaaaa淫片| 男人爽女人下面视频在线观看| 成人免费观看视频高清| 久久久精品欧美日韩精品| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 国产精品一区二区三区四区免费观看| 高清日韩中文字幕在线| 国产老妇伦熟女老妇高清| 久久亚洲国产成人精品v| 男女下面进入的视频免费午夜| 禁无遮挡网站| 免费av观看视频| 亚州av有码| 国产91av在线免费观看| 国产黄片美女视频| 成人国产麻豆网| 在线观看免费高清a一片| 一级av片app| 国产成人午夜福利电影在线观看| 身体一侧抽搐| av国产久精品久网站免费入址| 香蕉精品网在线| 搞女人的毛片| 街头女战士在线观看网站| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 青春草视频在线免费观看| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 深夜a级毛片| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 亚洲无线观看免费| av播播在线观看一区| 青青草视频在线视频观看| 国产精品99久久99久久久不卡 | 国产毛片在线视频| 亚洲av中文av极速乱| 日韩强制内射视频| 在线免费观看不下载黄p国产| 欧美变态另类bdsm刘玥| 亚洲精品乱码久久久久久按摩| 精品久久国产蜜桃| 精品一区二区三区视频在线| 国产日韩欧美在线精品| 国产熟女欧美一区二区| 18禁裸乳无遮挡动漫免费视频 | 18+在线观看网站| 男女边摸边吃奶| 精品一区在线观看国产| 国产视频内射| 在线精品无人区一区二区三 | 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 久久久精品欧美日韩精品| 美女高潮的动态| 国产精品99久久久久久久久| 日本色播在线视频| 天天躁日日操中文字幕| 乱码一卡2卡4卡精品| 国产成人精品久久久久久| 麻豆国产97在线/欧美| 亚洲欧美日韩另类电影网站 | 黄色怎么调成土黄色| 成年av动漫网址| 全区人妻精品视频| 国产av不卡久久| 国产精品国产三级国产专区5o| 欧美激情国产日韩精品一区| 成人黄色视频免费在线看| 久久6这里有精品| 乱码一卡2卡4卡精品| 中文天堂在线官网| 美女xxoo啪啪120秒动态图| 美女视频免费永久观看网站| 国产成人精品福利久久| 国产成人免费观看mmmm| 国产淫片久久久久久久久| 久久亚洲国产成人精品v| 在线观看一区二区三区| 97热精品久久久久久| 欧美97在线视频| 国产黄频视频在线观看| 天天躁日日操中文字幕| 黄色欧美视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 午夜福利网站1000一区二区三区| 久久久精品94久久精品| 一级av片app| 你懂的网址亚洲精品在线观看| 精品久久国产蜜桃| 欧美 日韩 精品 国产| 你懂的网址亚洲精品在线观看| 亚洲成人一二三区av| 免费av观看视频| 视频区图区小说| 一本一本综合久久| 色5月婷婷丁香| 美女国产视频在线观看| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 亚洲精品日本国产第一区| 老师上课跳d突然被开到最大视频| 在线看a的网站| 美女xxoo啪啪120秒动态图| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 一级毛片黄色毛片免费观看视频| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 久久6这里有精品| 久久精品熟女亚洲av麻豆精品| 婷婷色综合大香蕉| 国产精品久久久久久精品电影小说 | 亚洲欧洲日产国产| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 波多野结衣巨乳人妻| 国产男女内射视频| 日韩视频在线欧美| 国产精品人妻久久久影院| 国产大屁股一区二区在线视频| 草草在线视频免费看| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 在线免费观看不下载黄p国产| 91aial.com中文字幕在线观看| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 一级毛片久久久久久久久女| 亚洲在线观看片| 精品国产三级普通话版| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人 | 欧美日韩在线观看h| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 欧美性感艳星| 可以在线观看毛片的网站| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 亚洲精品乱码久久久久久按摩| 亚洲va在线va天堂va国产| 成人高潮视频无遮挡免费网站| 一级a做视频免费观看| 在线播放无遮挡| 久久久久久久精品精品| 国产黄片美女视频| 插阴视频在线观看视频| 国产av码专区亚洲av| 午夜老司机福利剧场| 人体艺术视频欧美日本| 婷婷色综合www| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 国产精品久久久久久久电影| 免费观看的影片在线观看| 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 制服丝袜香蕉在线| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 97超碰精品成人国产| 国产亚洲午夜精品一区二区久久 | 中文欧美无线码| 久久精品国产亚洲网站| 久久精品人妻少妇| 国产精品久久久久久精品电影小说 | 精品久久久精品久久久| 三级经典国产精品| 亚洲,一卡二卡三卡| 免费看光身美女|