• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time averaged consensus in a direct coupled coherent quantum observer network

    2017-12-21 09:46:50IanPETERSEN
    Control Theory and Technology 2017年3期

    Ian R.PETERSEN

    Research School of Engineering,The Australian National University,Canberra ACT 2601,Australia

    Time averaged consensus in a direct coupled coherent quantum observer network

    Ian R.PETERSEN

    Research School of Engineering,The Australian National University,Canberra ACT 2601,Australia

    This paper considers the problem of constructing a direct coupling quantum observer for a closed linear quantum system.The proposed distributed observer consists of a network of quantum harmonic oscillators and it is shown that the observer network converges to a consensus in a time averaged sense in which each element of the observer estimates the specified output of the quantum plant.An example and simulations are included to illustrate the properties of the observer network.

    Quantum systems,quantum observers,quantum networks

    1 Introduction

    A number of papers have recently considered the problem of constructing a coherent quantum observer for a quantum system;see[1-4].In the coherent quantum observer problem,a quantum plant is coupled to a quantum observer which is also a quantum system.The quantum observer is constructed to be a physically realizable quantum system so that the system variables of the quantum observer converge in some suitable sense to the system variables of the quantum plant.

    In the papers[1,2,4],the quantum plantunderconsideration is a linearquantum system.In recentyears,there has been considerable interestin the modeling and feedback control of linear quantum systems;e.g.,see[5-8].Such linear quantum systems commonly arise in the area of quantum optics;e.g.,see[9,10].For such linear quantum system models an important class of quantum control problems are referred to as coherent quantum feedback control problems;e.g.,see[5,6,11-20].In these coherent quantum feedback control problems,both the plant and the controller are quantum systems and the controller is typically to be designed to optimize some performance index.The coherent quantum observer problem can be regarded as a special case of the coherent quantum feedback control problem in which the objective of the observer is to estimate the system variables of the quantum plant.

    In some of the previous papers on quantum observers such as[1-3],the coupling between the plant and the observer is via a field coupling.This leads to an observer structure of the form shown in Fig.1.This enables a one way connection between the quantum plant and the quantum observer.Also,since both the quantum plant and the quantum observer are open quantum systems,they are both subject to quantum noise.

    Fig.1 Coherent observer structure with field coupling.

    However in the paper[13],a coherent quantum control problem is considered in which both field coupling and direct coupling is considered between the quantum plant and the quantum controller.In this paper,we explore the construction of a coherent quantum observer in which there is only direct coupling between quantum plant and the quantum observer.Furthermore,both the quantum plant and the quantum observer are assumed to be closed quantum systems which means that they are not subject to quantum noise and are purely deterministic systems.This leads to an observer structure of the form shown in Fig.2.It is shown that for the case being considered,a quantum observer can be constructed to estimate some but not all of the system variables of the quantum plant.Also,the observer variables converge to the plant variables in a time averaged sense rather than a quantum expectation sense such as considered in the papers[1,2].

    Fig.2 Coherent observer structure with direct coupling.

    In this paper,we consider the construction of a direct coupling quantum observer for a linear quantum plant and consider the case in which the quantum observer has the structure of an observer network make up of a collection of observer elements.This observer network is constructed so that the output of each observer element converges to the output of the quantum plant in a time averaged sense.This means that there is a consensus of the observer network element in estimating the output of the quantum plant.In recent years,there has been significant interest in controlling networks of multi-agent systems to achieve a consensus among the agents;e.g.,see[21-25].In particular,some authors have looked at the problem of consensus in distributed estimation problems;e.g.,see[26,27].Furthermore,issues of consensus have been considered in networked quantum systems;see[28-32].This work is motivated by the fact that it is becoming increasingly possible for quantum control experiments to involve the networked interconnection of many quantum elements and these quantum networks will have important applications in problems such as quantum communication and quantum information processing.Also,many macroscopic systems can be regarded as consisting of a large quantum network.These issuesmotivate the direct coupled coherent quantum observer network problem being considered in this paper.

    The results presented in this paper build on some of the results presented in the preliminary conference papers[33-35]).However,the results presented here provide a significant generalization compared to the results of[33-35].In particular,in this paperwe allow fora non-zero Hamiltonian forthe quantum plant,whereas in the papers[33-35],the plant Hamiltonian was assumed to be zero.Also,in the paper[33],the quantum observer did not have a network structure and corresponds to a special case of the current paper in which the quantum observer network has only a single element.In addition,the paper[34],restricts attention to quantum observer networks having a simple chain structure and for which the quantum plant and each element of the quantum observer network contains only a single mode.Finally,the paper[35]considers the case in which the quantum plant is a single qubit rather than a quantum linear system as considered in this paper.Also,it is assumed in[35]that each element of the quantum observer network contains only a single mode.

    In addition to the papers[33-35],a number of other conference papers have considered problems related to the current problem.The paper[36]considers the case in which the quantum plant is a single qubit and the quantum observer is a single mode quantum linear system.The paper[37]considers the problem of an experimental implementation of the results of[33].The paper[38]considers the problem ofan experimentalimplementation of the results of[33]with the modification that the quantum observer allows for a measurement of its output using Homodyne detection.The paper[39]considers a modification of the results of[33]to allow for a reduced order quantum observer.The paper[40]modifies the approach of[34]to allow for a chain structured observer network which would be more straightforward to implement experimentally than the approach proposed in[34].

    2 Quantum systems

    In the quantum observer network problem under consideration,both the quantum plant and the quantum observer network are linear quantum systems;see also[5,13,41].We will restrict attention to closed linear quantum systems which do not interact with an externalenvironment.The quantum mechanicalbehaviorofa linear quantum system is described in terms of the systemobservableswhich are self-adjoint operators on an underlying infinite dimensional complex Hilbert space?.The commutator of two scalar operatorsxandyon? is defined as[x,y]=x y-yx.Also,for a vector of operatorsxon ?,the commutator ofxand a scalar operatoryon ? is the vector of operators[x,y]=x y-yx,and the commutator ofxand its adjointx?is the matrix of operators

    The dynamics of the closed linear quantum systems under consideration are described by non-commutative differential equations of the form

    The initial system variablesx(0)=x0are assumed to satisfy thecommutation relations

    where Θ is a real skew-symmetric matrix with components Θjk.In the case of a single quantum harmonic oscillator,we will choosex=(x1,x2)Twherex1=qis the position operator,andx2=pis the momentum operator.The commutation relations are[q,p]=2i.In general,the matrix Θ is assumed to be of the form

    whereJdenotes the real skew-symmetric 2×2 matrix

    where Θ is defined as in(3);e.g.,see[5].In this case,the system variablesx(t)will satisfy thecommutation relationsat all times:

    That is,the system will bephysically realizable;e.g.,see[5].

    QuantumplantIn ourproposed directcoupling coherent quantum observer network,the quantum plant is a linear quantum system of the form(1)described by the non-commutative differential equations

    Quantum observer networkWe now describe the linear quantum system of the form(1)which will correspond to the quantum observer network;see also[5,13,41].This system is described by non-commutative differential equations of the form

    where Θois of the form(3).Furthermore,we will assume that the quantum observer network has a graph structure withNnodes and is coupled to the quantum plant as illustrated in Fig.3.

    Fig.3 The graph(G,E)for a typical quantum observer network.

    The combined plant observer system is described by a connected graph(G,E)which hasN+1 nodes with node 0 corresponding to the quantum plant and the remaining nodes,labelled 1,2,...,N,corresponding to the observer elements.This corresponds to an observer Hamiltonian of the form

    where the vector of observer system variablesxois partitioned according to each element of the quantum observer network as follows:

    We assume that the variables for each element of the quantum observer network commute with the variables of all other elements of the quantum observer network;i.e.,

    Also,we partition the matrix Θoas

    where each matrix Θoiis also of the form(3).

    We define a coupling Hamiltonian which defines the coupling between the quantum plant and the quantum observer network:

    Furthermore,we write

    Note thatRoi∈ Rnoi×noi,Rcij∈ Rnoi×noj,Coi∈ Rmp×noi,and each matrixRoiis symmetric fori=1,2,...,N,j=1,2,...,N.In addition,Rc0j∈ Rnp×noiforj=1,2,...,N.Also,the matricesRcijfori=0,1,...,N,j=1,2,...,Nare such thatRcij?0 if and only if(i,j)∈E,the set of edges for the graph(G,E).

    The augmented quantum linear system consisting of the quantum plant and the quantum observer network is described by the total Hamiltonian

    Then using(4),it follows that the augmented quantum linear system is described by the equations

    whereAa=2ΘaRa,

    We now formally define the notion of a direct coupled linear quantum observer network.

    Definition 1The matricesRoj,Rcij,Cojfori=0,1,...,N,j=1,2,...,Nand the graph(G,E)define alinear quantum observer networkachieving time-averaged consensus convergence for the quantum plant(6)if the corresponding augmented linear quantum system(12)is such that

    3 Constructing a direct coupling coherent quantum observer network

    and α0i∈ R2×1fori=1,2,...,mp.This assumption means that the plant variables to be estimated include only one quadrature for each mode of the plant.Also,we assume

    fori=1,2,...,mp.Corresponding to the form(15),we can partition the vector of plant variables as

    where eachxpiis a 2 by 1 vector of plant variables fori=1,2,...,mp.

    In addition,we assume thatRpis of the form

    whereM=MT.It thatApin(6)is of the form

    Hence,it follows from(6)that

    sinceJis skew-symmetric.Therefore

    That is,the vector of plant variables to be estimatedzp(t)will remain fixed if the plant is not coupled to the observer network.However,when the plant is coupled to the quantum observer network this may no longer be the case.We will show that if the quantum observer is suitably designed,the plant quantity to be estimatedzp(t)will remain fixed and the condition(14)will be satisfied.

    We assume that each element of the observer network is of dimensionnpand that the vector of observer variablesxoican also be partitioned as in(16)as

    fori=0,1,...,N.Here,eachxoijis a 2 by 1 vector of observer variables.We also suppose that the matricesRcij,Roifori=0,1,...,N,j=1,2,...,Nare of the form

    where αij∈ Rnoi×mp,βij∈ Rnoj×mpand ωi> 0 fori=1,2,...,N,j=1,2,...,N.Also,we assume that

    forj=1,2,...,Nsuch that(0,j)∈E.In addition,note that αij=0 and βij=0 for(i,j)?E.Furthermore,we assume

    fori=1,2,...,N.

    We will show that these assumptions imply that the quantityzp(t)=Cpxp(t)will be constant for the augmented quantum system(12).Indeed,the total Hamiltonian(10)will be given by

    We will show that these assumptions imply that the quantityzp(t)=Cpxp(t)will be constant for the augmented quantum system(12).Indeed,it follows from(11)-(13)that

    However,it follows from(18)that αT0Θpα0=0 and hence,

    for allt?0.

    Also,it follows from(9)and(11)-(13)that f

    orj=1,2,...,N.

    To construct a suitable quantum observer network,we will further assume that

    fori=1,...,N,j=1,2,...,N,where(i,j)∈E.Here,

    Also,we will assume that

    forj=1,2,...,Nwhere(0,j)∈E.

    In order to construct suitable values for the quantities μijand ωiso that(14)is satisfied,we will require that

    forj=1,2,...,N.This condition is equivalent to

    for(0,j)∈Eand

    for(0,j)?E.

    Then,we define

    forj=1,2,...,N.It follows from(28)and(24)that

    forj=1,2,...,N.

    We now write this equation as

    whereAois anN×Nblock matrix with blocks

    fori=1,2,...,N,j=1,2,...,N.Also,Aois as given in(8)whereRois a symmetricN×Nblock matrix with blocks

    fori=1,2,...,N,j=1,2,...,N.

    To show that the above candidate quantum observer network leads to the satisfaction of the condition(14),we note that

    satisfies(31).Hence,if we can show that

    then it will follow from

    that(14)is satisfied.

    We now show that the symmetric matrixRois positive-definite.

    Lemma 1The matrixRois positive definite.

    ProofIn order to establish this lemma,let be a non-zero real vector.Then

    using(15),(19)and the Cauchy-Schwarz inequality.We now define

    fori=1,2,...,N.Again using the Cauchy-Schwarz inequality,it follows that

    for 0=1,2,...,N,j=1,2,...,N.Thus,(35)implies

    fori=1,2,...,N,j=1,2,...,N.

    for(0,j)?E.Hence,we can write

    Fig.4 The weighted graph (G,E)in Fig.3.

    That is

    for allt?0.

    Now since Θ andRoare non-singular,

    and therefore,it follows from(37)that

    asT→∞.Hence,

    and hence,it follows from(31)and(33)that

    Also,(23)implies

    Therefore,condition(14)is satisfied.Thus,we have established the following theorem.

    Theorem 1Consider a quantum plant of the form(6)whereRpis of the form(17).Then the matricesRoi,Rcij,Coi,Roifori=1,2,...,N,j=1,2,...,Nand the connected graph(G,E)will define a direct coupled quantum observer network achieving timeaveraged consensus convergence for this quantum plant if the conditions(20)-(22),(25)-(27),(29)and(30)are satisfied.

    4 Illustrative example

    Fig.5 Quantum observer network.

    The augmented plant-observersystem is described by equations(12)and(11).Then,we can write

    Thus,the plant variable to be estimatedzp(t)is given by

    e1is the first unit vector in the standard basis for RN+1,Φi(t)is theith column of the matrix Φ(t)andxai(0)is theith component of the vectorxa(0).We plot each of the quantitiese1CaΦ1(t),e1CaΦ2(t),...,e1CaΦ2N+2(t)in Fig.6.

    From this figure,we can see thate1CaΦ1(t)≡ 1 ande1CaΦ2(t)≡ 0,e1CaΦ2(t)≡ 0,...,e1CaΦ2N+2(t)≡ 0,andzp(t)will remain constant atzp(0)for allt?0.

    We now consider the output variables of the quantum observer networkzoi(t)fori=1,2,...,Nwhich are given by

    whereei+1is the(i+1)th unit vector in the standard basis for RN+1.We plot each of the quantitiesei+1CaΦ1(t),ei+1CaΦ2(t),...,ei+1CaΦ2N+2(t)in Figs.7-11.

    Fig.6 Coefficients defining zp(t).

    Fig.7 Coefficients defining zo1(t).

    Fig.8 Coefficients defining zo2(t).

    Fig.9 Coefficients defining zo3(t).

    Fig.10 Coefficients defining zo4(t).

    Also,we can consider the spatial average obtained by averaging over each of the distributed observer outputs:

    Fig.11 Coefficients defining zo5(t).

    Fig.12 Coefficients defining zos(t).

    Fig.13 Coefficients defining the time average of zo1(t).

    Fig.14 Coefficients defining the time average of zo2(t).

    Fig.15 Coefficients defining the time average of zo3(t).

    Fig.16 Coefficients defining the time average of zo4(t).

    Fig.17 Coefficients defining the time average of zo5(t).

    From these figures,we can see that for eachi=1,2,...,N,the time average ofzoi(t)converges tozp(0)ast→ ∞.That is,the distributed quantum observer reaches a time averaged consensus corresponding to the output of the quantum plant which is to be estimated.

    5 Conclusions

    In this paper we have considered the construction of a direct coupling observer network for a closed quantum linear system in order to achieve a time averaged consensus convergence.We have also presented an illustrative example along with simulations to investigate the consensus behavior of the direct coupling observer network.

    [1]Z.Miao,M.R.James,I.R.Petersen.Coherent observers for linear quantum stochastic systems.Automatica,2016,71:264-271.[2]I.Vladimirov,I.R.Petersen.Coherent quantum filtering for physically realizable linear quantum plants.Proceedings of the European Control Conference,Zurich,Switzerland:IEEE,2013:2717-2723.

    [3]Z.Miao,L.A.D.Espinosa,I.R.Petersen,et al.Coherent quantum observers for n-level quantum systems.Proceedings of the Australian Control Conference,Perth,Australia:IEEE,2013:313-318.

    [4]I.G.Vladimirov,I.R.Petersen.Directly coupled observers for quantum harmonic oscillators with discounted mean square cost functionals and penalized back-action.Proceedings of the IEEE Conference on Norbert Wiener in the 21st Century,Melbourne,Australia:IEEE,2016:78-83.

    [5]M.R.James,H.I.Nurdin,I.R.Petersen.H∞control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2008,53(8):1787-1803.

    [6]H.I.Nurdin,M.R.James,I.R.Petersen.Coherent quantum LQG control.Automatica,2009,45(8):1837-1846.

    [7]A.J.Shaiju,I.R.Petersen.A frequency domain condition for the physical realizability of linear quantum systems.IEEE Transactions on Automatic Control,2012,57(8):2033-2044.

    [8]I.R.Petersen.Quantum linear systems theory.Open Automation and Control Systems Journal,2016,8:67-93.

    [9]C.Gardiner,P.Zoller.Quantum Noise.Berlin:Springer,2000.

    [10]H.Bachor,T.Ralph.A Guide to Experiments in Quantum Optics.2nd ed.Weinheim,Germany:Wiley-VCH,2004.

    [11]A.I.Maalouf,I.R.Petersen.Bounded real properties for a class of linear complex quantum systems.IEEE Transactions on Automatic Control,2011,56(4):786-801.

    [12]H.Mabuchi.Coherent-feedback quantum control with a dynamic compensator.Physical Review A,78(3),2008:DOI 10.1103/PhysRevA.78.032323.

    [13]G.Zhang,M.James.Direct and indirect couplings in coherent feedback control of linear quantum systems.IEEE Transactions on Automatic Control,2011,56(7):1535-1550.

    [14]I.G.Vladimirov,I.R.Petersen.A quasi-separation principle and Newton-like scheme forcoherentquantum LQGcontrol.Systems&Control Letters,2013,62(7):550-559.

    [15]I.Vladimirov,I.R.Petersen.A dynamic programming approach to finite-horizon coherent quantum LQG control.Proceedings of the Australian Control Conference,Melbourne,Australia:IEEE,2011:357-362.

    [16]R.Hamerly,H.Mabuchi.Advantages of coherent feedback for cooling quantum oscillators.Physical Review Letters,2012,109(17):DOI 10.1103/PhysRevLett.109.173602.

    [17]N.Yamamoto.Coherent versus measurement feedback:Linear systems theory forquantum information.PhysicalReview X,2014,4(4):DOI 10.1103/PhysRevX.4.041029.

    [18]C.Xiang,I.R.Petersen,D.Dong.Coherent robust H-infinity control of linear quantum systems with uncertainties in the Hamiltonian and coupling operators.Automatica,2017,81:8-21.

    [19]C.Xiang,I.R.Petersen,D.Dong.Performance analysis and coherent guaranteed cost control for uncertain quantum systems using small gain and Popov methods.IEEE Transactions on Automatic Control,2017,62(3):1524-1529.

    [20]S.L.Vuglar,I.R.Petersen.Quantum noises,physical realizability and coherent quantum feedback control.IEEE Transactions on Automatic Control,2017,62(2):998-1003.

    [21]F.L.Lewis,H.Zhang,K.Hengser-Movric,et al.Cooperative Control of Multi-Agent Systems.London:Springer,2014.

    [22]G.Shi,K.H.Johansson.Robust consusus for continuous-time multi-agentdynamics.SIAM Journalon Controland Optimization,2013,51(5):3673-3691.

    [23]M.Mesbahi,M.Egerstedt.Graph Theoretic Methods in Multiagent Networks.Princeton:Princeton University Press,2010.

    [24]L.Xiao,S.Boyd.Fast linear iterations for distributed averaging.Systems&Control Letters,2005,53(1):65-78.

    [25]A.Jadbabaie,J.Lin,A.Morse.Coordination of groups of mobile autonomous agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):988-1001.

    [26]R.Olfati-Saber.Distributed Kalman filter with embedded consensus filters.Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference,Seville,Spain:IEEE,2005:8179-8184.

    [27]R.Olfati-Saber.Kalman-consensus filter:optimality,stability,and performance.Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,Shanghai:IEEE,2009:7036-7042.

    [28]R.Sepulchre,A.Sarlette,P.Rouchon.Consensus in noncommutative spaces.Proceedings of the 49th IEEE Conference on Decision and Control,Atlanta:IEEE,2010:6596-6601.

    [29]L.Mazzarella,A.Sarlette,F.Ticozzi.Consensus for quantum networks:symmetry from gossip interactions.IEEE Transactions on Automatic Control,2015,60(1):158-172.

    [30]L.Mazzarella,F.Ticozzi,A.Sarlette.From consensus to robust randomized algorithms:a symmetrization approach.arXiv,2013:arXiv:1311.3364[quant-ph].

    [31]F.Ticozzi,L.Mazzarella,A.Sarlette.Symmetrization for quantum networks:a continuous-time approach.arXiv,2014:arXiv:1403.3582[quant-ph].

    [32]G.Shi,D.Dong,I.R.Petersen,et al.Consensus of quantum networks with continuous-time Markovian dynamics.Proceedings of the 11th World Congress on Intelligent Control and Automation,Shenyang:IEEE,2014:307-312.

    [33]I.R.Petersen.A direct coupling coherent quantum observer.IEEE Conference on Control Applications,Nice,France,2014:1960-1963.

    [34]I.R.Petersen.Time averaged consensus in a direct coupled distributed coherent quantum observer.Proceedings of the American Control Conference,Chicago:IEEE,2015:80-85.

    [35]I.R.Petersen.Time averaged consensus in a direct coupled coherent quantum observer network for a single qubit finite level quantum system.Proceedings of the 10th Asian Control Conference,Kota Kinabalu,Malaysia:IEEE,2015:DOI 10.1109/ASCC.2015.7244397.

    [36]I.R.Petersen.A direct coupling coherent quantum observer for a single qubit finite level quantum system.Proceedings of the 4th Australian Control Conference,Canberra,Australia:IEEE,2014:72-76.

    [37]I.R.Petersen,E.H.Huntington.A possible implementation of a direct coupling coherent quantum observer.Proceedings of the 5th Australian Control Conference,Gold Coast,Australia:IEEE,2015:105-107.

    [38]I.R.Petersen,E.H.Huntington.Implementation of a direct coupling coherent quantum observer including observer measurements.Proceedings of the American Control Conference,Boston:IEEE,2016:4765-4768.

    [39]I.R.Petersen,E.H.Huntington.A reduced order direct coupling coherent quantum observer for a complex quantum plant.Proceedings of the European Control Conference,Aalborg,Denmark:IEEE,2016:1430-1433.

    [40]I.R.Petersen,E.H.Huntington.Implementation of a distributed coherent quantum observer.arXiv,2017:arXiv:1702.06215[quant-ph].

    [41]J.Gough,M.R.James.The series product and its application to quantum feedforward and feedback networks.IEEE Transactions on Automatic Control,2009,54(11):2530-2544.

    14 February 2017;revised 8 May 2017;accepted 8 May 2017

    DOI 10.1007/s11768-017-7019-8

    E-mail:i.r.petersen@gmail.com.

    This work was supported by the Air Force Office of Scientific Research(AFOSR),under agreement number FA2386-16-1-4065.Some of the research presented in this paper was also supported by the Australian Research Council under grant FL110100020.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Ian R.PETERSENwas born in Victoria,Australia.He received a Ph.D in Electrical Engineering in 1984 from the University of Rochester.From 1983 to 1985 he was a Postdoctoral Fellow at the Australian National University.From 1985 until 2016 he was with UNSW Canberra where was most recently a Scientia Professor and an Australian Research Council Laureate Fellow in the School of Engineering and Information Technology.From 2017 he has been a Professor in the Research School of Engineering at the Australian National University.He has served as an Associate Editor for the IEEE Transactions on Automatic Control,Systems and Control Letters,Automatica,and SIAM Journal on Control and Optimization.Currently he is an Editor for Automatica and an Associate Editor for the IEEE Transactions on Control Systems Technology.He is a fellow of IFAC,the IEEE and the Australian Academy of Science.His main research interests are in robust control theory,quantum control theory and stochastic control theory.E-mail:i.r.petersen@gmail.com

    精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| 亚洲专区字幕在线| 自线自在国产av| 黄片小视频在线播放| 免费搜索国产男女视频| 两人在一起打扑克的视频| 日日夜夜操网爽| 熟女电影av网| 免费人成视频x8x8入口观看| 性欧美人与动物交配| 欧美最黄视频在线播放免费| 少妇粗大呻吟视频| 波多野结衣高清作品| 1024视频免费在线观看| 亚洲国产中文字幕在线视频| 久久久久免费精品人妻一区二区 | 极品教师在线免费播放| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 在线观看www视频免费| 国产精品久久久人人做人人爽| 大型av网站在线播放| 夜夜夜夜夜久久久久| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 老汉色av国产亚洲站长工具| 成人手机av| 法律面前人人平等表现在哪些方面| 老司机深夜福利视频在线观看| 999久久久国产精品视频| 88av欧美| 久久久久国内视频| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| 欧美激情极品国产一区二区三区| 国产真实乱freesex| 黄片播放在线免费| 成人特级黄色片久久久久久久| 久热这里只有精品99| 亚洲黑人精品在线| 成熟少妇高潮喷水视频| 老司机深夜福利视频在线观看| www.自偷自拍.com| 国产一区二区在线av高清观看| 最近最新中文字幕大全免费视频| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 日本 av在线| 99久久无色码亚洲精品果冻| svipshipincom国产片| 亚洲国产精品合色在线| 2021天堂中文幕一二区在线观 | 女性被躁到高潮视频| 无遮挡黄片免费观看| or卡值多少钱| 色综合欧美亚洲国产小说| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频 | 久久伊人香网站| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利18| 国产亚洲精品久久久久5区| 久久久精品国产亚洲av高清涩受| 黑人操中国人逼视频| 久久久久久九九精品二区国产 | 99在线视频只有这里精品首页| 久久午夜综合久久蜜桃| 国产黄片美女视频| 两个人免费观看高清视频| 亚洲精华国产精华精| 校园春色视频在线观看| www.精华液| 欧美日韩瑟瑟在线播放| 欧美在线黄色| 国产高清有码在线观看视频 | 观看免费一级毛片| 在线观看66精品国产| 午夜a级毛片| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 999精品在线视频| 国产av不卡久久| 亚洲一卡2卡3卡4卡5卡精品中文| 看免费av毛片| 人人妻人人澡欧美一区二区| 51午夜福利影视在线观看| 91麻豆av在线| 一级黄色大片毛片| 久久久久久久久久黄片| 后天国语完整版免费观看| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 听说在线观看完整版免费高清| 成人国语在线视频| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 午夜影院日韩av| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看| 日韩精品免费视频一区二区三区| 亚洲五月天丁香| 亚洲欧洲精品一区二区精品久久久| 午夜两性在线视频| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 丁香六月欧美| 在线观看一区二区三区| 丝袜人妻中文字幕| 国产精品一区二区免费欧美| 午夜影院日韩av| 大型av网站在线播放| 久久久久精品国产欧美久久久| 在线观看www视频免费| 哪里可以看免费的av片| 很黄的视频免费| 中文字幕久久专区| 日本五十路高清| 国产伦人伦偷精品视频| 午夜成年电影在线免费观看| 久久久久久九九精品二区国产 | 成人国语在线视频| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 国产真实乱freesex| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 亚洲国产精品999在线| 亚洲国产精品成人综合色| 级片在线观看| 亚洲真实伦在线观看| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 免费在线观看黄色视频的| 免费在线观看日本一区| 国产精品免费视频内射| 天堂√8在线中文| 十分钟在线观看高清视频www| 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 欧美乱色亚洲激情| 在线永久观看黄色视频| 国产极品粉嫩免费观看在线| 手机成人av网站| 在线免费观看的www视频| 麻豆成人午夜福利视频| 亚洲自偷自拍图片 自拍| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片 | 免费看a级黄色片| 69av精品久久久久久| 精品久久久久久久久久免费视频| 亚洲全国av大片| 欧美日韩乱码在线| 午夜久久久久精精品| 精品国产超薄肉色丝袜足j| 国产av不卡久久| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 欧美激情极品国产一区二区三区| 国产片内射在线| 18禁观看日本| 免费看十八禁软件| 色播在线永久视频| 男女下面进入的视频免费午夜 | 中文亚洲av片在线观看爽| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 欧美黄色片欧美黄色片| 国产日本99.免费观看| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 精品午夜福利视频在线观看一区| 亚洲专区中文字幕在线| 欧美zozozo另类| 精品一区二区三区av网在线观看| 亚洲自拍偷在线| 国产成人影院久久av| 午夜免费鲁丝| 美女大奶头视频| 91国产中文字幕| 欧美日本视频| 在线免费观看的www视频| 很黄的视频免费| 久久国产精品影院| 精品久久久久久久毛片微露脸| √禁漫天堂资源中文www| 免费在线观看影片大全网站| 亚洲精华国产精华精| 日韩大尺度精品在线看网址| 欧美在线黄色| 人人妻人人澡人人看| 婷婷亚洲欧美| 90打野战视频偷拍视频| 国产人伦9x9x在线观看| 亚洲真实伦在线观看| 俺也久久电影网| 91九色精品人成在线观看| 久久精品国产亚洲av香蕉五月| 国产精品美女特级片免费视频播放器 | 琪琪午夜伦伦电影理论片6080| 人妻久久中文字幕网| 国产一区二区三区视频了| 一本综合久久免费| 一进一出好大好爽视频| 国产真实乱freesex| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费| 国产成人影院久久av| 91九色精品人成在线观看| 18禁国产床啪视频网站| 欧美中文日本在线观看视频| 大型黄色视频在线免费观看| 一区二区三区精品91| 亚洲专区字幕在线| 国产午夜精品久久久久久| 老司机福利观看| 国产午夜福利久久久久久| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 亚洲美女黄片视频| 国产真实乱freesex| 白带黄色成豆腐渣| 亚洲无线在线观看| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 成年人黄色毛片网站| 搞女人的毛片| 国产一区二区三区在线臀色熟女| 啦啦啦韩国在线观看视频| 国产精品香港三级国产av潘金莲| 99热6这里只有精品| 国产视频一区二区在线看| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 99久久精品国产亚洲精品| 久久精品91蜜桃| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看 | 亚洲精品久久国产高清桃花| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 在线观看66精品国产| 欧美激情高清一区二区三区| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 国产精品野战在线观看| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 日本五十路高清| 成年人黄色毛片网站| 午夜激情av网站| 日韩视频一区二区在线观看| 国产激情偷乱视频一区二区| 88av欧美| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 少妇熟女aⅴ在线视频| 91成年电影在线观看| 国产人伦9x9x在线观看| 午夜a级毛片| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 国产色视频综合| 亚洲av五月六月丁香网| 91av网站免费观看| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 国产精品久久电影中文字幕| 丁香欧美五月| 在线av久久热| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 亚洲中文字幕日韩| 免费搜索国产男女视频| 一本综合久久免费| 久久香蕉国产精品| svipshipincom国产片| 91成人精品电影| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 欧美黑人巨大hd| 免费在线观看视频国产中文字幕亚洲| 亚洲人成77777在线视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲自拍偷在线| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 91大片在线观看| 免费看a级黄色片| 亚洲成人久久爱视频| 妹子高潮喷水视频| 桃红色精品国产亚洲av| 黄色成人免费大全| 色播亚洲综合网| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜美腿诱惑在线| 9191精品国产免费久久| av有码第一页| 免费一级毛片在线播放高清视频| 国产av不卡久久| xxx96com| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 少妇被粗大的猛进出69影院| 欧美国产日韩亚洲一区| 美女大奶头视频| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 中文字幕精品亚洲无线码一区 | 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 一级a爱视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 国产一卡二卡三卡精品| 级片在线观看| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 亚洲久久久国产精品| 两个人看的免费小视频| 1024香蕉在线观看| 法律面前人人平等表现在哪些方面| 久久狼人影院| 亚洲男人的天堂狠狠| 精华霜和精华液先用哪个| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 日韩欧美 国产精品| 真人一进一出gif抽搐免费| 久久香蕉精品热| 一本久久中文字幕| 国产午夜福利久久久久久| 黄片大片在线免费观看| 欧美三级亚洲精品| 后天国语完整版免费观看| 身体一侧抽搐| 国产极品粉嫩免费观看在线| 日本五十路高清| 亚洲成人久久爱视频| 日韩欧美 国产精品| 给我免费播放毛片高清在线观看| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| 成人特级黄色片久久久久久久| 一区二区三区精品91| 亚洲成人免费电影在线观看| 国产熟女午夜一区二区三区| 欧美亚洲日本最大视频资源| av福利片在线| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 午夜影院日韩av| 国产单亲对白刺激| 亚洲国产看品久久| 伦理电影免费视频| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av片天天在线观看| 亚洲av电影在线进入| 亚洲国产日韩欧美精品在线观看 | 777久久人妻少妇嫩草av网站| 在线十欧美十亚洲十日本专区| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 国产精品亚洲美女久久久| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看 | 久久午夜综合久久蜜桃| 十八禁网站免费在线| 看免费av毛片| 黑丝袜美女国产一区| 国产精品亚洲美女久久久| 51午夜福利影视在线观看| 女性被躁到高潮视频| 一级片免费观看大全| 一级a爱视频在线免费观看| a在线观看视频网站| 精品福利观看| 十八禁人妻一区二区| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 国产精品香港三级国产av潘金莲| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 亚洲av中文字字幕乱码综合 | 侵犯人妻中文字幕一二三四区| 俺也久久电影网| 999精品在线视频| 午夜老司机福利片| 亚洲国产毛片av蜜桃av| 久久伊人香网站| 亚洲第一青青草原| 99国产精品99久久久久| 国产精品av久久久久免费| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| 亚洲国产高清在线一区二区三 | 日本成人三级电影网站| 国产精华一区二区三区| 国产精品综合久久久久久久免费| 一进一出抽搐动态| 久久人人精品亚洲av| 久久草成人影院| 午夜a级毛片| 最新美女视频免费是黄的| 国产av不卡久久| 欧美日本视频| 夜夜爽天天搞| 在线观看www视频免费| 在线观看免费午夜福利视频| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合 | 麻豆成人av在线观看| 两性夫妻黄色片| 精品电影一区二区在线| www国产在线视频色| 婷婷六月久久综合丁香| 99精品在免费线老司机午夜| 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 十八禁人妻一区二区| 999久久久国产精品视频| 久99久视频精品免费| 12—13女人毛片做爰片一| 在线看三级毛片| 精品国产一区二区三区四区第35| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 白带黄色成豆腐渣| 国产欧美日韩一区二区精品| 色在线成人网| 国产av一区在线观看免费| 中文字幕人妻丝袜一区二区| 亚洲av成人一区二区三| 国产精品 国内视频| 亚洲精品在线美女| 日韩一卡2卡3卡4卡2021年| 日韩 欧美 亚洲 中文字幕| 最新美女视频免费是黄的| 美女高潮到喷水免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利视频1000在线观看| 亚洲 国产 在线| 欧美一级毛片孕妇| 久久久久久久久久黄片| 黑人操中国人逼视频| 啪啪无遮挡十八禁网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av美国av| 热re99久久国产66热| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 免费在线观看亚洲国产| 婷婷六月久久综合丁香| 国产激情偷乱视频一区二区| av视频在线观看入口| 亚洲国产高清在线一区二区三 | 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 亚洲第一青青草原| 欧美日本视频| 99riav亚洲国产免费| 一区二区三区高清视频在线| 色综合欧美亚洲国产小说| 99热只有精品国产| 国产精品亚洲美女久久久| 久久久久国内视频| 国产精品久久久久久亚洲av鲁大| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 久久久久久久精品吃奶| 悠悠久久av| 91麻豆av在线| 亚洲精品美女久久av网站| av电影中文网址| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 中出人妻视频一区二区| 国产精品二区激情视频| 搞女人的毛片| 久久九九热精品免费| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3 | 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 在线免费观看的www视频| 好看av亚洲va欧美ⅴa在| 丝袜人妻中文字幕| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 国产不卡一卡二| 国产亚洲欧美精品永久| 国产久久久一区二区三区| 午夜视频精品福利| 欧美日韩一级在线毛片| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| 女人被狂操c到高潮| 国产又色又爽无遮挡免费看| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 十八禁人妻一区二区| 国产爱豆传媒在线观看 | 99热6这里只有精品| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 欧美激情 高清一区二区三区| 国产成人av激情在线播放| 欧美激情极品国产一区二区三区| 91在线观看av| 国产高清有码在线观看视频 | 欧美日韩精品网址| 男人的好看免费观看在线视频 | 黄色女人牲交| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 日韩国内少妇激情av| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 日本撒尿小便嘘嘘汇集6| 国产精品香港三级国产av潘金莲| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 色老头精品视频在线观看| 视频在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产熟女午夜一区二区三区| 精品人妻1区二区| 99热这里只有精品一区 | 精品国产乱子伦一区二区三区| 国产欧美日韩一区二区三| 最新美女视频免费是黄的| 久久精品影院6| av电影中文网址| 亚洲精品中文字幕一二三四区| 国产精品乱码一区二三区的特点| 亚洲国产精品成人综合色| 欧美成人午夜精品| 国产精华一区二区三区| 亚洲国产欧美日韩在线播放| x7x7x7水蜜桃| 亚洲第一av免费看| 国产精品永久免费网站| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| 欧美精品啪啪一区二区三区| 日韩大码丰满熟妇| 麻豆久久精品国产亚洲av| 欧美色欧美亚洲另类二区| 波多野结衣av一区二区av| 亚洲精品国产一区二区精华液| 久久久久久久久久黄片| 99国产精品99久久久久| av视频在线观看入口| 午夜两性在线视频| 三级毛片av免费| 在线视频色国产色| 国产av一区在线观看免费| 天堂√8在线中文| 国产精品亚洲美女久久久| 亚洲精华国产精华精| 麻豆久久精品国产亚洲av| 老司机午夜十八禁免费视频| 国产不卡一卡二| 级片在线观看| 亚洲熟妇熟女久久| 不卡av一区二区三区| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站 | 国产蜜桃级精品一区二区三区| 精品高清国产在线一区|