• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feedback stabilization of N-dimensional stochastic quantum systems based on bang-bang control

    2017-12-21 09:47:05XiaqingSUNSenKUANGYananLIUJuanZHOUShuangCONG
    Control Theory and Technology 2017年3期

    Xiaqing SUN,Sen KUANG,Yanan LIU,Juan ZHOU,Shuang CONG

    Department of Automation,University of Science and Technology of China,Hefei Anhui 230027,China

    Feedback stabilization ofN-dimensional stochastic quantum systems based on bang-bang control

    Xiaqing SUN,Sen KUANG?,Yanan LIU,Juan ZHOU,Shuang CONG

    Department of Automation,University of Science and Technology of China,Hefei Anhui 230027,China

    For anN-dimensional quantum system under the influence of continuous measurement,this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator,respectively.In the switching control strategy,we divide the state space into two parts:a set containing a target state,and its complementary set.By analyzing the stability of the stochastic system model under consideration,we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state.Further,for the case of a non-degenerate measurement operator,we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory;while for the case of a degenerate measurement operator,the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians.The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved.The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.

    Quantum systems,feedback stabilization,bang-bang control,switching strategy

    1 Introduction

    Control theory has attained many successful applicationsin the fields ofatom physics,quantum information,quantum chemistry,quantum optics,and so on[1-3].Many classical control methods have been extended to the quantum domain,such as optimal control[4,5],Lyapunov control[6-8],sliding mode control[9,10],H∞control[11],measurement-based feedback con-trol[12-14]and fault-tolerant control[15].It is well known that feedback control may have stronger robustness and better control effect than open-loop control.In the quantum domain,quantum measurement may destroy the state of a system to be measured.It can also be used as an important approach to acquire the information on the controlled system.Actually,the quantum measurement itself can be regarded as a particular control means[16-18].

    Since the 1990s,measurement-based feedback control has been widely studied and applied to protect quantum entanglement[19],prepare specific quantum states[20],and so on.For the preparation of quantum states using quantum measurement theory,we usually consider the preparation of a specific eigenstate of a measurement operator.Handel etal.[21]designed a continuous control law based on numerical methods and achieved the feedback stabilization of a desired eigenstate of a non-degenerate measurement operator for spin systems.For high-dimensional systems,direct numerical methods usually lead to expensive computation cost.Mirrahimi and Handel[22]proposed a switching control law by dividing the state space into different sets to reduce the complexity of direct numerical computation,and at the same time achieve the feedback stabilization of an arbitrary eigenstate of the angular momentum operator ofN-dimensional angular momentum systems.Zhou and Kuang[23]proposed a doublechannel control scheme where the control law on one channel is kept as a constant and only the control law on the other channel is designed,and achieved the feedback stabilization preparation of any Bell state of a degenerate measurement operator for two-qubit quantum systems.Then,the scheme has been extended to generalN-qubit systems and used in the feedback stabilization preparation of GHZ entangled states[24].

    As an easily implemented control means for many quantum systems,bang-bang control has been utilized in the design of quantum control systems.For instance,via the parameterization of state vectors under complex hyperspherical coordinates,the authors in[25]designed the corresponding bang-bang control sequence which can achieve the desired state transfer.Kuang etal.[26,27]designed an open-loop approximate bang-bang control law based on Lyapunov methods and prepared an eigenstates of the internal Hamiltonians of a closed quantum system.In[28],for a trapped-ion oscillator,Alonso etal.achieved the preparation and manipulation of coherent states with up to 10000 quanta of energy by bang-bang control.For two-qubit and three-qubit systems,Vu etal.[29]designed switching control laws of bang-bang type and achieved the feedback preparation of Bell states for two-qubit systems and GHZ entangled states for three-qubit systems,respectively.In[30],for a non-degenerate measurement operator,Wei etal.designed a switching control law of bang-bang type and realized the feedback generation of symmetric multi-qubit Dicke states.Recently,a feedback control law based on switching between models was proposed to prepare the Bell states of two-qubit systems[31],which is equivalent to a bang-bang control law for a double-channel control model.

    This paper further considers the bang-bang control problem of stochastic quantum systems under the influence of measurement feedback.Compared to the existing literature,this paper first extends the bangbang control scheme to generalN-dimensional stochastic quantum systems.Secondly,for the bang-bang control strategy and the stability of the closed-loop system,this paper simultaneously considers the cases of a nondegenerate measurement operator and a degenerate measurement operator.Even for non-degenerate measurementoperators,the design ofthe bang-bang control strategy in this paper is also different from the methods in the existing references since the bang-bang control law in this paper is designed by analyzing the stability of the system with a constant Hamiltonian and using quantum continuous measurement theory,instead of being directly provided or designed via Lyapunov functions.Finally,we give the conditions that the control Hamiltonian satisfies for the global asymptotic stability of the closed-loop systems.

    The rest of this paper is organized as follows.In Section 2,we present the stochastic quantum system model under the influence of measurement feedback and describe the control task of this paper.Section 3 analyzes the stability of the system with a constant Hamiltonian;and gives the bang-bang control strategies under a non-degenerate measurement operator and a degenerate measurement operator,including the design of switching control laws and the construction of the control Hamiltonians.In Section 4,the stability of the closed-loop systems with a non-degenerate measurement operator and a degenerate measurement operator is strictly proved.In Section 5,we perform simulation experiments on an angular momentum system with a non-degenerate measurement operator and a two-qubit quantum system with a degenerate measurement op-erator to demonstrate the effectiveness of the control scheme proposed in this paper.Section 6 presents the conclusion.

    2 System models and problem description

    ConsideranN-dimensionalquantum system.Assume that when one performs proper quantum measurement(e.g.,homodyne measurement)on the observableA,the system dynamics can be described by the following filtering equation[19,32]:

    In this paper,we assume that the measurement operatorAis a real-valued diagonal matrix,i.e.,

    Under the action of control fields,the system HamiltonianHusually can be written as

    whereH0is the free Hamiltonian of the system;Hkcorresponds to the control Hamiltonian of the system;andukis a real-valued control field.

    The control task of this paper is to design the control lawukin(4)and give the conditions that the control HamiltonianHksatisfy in order to achieve the convergence of system(1)to a given eigenstate ρdof the measurement operatorA.When the measurement operatorAis non-degenerate,we only need to consider the case wherek=1 for the control task.While when the measurement operatorAis degenerate,two control channels(i.e.,k=2)are used.

    3 Switching control strategy

    In this section,we first analyze the stability of the system when the HamiltonianHin(1)is a constant matrix,and then give the switching control strategies for a non-degenerate measurement operator and a degenerate measurement operator.

    3.1 Stability of the system with constant Hamiltonian

    Denote the expectation of the system state as

    The dynamics of the average state of system(1)can be written as

    We analyze the stability of system(5)via the LaSalle’s invariance principle.We may define the following Lyapunov function:

    A direct calculation shows that the time derivative ofQ(ˉρt)is

    where?A?Frepresents the Frobenius norm of the matrixA.

    Thus,the LaSalle’s invariance principle implies that the state of system(5)will converge to the largest invariant setMcontained in the set

    The equilibrium point ρeof system(10)satisfies

    Thus,we have the following theorem:

    According to Theorem 1,it is difficult to write the general form ofH.However,when the measurement operatorAis non-degenerate,one always can obtain some concrete forms ofHby imposing some special constraints on the HamiltonianH.For instance,each of the following four conditions can guarantee that the condition in Theorem 1 holds:

    Example 1Consider a two-qubit system.Assume that the measurement operatorAin Theorem 1 is

    Then,[A,ρ]=0 implies that

    Thus,the system state in the invariant setMis of the form:

    Then,[H,ρ]=0 in Theorem 1 can be expanded as the following set of equations:

    According to(17),if we take

    Therefore,the constant HamiltonianHof the system can be constructed as

    3.2 Design of switching control law

    Due to the geometric symmetry of the state space,the eigenstates of the measurement operator which are antipodal with the target state often form the equilibrium points of the closed-loop system.In order to avoid the convergence of the system to its antipodal states,we may design the switching control laws.Let us define the following distance function

    and the sets:

    Fig.1 The division of the state space.

    In what follows,we design the switching control laws for the cases where the measurement operator is nondegenerate and degenerate,respectively.

    3.2.1 Switchingcontrollawunderanon-degenerate measurement operator

    When the measurement operatorAis nondegenerate,i.e.,

    we only use one controlchannel.In this case,the system Hamiltonian can be written as

    In fact,due to randomness,after the system state entersS?1-γ,it will exitS?1-γwith a certain probability.Fortunately,those system trajectories leavingS?1-γwill not be too far away from the boundaryS1-γsince the influence of randomness is relatively small.Therefore,we can define two new setsS?1-γ/2andS>1-γ/2as in[24],and give the following switching control law(also see[30]):

    1)If ρt∈S?1-γ,thenu1=0;

    2)If ρt∈S>1-γ/2,thenu1=1;

    3)For ρt∈S?1-γ/2∩S>1-γ,we further consider two specific situations:

    ?if ρtentersS?1-γ/2∩S>1-γfromS?1-γ,thenu1=0;

    ?if ρtentersS?1-γ/2∩S>1-γfromS>1-γ/2,thenu1=1.

    In this paper,we call the switching control law here under a non-degenerate measurement operator Bang-Bang Switching Control Law I.It should be noted that the switching of the control law depends on which set the current system state is in,and therefore depends on the distance between the system state and the target state.

    3.2.2 Switching control law under a degenerate measurement operator

    When the measurement operatorAis degenerate,we adopt two control channels.In this case,the system Hamiltonian can be written as

    For the system trajectories inS>1-γ,when we design the constant control lawsu1andu2such that the HamiltonianHin(21)satisfies the condition in Theorem 1,the system almost surely converges intoS?1-γ.For simplicity,we takeu1=1 andu2=0 in this case.

    Next,we derive the condition that the system trajectories inS?1-γconverge to the target state and give a switching control law under a degenerate measurement operator.For the system model(1),We consider the following Lyapunov function[31]:

    To calculate the infinitesimal generator LV(ρt)ofV(ρt)along the trajectory of system(1),we first calculate dTr(ρtρd)and have

    Let the target state ρdbe the eigenstate ofAassociated with the eigenvalue λd.Then,Tr(D[A]ρtρd)=0 holds.Assume that the HamiltonianHsatisfies

    then we have

    Thus,(23)becomes

    According to the Ito formula,we have

    Therefore,the infinitesimal generator LV(ρt)ofV(ρt)is

    where Tr(H[A]ρtρd)can be calculated as

    Substituting(28)into(27)gives

    From(29),LV(ρt)=0 means that

    Considering that the system trajectory is inS?1-γ,we have

    Therefore,Tr(Aρt)= λdholds.

    Equation(30)implies that

    Denote any state inSdas ρSd,then

    Equation(31)implies that

    Thus,the system filter(1)can be simplified as

    For the system state to converge to the target state,system(32)must have the only equilibrium ρd.That is to say,in the set of all ρ which satisfyAρ = λdρ,if the equation

    has the only solution ρ = ρd,then system(1)almost surely converges to the target state.Note that when this condition holds,(24)naturally holds.

    Equation(33)gives a condition that the Hamiltonian satisfies when the system trajectories inS?1-γconverge to the target state.For simplicity in the design of the control law,we takeu1=0 andu2=1 in this case.

    Thus,similar to the case of a non-degenerate measurement operator,we can give the following switching control strategy to achieve convergence of the system with a degenerate measurement operator to the target state:

    We also call the switching control law here under a degenerate measurementoperatorBang-Bang Switching Control Law II.

    4 Stability of closed-loop switching systems

    In this section,we present the stability results for the whole closed-loop switching systems with a nondegenerate measurement operator and a degenerate measurement operator,respectively.

    4.1 Stability under non-degenerate measurement operator

    Theorem 2Consider theN-dimensional stochastic quantum system in(1)with the measurement operatorAbeing a non-degenerate diagonal matrix.Assume that the target state ρdis an eigenstate ofAand the HamiltonianH=H0+H1(u1=1)in(20)satisfies one of conditions(12)-(15).Then,with the Bang-Bang Switching Control Law I in Section 3.2.1,the whole closedloop switching system converges to the target state ρdin probability.

    The proof includes the following three steps.

    Step 1When ρt∈S>1-γ/2or ρtenters ρt∈S?1-γ/2∩S>1-γ,the control lawu1=1 makes the system state almost surely enterS?1-γin a finite time.

    Step 2When ρt∈S?1-γ,the control lawu1=0 guarantees that the system state stays inS?1-γ/2with probability one.

    Step 3For the system states staying inS?1-γ/2,with the control lawu1=0,the system converges to the target eigenstate in probability.

    ProofWe first present the proof of Step 1.

    Since the system state ρtis a continuous function of timetwhile the distance function

    is continuous with respect to the state ρt,we have

    then ε>0.Equation(34)means that there exists a finite timeT>0 such that

    holds fort?T.

    According to(35),we have

    Equation(36)implies thatthe conclusion in Step 1 holds.

    Now we turn to the proof of Step 2.

    We firstly calculate the infinitesimal generator of the distance functionV(ρt)in(18).It follows from(18)that

    Since ρdis an eigenstate ofA,

    hold.Further,considering the fact that the control law isu1=0 when ρtis inS?1-γ,we can write(37)as

    In this paper,AandH0are both diagonal matrices.Therefore,ρdis also an eigenstate ofH0,i.e.,[ρd,H0]=0.Substituting[ρd,H0]=0 into(38),we know that the infinitesimal generator ofV(ρt)satisfies

    Thus,based on the estimate

    from stochastic stability theory[33],we take α =1-γ/2 and have

    Equation(40)shows that the probability that the system state entersS?1-γand eventually leaves fromS?1-γ/2is less than 1.That is,the system state will stays inS?1-γ/2with a probability greater than 1-Pafter it entersS?1-γ.Denote this probability asP1.Then,the probability that the system state leaves fromS?1-γ/2isP2=1-P1<1.

    Now,we show that the system state will not keep shuttling betweenS?1-γ/2andS>1-γ/2forever.Let the number that the system state returns toS>1-γ/2fromS?1-γ/2bemand denote the probability that this event occurs as P(m),then we have

    Now,the proof of Step 3 is presented as follows.

    For the system trajectories staying inS?1-γ/2,the control law isu1=0.According to quantum continuous measurement theory,the system state will converge to an eigenstate ofA.Since the measurement operatorAis non-degenerate in this paper,theNdifferent eigenstates ofAare mutually orthogonal.This means that for any eigenstate ρgthat is different from the target state ρd,V(ρg)=1 always holds,i.e.,ρg∈S?1-γ/2.In other words,ρdis the only eigenstate ofAwhich is contained inS?1-γ/2.Quantum continuous measurement theory states that the system state will eventually converge to an eigenstate of the measured physical quantity when the control law is zero.On the other hand,with the designed switching control law,the system state will stays inS?1-γ/2almost surely.Therefore,the system state will converge to the target state ρdin probability. ?

    4.2 Stability under degenerate measurement operator

    The proof of this theorem still includes three steps as follows:

    Step 1When ρt∈S>1-γ/2or ρtenters ρt∈S?1-γ/2∩S>1-γ,the control lawu1=1,u2=0 makes the system state almost surely enterS?1-γin a finite time.

    Step 2When ρt∈S?1-γ,the control lawu1=0,u2=1 guarantees that the system state stays inS?1-γ/2with probability one.

    Step 3For the system states staying inS?1-γ/2,with the control lawu1=0,u2=1,the system converges to the target eigenstate in probability.

    The concrete proof process is similar to the case where the measurementoperatoris non-degenerate.For brevity,we omit it here.

    5 Numerical examples

    In this section,we perform simulation experiments on an angular momentum system with a non-degenerate measurement operator and on a two-qubit system with a degenerate measurement operator,respectively.

    5.1 An angular momentum spin system

    We consider a 17-dimensional(17=2J+1)angular momentum spin system with the absolute value of the momentumJ=8.When one observes the angular momentum on theZdirection and applies the magnetic field along theYdirection,the corresponding measurement operator and control Hamiltonian can be obtained as[25,34]

    We assume the initial state ρ0is and the target state ρdis the last eigenstate of the measurement operator,i.e.,

    In simulations,we take Γ =1 and η =1.Using the Bang-Bang Switching Control Law I in Section 3.2.1,we perform three simulation experiments under the same conditions.The simulation results are shown in Figs.2 and 3.

    Fig.2 The evolution curves of the distances between the system states and the target state under three sample paths with the same initial state ρ0.

    Fig.3 The evolution curves of the control laws associated with the three sample paths,where(a),(b),and(c)correspond to the sample paths 1,2,and 3,respectively.

    It can be seen from Fig.2 that the system states under the three sample paths eventually converge to the target state.Fig.3 shows that the switching control law corresponding to each sample path only takes 1 and 0,i.e.,so-called bang-bang control.This is consistent with the theoretical results above.

    5.2 A two-qubit system

    Now,we consider the two-qubit system in Example 1 where the measurement operator is

    Assume that the free Hamiltonian is

    The target state is given as

    We choose the control Hamiltonians as(also see[29]):

    It can be verified that the conditions in Theorem 3 are satisfied.Now,we give an initial state as

    We use the Bang-Bang Switching Control Law II in Section 3.2.2 to perform simulation experiments,and the corresponding simulation resultsare shown in Fig.4.It can be seen from Fig.4 that system state eventually converges to the target state and the switching control lawsu1andu2also only take 1 and 0,which is the so-called bang-bang property.

    6 Conclusions

    For anN-dimensional stochastic quantum system with a non-degenerate or degenerate measurement operator,this paper proposed a switching control law based on the state space division and realized the stabilizing preparation of any eigenstate of the measurement operator.We also gave the conditions on the system Hamiltonian in order to ensure the system stability and proved the stability of the closed-loop system via stochastic stability theory.It should be pointed out that the switching control laws of bang-bang type are not unique for the case of a degenerate measurement operator.For special systems,it is necessary to choose the bang-bang control laws that are more easily realized in physics.

    Fig.4 The simulation results under the initial state ρ0,where(a)indicates the distance between the system state and the target state,(b)and(c)are the evolution curves of control laws u1 and u2,respectively.

    Acknowledgements

    We thank Dr.Daoyi Dong for helpful discussion.

    [1]D.Dong,I.R.Petersen.Quantum control theory and applications:A survey.IET ControlTheory and Applications,2010,4(12):2651-2671.

    [2]H.M.Wiseman,G.J.Milburn.Quantum Measurement and Control.Cambridge:Cambridge University Press,2009.

    [3]D.D’Alessandro.IntroductiontoQuantumControl and Dynamics.Boca Raton:Taylor and Francis Group,2007.

    [4]D.Stefanatos.Optimal shortcuts to adiabaticity for a quantum piston.Automatica,2013,49(10):3079-3083.

    [5]Q.M.Chen,R.B.Wu,T.M.Zhang,etal.Near-time-optimal control for quantum systems.Physical Review A,2015,92(6):DOI 10.1103/PhysRevA.92.063415.

    [6]S.Zhao,H.Lin,Z.Xue.Switching control of closed quantum systems via the Lyapunov method.Automatica,2012,48(8):1833-1838.

    [7]S.Kuang,S.Cong.Lyapunov control methods of closed quantum systems.Automatica,2008,44(1):98-108.

    [8]X.Wang,S.G.Schirmer.Analysis ofLyapunov method forcontrol of quantum states.IEEE Transactions on Automatic Control,2010,55(10):2259-2270.

    [9]D.Dong,I.R.Petersen.Sliding mode control of two-level quantum systems.Automatica,2012,48(5):725-735.

    [10]D.Dong,I.R.Petersen.Notes on sliding mode control of twolevel quantum systems.Automatica,2012,48(12):3089-3097.

    [11]M.R.James,H.I.Nurdin,I.R.Petersen.H∞control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2008,53(8):1787-1803.

    [12]J.Zhang,Y.X.Liu,R.B.Wu,etal.Quantum feedback:theory,experiments,and applications.Physics Reports,2017,679:1-60.

    [13]B.Qi,H.Pan,L.Guo.Further results on stabilizing control of quantum systems.IEEE Transactions on Automatic Control,2013,58(5):1349-1354.

    [14]W.Cui,F.Nori.Feedback control of Rabi oscillations in circuit QED.Physical Review A,2013,88(6):DOI 10.1103/PhysRevA.88.063823.

    [15]S.Wang,D.Dong.Fault-tolerant control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2017,62(6):2929-2935.

    [16]J.Gong,S.A.Rice.Measurement-assisted coherent control.The Journal of Chemical Physics,2004,120(21):9984-9988.

    [17]D.Dong,J.Lam,T.J.Tarn.Rapid incoherent control of quantum systems based on continuous measurements and reference model.IET Control Theory and Applications,2009,3(2):161-169.

    [18]D.Dong,I.R.Petersen,H.Rabitz.Sampled-data design forrobust control of a single qubit.IEEE Transactions on Automatic Control,2013,58(10):2654-2659.

    [19]J.Zhang,R.B.Wu,C.W.Li,etal.Protecting coherence and entanglement by quantum feedback controls.IEEE Transactions on Automatic Control,2010,55(3):619-633.

    [20]S.S.Ge,T.L.Vu,C.C.Hang.Non-smooth Lyapunov functionbased global stabilization for quantum filter.Automatica,2012,48(6):1031-1044.

    [21]R.V.Handel,J.K.Stockton,H.Mabuchi.Feedback control of quantum state reduction.IEEE Transactions on Automatic Control,2005,50(6):768-780.

    [22]M.Mirrahimi,R.V.Handel.Stabilizing feedback controls for quantum systems.SIAM Journal on Control and Optimization,2007,46(2):445-467.

    [23]J.Zhou,S.Kuang.Feedback preparation of maximally entangled states of two-qubit systems.IET Control Theory and Applications,2016,10(3):339-345.

    [24]Y.Liu,S.Kuang,S.Cong.Lyapunov-based feedback preparation of GHZ entanglement ofN-qubit systems.IEEE Transactions on Cybernetics:DOI 10.1109/TCYB.2016.2584698(in press).

    [25]W.Zhou,S.G.Schirmer,M.Zhang,etal.Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimaltime-energy control.JournalofPhysics A:Mathematical and Theoretical,2011,44(10):DOI 10.1088/1751-8113/44/10/105303.

    [26]S.Kuang,D.Dong,I.R.Petersen.Approximate bang-bang Lyapunov controlforclosed quantum systems.Proceedings ofthe Australian Control Conference,Canberra,Australia:IEEE,2014:130-135.

    [27]S.Kuang,D.Dong,I.R.Petersen.Rapid Lyapunov control of finite-dimensional quantum systems.Automatica,2017,81:164-175.

    [28]J.Alonso,F.M.Leupold,Z.U.Sol`er,etal.Generation of large coherent states by bang-bang control of a trapped-ion oscillator.Nature Communications,2016,7:DOI 10.1038/ncomms11243.

    [29]T.L.Vu,S.S.Ge,C.C.Hang.Real-time deterministic generation of maximally entangled two-qubit and three-qubit states via bang-bang control.Physical Review A,2012,85(1):DOI 10.1103/PhysRevA.85.012332.

    [30]J.H.Wei,B.Qi,H.Y.Dai,etal.Deterministic generation of symmetric multi-qubit Dicke states:An application of quantum feedback control.IET Control Theory and Applications,2015,9(17):2500-2505.

    [31]J.Zhou,S.Kuang,S.Cong.Bell state preparation based on switching between quantum system models.Journal of Systems Science and Complexity,2017,30(2):347-356.

    [32]K.Jacobs,D.A.Steck.A straightforward introduction to continuousquantum measurement.Contemporary Physics,2006,47(5):279-303.

    [33]H.J.Kushner.Stability of Stochastic Dynamical Systems.Berlin:Springer,1972.

    [34]K.Tsumura.Global stabilization ofN-dimensional quantum spin systems via continuous feedback.Proceedings of the American Control Conference,New York:IEEE,2007:2129-2134.

    3 May 2017;revised 17 June 2017;accepted 17 June 2017

    DOI 10.1007/s11768-017-7061-6

    ?Corresponding author.

    E-mail:skuang@ustc.edu.cn.

    This paper is dedicated to Professor Ian R.Petersen on the occasion of his 60th birthday.This work was supported by the Anhui Provincial Natural Science Foundation(No.1708085MF144)and the National Natural Science Foundation of China(No.61573330).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Xiaqing SUNreceived a B.Sc.degree in Automation from the Anhui University in 2015.She is currently pursuing a M.Sc.degree with the Department of Automation,University of Science and Technology of China.Her current research interest focuses on quantum feedback control.E-mail:sxqing@mail.ustc.edu.cn.

    Sen KUANGreceived a Ph.D.degree in Control Theory and Control Engineering from the University of Science and Technology of China(USTC)in 2007.From 2007 to 2010,he was a post-doctoral fellow with the School ofInformation Science and Technology,USTC.He visited the University of Hong Kong in 2010 and 2015,respectively.From 2014 to 2015,he was a visiting scholar at the University of New South Wales,Canberra,Australia.Currently,he is an associate professor in the Department of Automation,University of Science and Technology of China.His research interests include quantum information and control,quantum machine learning and its applications,and intelligent control.E-mail:skuang@ustc.edu.cn.

    Yanan LIUreceived a B.Sc.degree in Measurement&Control Technology and Instrumentation from the Anhui University,Anhui,China,in 2014.She is currently pursuing a M.Sc.degree with the Department of Automation,University of Science and Technology of China.Her current research interests include quantum feedback control and stability analysis.E-mail:liuyn@mail.ustc.edu.cn.

    Juan ZHOUreceived a B.Sc.degree in Automation from the Anhui University in 2013,and a M.Sc.degree in Control Theory and Control Engineering from the University of Science and Technology of China in 2016.Her research interests include quantum feedback control and stability analysis.Email:sa130100@mail.ustc.edu.cn.

    Shuang CONGreceived a B.Sc.degree from the Beijing University of Aeronautics and Astronautics,Beijing,China,in 1982,and a Ph.D.degree in System Engineering from the University of Rome“La Sapienza,"Rome,Italy,in 1995.She is currently a Professor with the Department of Automation,University of Science and Technology of China,Hefei,China.Her current research interests include advanced control strategies for motion control,fuzzy logic control,neural networks design and applications,robotic coordination control,and quantum systems control.Email:scong@ustc.edu.cn.

    18+在线观看网站| 动漫黄色视频在线观看| 日韩精品中文字幕看吧| 成年版毛片免费区| 欧美日韩综合久久久久久 | 亚洲狠狠婷婷综合久久图片| 麻豆成人av在线观看| 99久久九九国产精品国产免费| 国产精品国产高清国产av| 国内精品一区二区在线观看| av福利片在线观看| 永久网站在线| 成人特级黄色片久久久久久久| 国产一级毛片七仙女欲春2| h日本视频在线播放| 人妻夜夜爽99麻豆av| 亚洲专区中文字幕在线| 午夜影院日韩av| 日韩欧美精品v在线| 少妇人妻一区二区三区视频| 在线观看一区二区三区| 丰满的人妻完整版| 高清毛片免费观看视频网站| 淫妇啪啪啪对白视频| 欧美日韩综合久久久久久 | 久久久久久久久久黄片| 亚洲av免费高清在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 变态另类丝袜制服| 日韩 亚洲 欧美在线| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 国产高清视频在线观看网站| 可以在线观看的亚洲视频| 中文字幕久久专区| 国产单亲对白刺激| 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 88av欧美| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址| 日本免费一区二区三区高清不卡| 舔av片在线| 精品无人区乱码1区二区| 成人精品一区二区免费| 色在线成人网| 日韩av在线大香蕉| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| 国产国拍精品亚洲av在线观看| 欧美乱妇无乱码| 亚洲在线自拍视频| 国产老妇女一区| 91av网一区二区| 国产高清视频在线观看网站| 岛国在线免费视频观看| 桃红色精品国产亚洲av| 欧美黄色淫秽网站| 亚洲欧美激情综合另类| 男人舔女人下体高潮全视频| 露出奶头的视频| a在线观看视频网站| 免费在线观看亚洲国产| 亚洲在线观看片| 黄色配什么色好看| 久久精品人妻少妇| 在线观看一区二区三区| 亚洲自偷自拍三级| 亚洲av第一区精品v没综合| 国产成人aa在线观看| 老女人水多毛片| 国产欧美日韩精品一区二区| 国产极品精品免费视频能看的| 国产伦精品一区二区三区视频9| 亚洲内射少妇av| 岛国在线免费视频观看| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 女人被狂操c到高潮| 9191精品国产免费久久| 一区二区三区激情视频| 久久精品夜夜夜夜夜久久蜜豆| 最近中文字幕高清免费大全6 | 黄色视频,在线免费观看| 国产人妻一区二区三区在| 精品久久久久久久久久久久久| 天天一区二区日本电影三级| 亚洲一区二区三区色噜噜| 亚洲成人中文字幕在线播放| АⅤ资源中文在线天堂| 一区二区三区四区激情视频 | 日日夜夜操网爽| 亚洲午夜理论影院| 国产老妇女一区| 久久国产乱子免费精品| 亚洲国产精品999在线| 亚洲激情在线av| 亚洲无线在线观看| 一个人观看的视频www高清免费观看| 欧美色视频一区免费| 国产精品久久久久久久久免 | 成人国产综合亚洲| 不卡一级毛片| 免费av毛片视频| 搡老妇女老女人老熟妇| 99精品久久久久人妻精品| 亚洲第一电影网av| 精品久久久久久久久久免费视频| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 床上黄色一级片| 亚洲精品久久国产高清桃花| 欧美极品一区二区三区四区| 99久久99久久久精品蜜桃| 亚洲中文字幕一区二区三区有码在线看| 丁香欧美五月| 国产精品日韩av在线免费观看| 国产成人影院久久av| 精品午夜福利视频在线观看一区| 久久久久久久久中文| 我的老师免费观看完整版| 国产蜜桃级精品一区二区三区| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 成人美女网站在线观看视频| 国产精品国产高清国产av| 国产av在哪里看| 成年女人永久免费观看视频| 给我免费播放毛片高清在线观看| 午夜福利成人在线免费观看| 一本综合久久免费| 日韩人妻高清精品专区| 亚洲18禁久久av| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久人妻精品电影| 简卡轻食公司| 亚洲在线自拍视频| 久久国产精品影院| 亚洲精品成人久久久久久| 国产精品爽爽va在线观看网站| 久久6这里有精品| 一进一出抽搐动态| www.熟女人妻精品国产| 熟妇人妻久久中文字幕3abv| 91午夜精品亚洲一区二区三区 | 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华精| 欧美色欧美亚洲另类二区| 国产精品野战在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精华国产精华精| 又爽又黄无遮挡网站| 十八禁国产超污无遮挡网站| 成人高潮视频无遮挡免费网站| 国产野战对白在线观看| 十八禁网站免费在线| 亚洲七黄色美女视频| 99热这里只有是精品在线观看 | 亚洲国产欧美人成| 日韩亚洲欧美综合| 久久精品国产99精品国产亚洲性色| 亚洲中文日韩欧美视频| 日韩免费av在线播放| 我的女老师完整版在线观看| 毛片女人毛片| 亚洲精品456在线播放app | 欧美最新免费一区二区三区 | 久久九九热精品免费| 日韩欧美在线二视频| 成人高潮视频无遮挡免费网站| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 亚洲男人的天堂狠狠| 国产乱人伦免费视频| 五月伊人婷婷丁香| а√天堂www在线а√下载| 性欧美人与动物交配| 99精品在免费线老司机午夜| 一区二区三区激情视频| www.色视频.com| 女人十人毛片免费观看3o分钟| 中文字幕精品亚洲无线码一区| 久久人妻av系列| 欧美日韩瑟瑟在线播放| av天堂在线播放| 国内揄拍国产精品人妻在线| 日韩欧美免费精品| 日韩 亚洲 欧美在线| 国产av麻豆久久久久久久| 国产午夜福利久久久久久| 日韩欧美一区二区三区在线观看| 国产一区二区在线av高清观看| 青草久久国产| 免费黄网站久久成人精品 | 国产精品爽爽va在线观看网站| a在线观看视频网站| 久久人妻av系列| 特级一级黄色大片| 国产av麻豆久久久久久久| 又紧又爽又黄一区二区| 国产高清激情床上av| 丰满乱子伦码专区| 真人一进一出gif抽搐免费| 精品一区二区三区av网在线观看| 看十八女毛片水多多多| 一区二区三区高清视频在线| 亚洲综合色惰| 亚洲av第一区精品v没综合| 国产精品亚洲av一区麻豆| 亚洲,欧美,日韩| 2021天堂中文幕一二区在线观| 亚洲av成人av| 久久久久九九精品影院| 99热这里只有精品一区| 欧美日韩瑟瑟在线播放| 深夜a级毛片| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 久久精品国产亚洲av天美| 欧美+亚洲+日韩+国产| 中国美女看黄片| 在线观看舔阴道视频| 久久精品国产清高在天天线| 性欧美人与动物交配| 永久网站在线| 欧美成人一区二区免费高清观看| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 日本在线视频免费播放| 中文字幕人成人乱码亚洲影| aaaaa片日本免费| 国产精品亚洲一级av第二区| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 黄片小视频在线播放| 老司机午夜福利在线观看视频| 两个人的视频大全免费| 一本久久中文字幕| 亚洲经典国产精华液单 | 久久人妻av系列| 久久国产乱子免费精品| 99久久精品国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看| АⅤ资源中文在线天堂| 亚洲国产精品成人综合色| 亚洲国产欧美人成| 精品无人区乱码1区二区| 午夜日韩欧美国产| 村上凉子中文字幕在线| 丰满人妻一区二区三区视频av| 亚洲国产精品成人综合色| 亚洲avbb在线观看| 国产免费男女视频| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 国产真实乱freesex| 国产 一区 欧美 日韩| 身体一侧抽搐| 免费电影在线观看免费观看| 久久九九热精品免费| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 香蕉av资源在线| 97超级碰碰碰精品色视频在线观看| 午夜福利在线观看免费完整高清在 | www.色视频.com| 久久久国产成人精品二区| 国产高潮美女av| 成人无遮挡网站| 午夜视频国产福利| 亚洲,欧美精品.| 亚洲avbb在线观看| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| av专区在线播放| 色综合亚洲欧美另类图片| 久久精品国产99精品国产亚洲性色| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 午夜两性在线视频| 99riav亚洲国产免费| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 精品午夜福利视频在线观看一区| 亚洲乱码一区二区免费版| 国产欧美日韩一区二区精品| 一个人看视频在线观看www免费| 色综合站精品国产| 九色国产91popny在线| 亚洲精品在线观看二区| 很黄的视频免费| 人妻夜夜爽99麻豆av| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 午夜免费男女啪啪视频观看 | av欧美777| 性欧美人与动物交配| 国产精品影院久久| 99热6这里只有精品| 身体一侧抽搐| 久久久国产成人免费| 国产精品久久久久久久电影| 俺也久久电影网| 激情在线观看视频在线高清| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 欧美日韩乱码在线| 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 亚洲熟妇中文字幕五十中出| 亚洲av成人精品一区久久| 日韩欧美一区二区三区在线观看| 高清在线国产一区| 丰满的人妻完整版| 高清在线国产一区| 搡女人真爽免费视频火全软件 | 一夜夜www| 日日摸夜夜添夜夜添av毛片 | 三级毛片av免费| 在线天堂最新版资源| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人中文| 国产高清有码在线观看视频| 国产毛片a区久久久久| 69人妻影院| 色5月婷婷丁香| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 欧美精品国产亚洲| 免费在线观看日本一区| 国产成人福利小说| 中文字幕av在线有码专区| 亚洲内射少妇av| 啦啦啦观看免费观看视频高清| 美女高潮喷水抽搐中文字幕| 男女那种视频在线观看| 久久久久久久久大av| www.熟女人妻精品国产| 丰满人妻一区二区三区视频av| 黄色丝袜av网址大全| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 91av网一区二区| 男人狂女人下面高潮的视频| 一级a爱片免费观看的视频| 亚洲精品456在线播放app | 一夜夜www| 熟妇人妻久久中文字幕3abv| av视频在线观看入口| 日本熟妇午夜| 毛片一级片免费看久久久久 | 国产高潮美女av| 一级作爱视频免费观看| 男人舔奶头视频| 精品无人区乱码1区二区| 国产三级中文精品| 亚洲成a人片在线一区二区| 欧美又色又爽又黄视频| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 91麻豆av在线| 亚洲片人在线观看| 乱码一卡2卡4卡精品| 免费电影在线观看免费观看| 怎么达到女性高潮| 亚洲国产欧美人成| 国产熟女xx| 免费观看人在逋| 国产免费男女视频| 男女视频在线观看网站免费| 在线天堂最新版资源| 国产亚洲精品久久久com| 色哟哟哟哟哟哟| 一本一本综合久久| 大型黄色视频在线免费观看| 国产亚洲欧美98| 日韩成人在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 成人无遮挡网站| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 99久久久亚洲精品蜜臀av| 可以在线观看的亚洲视频| 亚洲 国产 在线| 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 亚洲精品456在线播放app | 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 我的老师免费观看完整版| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 国产中年淑女户外野战色| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| av国产免费在线观看| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 亚洲成人免费电影在线观看| 久99久视频精品免费| 午夜免费成人在线视频| 亚洲av电影不卡..在线观看| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| a级毛片免费高清观看在线播放| 好看av亚洲va欧美ⅴa在| 狠狠狠狠99中文字幕| 亚洲av二区三区四区| 桃红色精品国产亚洲av| ponron亚洲| 免费在线观看亚洲国产| 男人舔女人下体高潮全视频| 又黄又爽又刺激的免费视频.| 免费高清视频大片| 搡老熟女国产l中国老女人| 最近中文字幕高清免费大全6 | 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 国产欧美日韩一区二区三| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 亚洲精华国产精华精| 午夜福利在线观看免费完整高清在 | 国产白丝娇喘喷水9色精品| www.www免费av| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va | 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 久久6这里有精品| 中文亚洲av片在线观看爽| 能在线免费观看的黄片| 精品人妻视频免费看| 免费黄网站久久成人精品 | 一本综合久久免费| 国产黄片美女视频| 中文字幕熟女人妻在线| 伦理电影大哥的女人| 桃红色精品国产亚洲av| 国产三级中文精品| 亚洲avbb在线观看| 欧美精品国产亚洲| 欧美乱色亚洲激情| 十八禁人妻一区二区| 老熟妇仑乱视频hdxx| 少妇人妻精品综合一区二区 | 能在线免费观看的黄片| 美女免费视频网站| 国产大屁股一区二区在线视频| 色哟哟·www| 国产伦在线观看视频一区| 精品久久久久久久末码| 久久热精品热| 成人亚洲精品av一区二区| 久久久久久久久久黄片| netflix在线观看网站| 久久久久久久精品吃奶| 亚洲一区二区三区色噜噜| 97超级碰碰碰精品色视频在线观看| 久久精品久久久久久噜噜老黄 | 三级国产精品欧美在线观看| 国产69精品久久久久777片| 久久这里只有精品中国| 美女被艹到高潮喷水动态| 一个人免费在线观看电影| 小说图片视频综合网站| 美女 人体艺术 gogo| 久久精品久久久久久噜噜老黄 | 国内少妇人妻偷人精品xxx网站| 成年免费大片在线观看| 国产蜜桃级精品一区二区三区| 成人欧美大片| 欧美激情在线99| 国产一区二区三区视频了| 国产视频内射| 一进一出好大好爽视频| 少妇的逼水好多| 岛国在线免费视频观看| 身体一侧抽搐| 99久国产av精品| 99热只有精品国产| 国产熟女xx| 日韩高清综合在线| 国产精品影院久久| 精品久久久久久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 成人特级黄色片久久久久久久| 狂野欧美白嫩少妇大欣赏| 少妇丰满av| 亚洲三级黄色毛片| 久久6这里有精品| 国产免费一级a男人的天堂| x7x7x7水蜜桃| 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区四那| 一区二区三区四区激情视频 | 蜜桃亚洲精品一区二区三区| 亚洲自偷自拍三级| 免费看光身美女| 男人和女人高潮做爰伦理| 日韩欧美精品v在线| 国产色爽女视频免费观看| 99国产综合亚洲精品| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 欧美午夜高清在线| 99久久99久久久精品蜜桃| 午夜福利在线观看吧| 日韩欧美国产一区二区入口| 精品人妻一区二区三区麻豆 | 亚洲人成电影免费在线| 国产一区二区三区视频了| 国产精品伦人一区二区| 欧美在线黄色| 免费人成在线观看视频色| 女人十人毛片免费观看3o分钟| 悠悠久久av| 亚洲av电影不卡..在线观看| 高清日韩中文字幕在线| 一本综合久久免费| 一本一本综合久久| 中文字幕人成人乱码亚洲影| 99精品在免费线老司机午夜| 啪啪无遮挡十八禁网站| 此物有八面人人有两片| 中文字幕人妻熟人妻熟丝袜美| 乱人视频在线观看| 精品国产亚洲在线| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品亚洲av| 国产精品国产高清国产av| 可以在线观看的亚洲视频| 久久精品国产亚洲av香蕉五月| 色综合婷婷激情| 无人区码免费观看不卡| 国产免费av片在线观看野外av| 中文字幕av在线有码专区| 97热精品久久久久久| 国产三级在线视频| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 午夜福利高清视频| 亚洲不卡免费看| 色综合站精品国产| 国产精品亚洲一级av第二区| 又爽又黄无遮挡网站| 99在线人妻在线中文字幕| 成人国产综合亚洲| 国产美女午夜福利| 99久久精品热视频| 一本综合久久免费| 精品一区二区三区视频在线| 国产高清激情床上av| 91在线观看av| 给我免费播放毛片高清在线观看| 中文字幕人成人乱码亚洲影| 中文字幕高清在线视频| 亚洲欧美清纯卡通| 91av网一区二区| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 色播亚洲综合网| 国产三级中文精品| av在线老鸭窝| 欧美zozozo另类| 波多野结衣高清无吗| 乱码一卡2卡4卡精品| 69人妻影院| 国产三级中文精品| 亚洲人成网站高清观看| 亚洲国产精品成人综合色| 人人妻,人人澡人人爽秒播| 国产成人a区在线观看| 丝袜美腿在线中文| av在线观看视频网站免费| 直男gayav资源| 少妇裸体淫交视频免费看高清| 一进一出抽搐gif免费好疼| 婷婷丁香在线五月| 90打野战视频偷拍视频| 999久久久精品免费观看国产| 免费黄网站久久成人精品 | 老熟妇乱子伦视频在线观看| 在线看三级毛片| 久久人人爽人人爽人人片va | а√天堂www在线а√下载| 欧美+亚洲+日韩+国产| 日本一本二区三区精品| 99国产精品一区二区蜜桃av| av中文乱码字幕在线| 99热精品在线国产| 日韩高清综合在线|