• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A phase-space formulation and Gaussian approximation of the filtering equations for nonlinear quantum stochastic systems

    2017-12-21 09:46:55IgorVLADIMIROV
    Control Theory and Technology 2017年3期

    Igor G.VLADIMIROV

    College of Engineering and Computer Science,Australian National University,Canberra,ACT 2601,Australia

    A phase-space formulation and Gaussian approximation of the filtering equations for nonlinear quantum stochastic systems

    Igor G.VLADIMIROV

    College of Engineering and Computer Science,Australian National University,Canberra,ACT 2601,Australia

    This paper is concerned with a filtering problem for a class of nonlinear quantum stochastic systems with multichannel nondemolition measurements.The system-observation dynamics are governed by a Markovian Hudson-Parthasarathy quantum stochastic differential equation driven by quantum Wiener processes of bosonic fields in vacuum state.The Hamiltonian and system-field coupling operators,as functions of the system variables,are assumed to be represented in a Weyl quantization form.Using the Wigner-Moyal phase-space framework,we obtain a stochastic integro-differential equation for the posterior quasi-characteristic function(QCF)of the system conditioned on the measurements.This equation is a spatial Fourier domain representation of the Belavkin-Kushner-Stratonovich stochastic master equation driven by the innovation process associated with the measurements.We discuss a specific form of the posterior QCF dynamics in the case of linear system-field coupling and outline a Gaussian approximation of the posterior quantum state.

    Quantum stochastic system,quantum filtering equation,Gaussian approximation

    1 Introduction

    Estimation of the unknown current state of a stochastic system,based on the past history of a statistically dependent random process,is the central problem in the stochastic filtering theory which dates back to the worksofKolmogorov and Wienerofthe 1940s[1,2].The performance of state estimators is usually quantified by mean square values of the estimation errors which have to be minimized.In the framework of quadratic cost functionals,optimal estimators are delivered by conditional expectations of the state of the system,condi-tioned on the available observation history[3].For linear system-observation dynamics driven by white noise processes[4,5],the mean square optimal estimators found a recursive implementation in the Kalman filter in the 1960s,and their analogues were subsequently developed for robust filtering problems.The latter include,for example,the H∞-settings[6],which employ operator norms with respect to square summable disturbances,and deterministic and statistical uncertainty descriptions based on integral quadratic constraints[7]and entropy theoretic constructs[8,9].

    The filtering problems arise naturally when the current system state(whose knowledge,precise or approximate,is required for feedback control)is not accessible to direct measurement.Such measurements are particularly problematic in regard to physical systems on the atomic scales,whose evolution is described in terms of operator-valued variables and obeys the laws of quantum mechanics which prohibit simultaneous measurements of noncommuting quantities[10-12].The incompatibility of quantum variables restrict information on the system which can be retrieved without disturbing it.This reflects the invasive nature of measurement as an interaction with a macroscopic apparatus,which affects the quantum system and is accompanied with conversion of operator-valued processes to real-valued signals.The issue of the quantum information loss is one of the motivations for coherent quantum control[13,14]by measurement-free interconnection,where controllers and observers for quantum plants are also quantum systems.This approach is an active area of research in the quantum linear systems theory[15]and is concerned,in particular,with coherent quantum counterparts[16-23]of the classical H∞and LQG controllers and observers.

    Nevertheless,for a class of open quantum systems which are weakly coupled to external electromagnetic fields,the measurement of the output fields can be arranged in a nondemolition manner[24],so that,at any moment of time,the past observations commute between themselves and with future system operators.In this case,the quantum measurements are,in many respects,similar to classical observations and,in fact,can be regarded as classical random processes[25]on a common probability space.The statistical dependence on the system variables,which results from the systemfield interaction,allows such observations to be used for continuously updating the conditional density operator of the quantum system according to the stochastic master equation(SME)[26-28].This posterior density operator(and its modifications)plays the role of an information state in measurement-based quantum control and filtering problems[29-34]involving also quadratic-exponential performance criteria.The SME is a quantum analogue of the Kushner-Stratonovich equation[3]for the evolution of the posterior probability density function(PDF)of the system variables in the case ofclassicalsystem-observation dynamicsdescribed by stochastic differential equations(SDEs).Similarly to its classical counterpart,the SME is a recursive implementation of the Bayesian inference approach.Accordingly,the quantum Belavkin-Kushner-Stratonovich equation(BKSE)[35-38],which governs the dynamics of the conditional expectations of system operators(and is,therefore,dualto the SME),isdeveloped in the framework of the Hudson-Parthasarathy calculus of quantum stochastic differential equations(QSDEs)[39,40].

    In the QSDE model of open quantum systems,the external input bosonic fields are represented by timevarying operatorsacting on a symmetric Fock space[41].Furthermore,this Hilbert space is endowed with a quantum state which determines the statistical properties of the fields.The resulting quantum Wiener processes on the Fock space drive the system variables according to the energetics of the system and its interaction with the fields.The latter is specified by the system Hamiltonian and the system-field coupling operators which are functions of the system variables.However,classical functions of several real or complex variables can be extended to the noncommutative quantum variables in different ways.One of such extensions is provided by the Weylfunctional calculus[42]which employs unitary Weyl operators whose role in this context is similar to that of the spatial harmonics in the Fourier transform.

    The Weyl quantization is used in the Wigner-Moyal phase-space method[43,44]of quasi-probability density functions(QPDFs)which are the Fourier transforms of the quasi-characteristic functions(QCFs)[45],with the latter being the quantum expectations of the Weyl operators.The phase-space approach allows the quantum dynamics to be represented without the“burden of the Hilbert space”and leads to partial differential and integro-differential equations for the QPDFs and QCFs,which are real or complex-valued functions of several real variables encoding the moments of the system operators.Although the Moyal equations[44]for the QPDF dynamics were originally obtained for closed systems,the phase-space approach has also extensions to different classes of open quantum systems;see,for example,[46-50].

    In the present paper,the phase-space approach is applied to the filtering problem for a class of nonlinear quantum stochastic systems with multichannel field measurements satisfying the nondemolition conditions.The system variables satisfy the Weylcanonicalcommutation relations and are governed by a Markovian QSDE driven by the quantum Wiener processes of bosonic fields in vacuum state.Using the Weyl quantization of the Hamiltonian and system-field coupling operators in combination with the results of[38]and[50],we obtain a stochastic integro-differential equation for the evolution of the posterior QCF of the system conditioned on the measurements.This equation is a spatial frequency domain representation of the BKSE driven by the innovation process associated with the measurements.We also discuss a more specific form of the posterior QCF and QPDF dynamics for a class[50,51]of open quantum systems whose coupling operators are linear functions of the system variables while the Hamiltonian is split into a quadratic part and a nonquadratic part represented in the Weyl quantization form.For this linear system-field coupling case,we outline modified quantum Kalman filter equations for a Gaussian approximation ofthe posterior system state.The Weylquantization ofthe Hamiltonian and coupling operators has also been used in[52,53]in a different context of optimality conditions[54,55]for the coherent quantum control and filtering problems mentioned above.

    The paper is organized as follows.Section 2 describes the class of quantum stochastic systems under consideration.Section 3 specifies the model of nondemolition measurements and describes the BKSE for conditional expectations.Section 4 applies this equation to the Weyl operators and obtains the posterior QCF dynamics in the Weyl quantization framework.Section 5 specifies these results,together with a related equation for the posterior QPDF,for the case of linear systemfield coupling.Section 6 develops modified quantum Kalman filter equations for a Gaussian approximation of the posterior quantum state.Section 7 provides concluding remarks.

    2 Quantum stochastic systems being considered

    We consider an open quantum system,whose internal dynamics are affected by interaction with external fields and are described in terms of an even numbernof dynamic variablesX1,...,Xnassembled into a vectorX:=(Xk)1?k?n(vectors are organized as columns).These system variables are time-varying self-adjoint operators on a complex separable Hilbert space H satisfying the canonical commutation relations(CCRs)

    which are closely related to the Baker-Campbell-Hausdorffformula foroperator exponentials(see,forexample,[27,pp.128-129])and are represented in terms of the following unitary Weyl operators[42]:

    where(·)?denotes the operator adjoint.Here,Θ is a constant nonsingular real antisymmetric matrix of ordernwhich specifies the commutator matrix

    as an infinitesimal form of the Weyl CCRs(1)(the transpose(·)Tacts on matrices of operators as if their entries were scalars).

    then the CCR matrix takes the form

    and corresponds to the symplectic structure matrix in classical Hamiltonian systems(here,?is the Kronecker product of matrices,andIrdenotes the identity matrix of orderr).

    The evolution of the vectorXof system variables is governed by a Markovian Hudson-Parthasarathy QSDE with the identity scattering matrix[39,40]

    whose structure is described below(the time arguments are omitted for brevity).Although it resembles classical SDEs[25],the QSDE(4)is driven by a vectorW:=(Wk)1?k?mof an even numbermof self-adjoint quantum Wiener processesW1,...,Wmacting on a symmetric Fock space F.These represent the external bosonic fields[40,56]and satisfy the quantum It?o relations

    In contrastto the identity diffusion matrix ofthe standard Wiener process,Ω :=(ωjk)1?j,k?mis a complex positive semi-definite Hermitian matrix with an orthogonal antisymmetric imaginary part ImΩ=J(so thatJ2=-Im),and hence,the quantum Wiener processesW1,...,Wmdo not commute with each other:

    Furthermore,then-dimensional drift vector L(X)and the dispersion(n×m)-matrix-i[X,hT]of the QSDE(4)are specified by the system Hamiltonianh0and the vectorh:=(hk)1?k?mof system-field coupling operatorsh1,...,hm,which are self-adjoint operators on H representable as functions of the system variablesX1,...,Xn.The superoperator L in(4),which is usually referred to as the Gorini-Kossakowski-Sudarshan-Lindblad(GKSL)generator[57,58],is a quantum analogue of the infinitesimal generators of classical Markov diffusion processes[59].This superoperator acts on a system operator ξ as

    and applies to vectors of operators entrywise.The specific structure of the QSDE(4)comes from the system-field interaction which drives a unitary operatorU(t)acting on the system-field tensor-product space H:=H0?F(with H0the initial space for the action of the system variables at timet=0):

    The QSDE(4)can be obtained from(9)by using(8)and the quantum It?o formula[39,40]in combination with(5)and commutativity between the forward It?o increments dW(t)and adapted processes taken at times?t.Adapted processes ξ,which are functions of the system variables,satisfy QSDEs of the same form

    The special structure of the drift and diffusion terms of these QSDEs gives rise to physical realizability conditions for linear quantum stochastic systems in the state-space[16]and frequency[60]domains and for nonlinear quantum systems[61].Endowed with additional features(including more general scattering matrices with photon exchange between the fields),such QSDEs are employed in a unified formalism for modelling interconnections of quantum systems which interact with each other and the environment[62].Furthermore,the specific structure of the QSDEs plays an important role for dissipativity and other properties of such systems[63,64].

    3 Output fields,nondemolition measurements and conditioning

    which is part of the diffusion term in(8),is related to a different vectorL:=(Lk)1?k?m/2of(not necessarily self-adjoint)coupling operatorsL1,...,Lm/2by

    Here,use is made of the propertyJ2=-Imof the matrixJin(5).The relations(11)and(12)can be used in order to move between two alternative representations of the external fields and the system-field coupling operators.As a result of the joint system-field evolution described by the unitary operatorU(t)from(8),the output fieldY:=(Yk)1?k?mis given by

    and satisfies the QSDE

    In view of(11),(12)and(14),the processesbandb#satisfy the following QSDEs(which are related to each other by conjugation):

    The unitary evolution in(9)and(13)preserves the commutativity between the system and outputfield variables in the sense that

    (that is,future system variables commute with the past output variables).However,the output fieldsY1,...,Ymdo not commute with each other since

    and[Y(s),Y(t)T]=2imin(s,t)Jfor alls,t?0 in view of(6)and(14).The noncommutativity of the output fields makesthem inaccessible to simultaneousmeasurement.Therefore,following[38],we will consider anr-channel fieldZwhich is related tobandb#from(15)andYfrom(13)by

    the first of which is equivalent toFbeing of full row rank.In view of(17),the second condition in(19)implies that[dZ,dZT]=2iF JFTdt=0,which makes the quantum processZin(18)self-commuting and allows for simultaneous continuous measurements of its entriesZ1,...,Zr.Furthermore,Zcan be regarded(up to an isomorphism)as a classical diffusion process[25]with values in Rrand a real positive definite symmetric diffusion matrixFΩFT=FFT+iF JFT=FFTin view of(5).Also,Zinherits fromYthe property(16)since

    Hence,for any timet?0,any given system operator ξ(t):=f(X(t))(that is,an appropriate operator-valued extension of a complex-valued functionfto the system variables)and the past measurement history

    form a set of pairwise commuting(and hence,compatible)quantum variables.This makes the processZin(18)(under the constraints(19))a legitimate model of nondemolition measurements.In what follows,we will use the conditional quantum expectation

    of a system operator ξ at timet?0 with respect to the commutative von Neumann algebra Ztgenerated by the past measurement history ?tfrom(20).This is a mean square optimal estimator of ξ(t)in the sense that πt(ξ)is an element of the measurement algebra Ztwhich delivers the minimum

    This characterization is similar to the variational property of classical conditional expectations(of square integrable random variables)with respect to σ-subalgebras[3].The quantum expectation Eζ =Tr(ρζ)in(22)is over the system-field density operator ρ := ω ? υ,where ω denotes the initial quantum state of the system,and υ is the vacuum state[40]of the input fields.

    According to[38,Theorem 9],the conditional expectation of a given system operator ξ in(21)with respect to the nondemolition measurements(18)satisfies the Belavkin-Kushner-Stratonovich equation(BKSE)

    which is driven by an innovation process χ(a martingale with respect to the measurement filtration)with the It?o differential

    and diffusion matrixFFT.Here,the conditional expectation πtis evaluated entrywise at vectors of system operators,and

    The drift term πt(L(ξ))dtof the SDE(23)comes from ξ having dynamics of its own in(10).The diffusion term βTKdχ represents the measurement-driven corrections of the prior estimate and,together with(24)and(25),involves additional quantities[38]which are described below for completeness.More precisely,(

    Whereas the SDE(23)follows the Heisenberg picture of quantum dynamics,its dualSchr¨odingerpicture version,known as the stochastic master equation(SME)[28],describes the evolution of the posterior density operator.The latter is a quantum counterpart of the classical conditional probability distribution which is continuously updated over the course of measurements according to the Bayes rule.However,in contrast to the classical case,the SME approach is concerned with updating an operator-valued quantity rather than a usual function of several variables(such as the posterior PDF in the classical nonlinear filtering problems).

    At the same time,the SDE(23)is not algebraically closed,in general,since its right-hand side involves other conditional moments which are not necessarily reducible to πt(ξ).The desired closure can be achieved within an appropriate parametric family of system operators ξ.Such family is provided,for example,by the Weyl operators(2)in the Weyl quantization framework,which is considered in the next section.

    4 Evolution of the posterior quasi-characteristic function

    Application of the conditional expectation(21)to the Weyloperator Wu,associated with the system variables by(2),leads to the posterior QCF

    The spatial Fourier transform of(30)yields a realvalued posterior QPDF

    Since the posterior QCF(30)is the conditional expectation of the Weyl operators,the BKSE(23)applies to this case too.Moreover,this leads to an algebraically closed equation for the time evolution of the posterior QCF in the framework of the Weyl quantization model for the energy operators of the system.To this end,following[50],we assume that the system Hamiltonianh0and the system-field coupling operatorsh1,...,hmin(7)are obtained by the Weyl quantization[42]of real-valued functions on Rnwith the Fourier transformsHk:Rn→C as

    where Wuis the Weyl operator(2).The vectorhof the coupling operators is related to the vector-valued map

    The following theorem describes the posterior QCF dynamics and employs three integral operators A,B,C which map a function φ :Rn→ C to the functions A(φ):Rn→ C and B(φ),C(φ):Rn→ Cm2as

    (with the operators A and C being linear).The kernel functionV:Rn×Rn→C in(34)is computed as

    whereH0andHare the Fourier transforms from(32)and(33),and Υ :Rn× Rn→ Rm×mis an auxiliary function which is expressed as

    in terms of the CCR matrix Θ in(1)and the matrixJin(5).Also,the function Γ:Rn×Rn→Rm2 in(36)is related by

    to the matrixEfrom(27)and(28)through the matricesE1,E2∈Rm2×m2 given by

    Theorem 1Suppose the Hamiltonianh0and the coupling operatorsh1,...,hmof the quantum stochastic system(4)have the Weyl quantization form(32).Then the posterior QCF(30)with respect to the nondemolition measurements in(18),(19)satisfies the stochastic integro-differential equation(SIDE)

    Here,the innovation process χ does not depend onu∈Rnand its It?o differential is given by

    ProofWe will evaluate the terms of the BKSE(23)at the Weyl operator ξ:=Wuin(2)using the Weyl quantization(32)and(33).From the proof of[50,Theorem 1],it follows that the GKSL generator(7)acts on Wuas

    where the functionVis computed according to(37)and(38).In view of(30),the conditional expectation of(43)takes the form

    with A given by(34).The modified vectorMofcoupling operators in(26)can be represented as

    where use is made of(12)and the Weyl quantization(33)of the coupling operators.In view of the WeylCCRs(1),it follows from(45)that

    A similar reasoning leads to

    The sum of the left-hand sides of(46)and(47)takes the form

    where use is made of the matricesJ,E1,E2from(5)and(40)leading to the function Γ in(39).The conditional expectation of(48)is

    with C given by(36).In particular,by lettingu=0 in(49)and recalling the property W0=IH,it follows that

    Alternatively,these relations can also be obtained by applying the conditional expectation πtto the vector

    whose representation employs(40)and the fact that the vectorJhin(45)consists of self-adjoint operators.Substitution of(30),(44),(49)and(50)into(23)-(25)establishes(41)and(42). ?

    In the absence of measurements,the QCF Φ is no longer random.In this case,the SIDE(41)loses its diffusion term and reduces to the IDE

    for the unconditional QCF obtained in[50,Theorem 1].In turn,if the system and fields are uncoupled,(51)becomes the Moyal equation[44]for the isolated system

    which follows from(34)by lettingH=0 in(37).Note that both the SIDE(41)and its special cases(51)and(52)preserve the weighted positiveness of the QCF Φ mentioned at the beginning of this section.

    5 Posterior QCF dynamics in the case of linear system- field coupling

    We will now consider a class[50,51]of open quantum systems whose coupling operatorsh1,...,hmare linear functions of the system variables,so that

    whereN∈ Rm×nis a coupling matrix,while the Hamiltonianh0consists of a quadratic part,specified by a real symmetric energy matrixRof ordern,and a nonquadratic part represented in the Weyl quantization form:

    in(54)depends ond?nsystem variables comprising the vectorSX.For such a system,the representations(32)and(33)hold with

    where δ′and δ′′are the distributional gradient vector and Hessian matrix of then-dimensional Dirac delta function δ.SinceSST=Id,the matrixSdescribes an isometry between Rdand the subspaceSTRd?Rn.The integral in(56),as a generalized function[69],is a complex measure on this subspace with density Ψ(with respect to thed-dimensional Lebesgue measure onSTRd).The corresponding QSDE(4)takes the form[50]

    where the matricesA∈ Rn×nandB∈ Rn×mare related to the coupling and energy matricesNandRin(53)and(54)by

    The nonlinear dependence on the system variables in the QSDE(58)comes from the nonquadratic part(55)of the Hamiltonian.

    For example,suppose the system variables consist of the positions and momenta according to(3),and the system Hamiltonian is given by

    Theorem 2Suppose the vectorhof system-field coupling operators and the system Hamiltonianh0are given by(53)and(54).Then the SIDE(41)for the posterior QCF Φ in(30)takes the form

    where the matricesAandBare given by(59).The corresponding posterior QPDF ? in(31)satisfies the SIDE

    where div(·)is the divergence operator with respect tox∈Rn,and the kernel function Ξ :Rn×Rd→ R is expressed as

    in terms of the function Ψ and the matrixSfrom(55).Also,the It?o differential of the innovation process χ in(42)can be represented as

    ProofThe drift term in(61)(and its spatial Fourier transform which is the driftterm of(62))was obtained in[50,Theorem 2]and can be established directly by substituting(56)and(57)into(37)and(34).We now turn to the diffusion terms of these SIDEs.By substituting(57)into(39)and using the relationfδ′=f(0)δ′-f′(0)δ for infinitely differentiable functionsf(see,for example,[69]),it follows that(36)takes the form

    for any bounded smooth function φ :Rn→ C.In particular,atu=0,

    Substitution of(65)and(66)into(35)leads to

    In view of(41),application of(67)to the posterior QCF yields the diffusion term in(61)whose spatial Fourier transform leads to the diffusion term in(62).The representation(64)now follows from(42),(66)and the relation

    thus completing the proof. ?

    The upper line of(62)is recognizable as the Fokker-Planck-Kolmogorov equation

    for the unconditional PDF of a classical Markov diffusion process with the linear driftAxand diffusion matrixBBT(see,for example,[25]).In the quantum case,the representation(68)for the posterior mean vector of the system variables,similar to the corresponding classical relations,remains valid even if the QPDF ? is not nonnegative everywhere.

    Since,as mentioned in Theorem 1,the innovation process χ does not involve spatial parameters in addition to time,equations(41),(61)and(62)are simpler than stochastic partial differential equations driven by space-time white noises or more complicated random fields[70,71].Therefore,their numericalintegration can employ appropriate methods for SDEs[72].

    While the above discussion was concerned with a nonlinear setting(when the function Ψ in(54)is essentially arbitrary),we will now assume that Ψ=0,so that the function Ξ in(63)vanishes,and the system is an open quantum harmonic oscillator[31].In this case,if the initial system state is Gaussian[73],the conditional quantum state remains Gaussian with the time-varying mean vector μ and the real part Σ of the quantum covariance matrix of the system variables given by

    where Σ +iΘ ? 0 in view of the Heisenberg uncertainty principle[10].The corresponding Gaussian QCF is given by

    Theorem 3Suppose the system dynamics are linear and specified by(53)and(54)with Ψ=0,and the initial system state is Gaussian.Then the parameters μ and Σ of the posterior Gaussian state in(69)satisfy

    to the matrices(40),and the innovation process χ is driven by the measurements as

    ProofBy substituting the Gaussian QCF from(70)into(61)with Ψ =0,and using the identity ?uΦμ,Σ(u)=Φμ,Σ(u)(iμ -Σu),it follows that

    whereP,Qare the matrices from(73).On the other hand,application of the classical It?o lemma[25]to ln Φμ,Σ(which depends on time only through μ and Σ)yields

    Here,use is made of the relation

    together with the quadratic variation

    of the complex-valued diffusion process in(75)and the diffusion matrixFFTof the innovation process χ.The right-hand sides of(75)and(76)are quadratic functions ofu∈Rn.By matching the corresponding coefficients,it follows that μ satisfies the SDE(71)while Σ satisfies the ODE(72).Also,(74)follows from(64)in view of(68),(69)and(73). ?

    The SDE(71)and the ODE(72)are the quantum Kalman filter equations for the case of linear-Gaussian system dynamics.Similarly to the covariance dynamics ofthe usual Kalman filter[5]forclassicalsystems,(72)is organized as a differential Riccati equation(though with different matrices)which reduces to the Lyapunov ODE ˙Σ=AΣ+ΣAT+BBTin the absence of measurements.If Ψ?0 in(54),then the QSDE(58)is no longer linear,the integral operator term of the SIDE(61)comes into effect,and the Gaussian QCFs(70)can be used only as approximate solutions,which is discussed in the next section.

    6 A Gaussian approximation of the posterior state

    For the class ofnonlinear quantum stochastic systems with the linear coupling(53)and nonquadratic Hamiltonian(54),we will now consider a Gaussian approximation of the actual posterior quantum state of the system using the criterion

    Here,?φ?is the norm in the Hilbert spaceL2(Rn)of square integrable complex-valued functions on Rn,and the minimization is over the following set of admissible parameters of the Gaussian QCF in(70):

    where Sndenotes the subspace of real symmetric matrices of ordern.The squaredL2-distance in(77)is not the only proximity criterion for the actual and Gaussian quantum states.For example,[50]employs the secondorder relative Renyi entropy[74]in order to quantify the deviation of the actual QPDF ? from the Gaussian QPDFs

    provided Σ ? 0(in which case,Φθin(70)is square integrable).In contrast to the relative entropy,(77)treats the actual and approximating QCFs equally and has a similar form in terms of the QPDFs(31)and(79)due to the Plancherel identity:

    Furthermore,a different approximation is provided by the quantum Gaussian stochastic linearization of the governing QSDE through the quadratic approximation of the system Hamiltonian[75].

    If the actual posterior QCF Φ(or the corresponding posterior QPDF ?)were known,then the parameter θ could be chosen,at every moment of time,so as to minimize the cost in(77)(or equivalently,(80)).However,in the nonlinear case Ψ≠0,when the actual posterior QCF and QPDF are difficult to find,θ can be evolved“along”the orthogonal projection(in theL2sense)of the Ito differential dΦ of the random field Φ from(61)(whose right-hand side is computed atΦ = Φθ)onto the tangent space of differentials dΦθof the Gaussian QCFs in(76),provided θ belongs to the interior of the set?in(78).This approach(whose general idea is similar to the projective filtering in[76]and references therein)leads to a modified version of the quantum Kalman filter equations(71)and(72):

    These equations involve additional terms λ∈Rnand σ∈Snwhich are found as a solution to the minimization problem

    denotes the negative of the integral operator term in(61)which is contributed by the nonquadratic part of the system Hamiltonian.Both functions?μ,Σ(λ,σ,u)and?μ,Σ(u)are Hermitian with respect tou∈ Rn.The following theorem computes the correction terms λ and σ.

    Theorem 4Suppose θ is an interior point of the set?in(78),and Σ?0.Then the minimum in(83)is achieved at a unique point

    where SΣis a positive definite self-adjoint operator on Sngiven by

    where 〈·,·〉denotes the Frobenius inner product of matrices.

    ProofFor what follows,the set Rn×Snis regarded as a Hilbert space with the direct-sum inner product〈(μ1,Σ1),(μ2,Σ2)〉Rn×Sn:= μT1μ2+Tr(Σ1Σ2)generated from the Euclidean inner product in Rnand the Frobenius inner product of matrices in Sn.The function being minimized in(83)is a convex quadratic function of(λ,σ)∈ Rn× Sn,whose Frechet differentiation leads to the necessary conditions of optimality:

    where use is made of the relations

    which follow from(84).Note that

    Here,the operator SΣis given by(88)and originates from the relation

    foranyσ∈Snand an Rn-valued Gaussian random vector ξ with zero mean and covariance matrixC.This follows from the Isserlis theorem[77,78]applied to the fourthorder mixed moments of the entries of ξ.The moments of arbitrary odd order for such a vector vanish.Positive definiteness(and hence,invertibility)of the operator SΣfollows from the inequalities

    the second of which holds for any σ∈Sn{0}.Now,a combination of(89)and(92)with(85)allows λ to be uniquely found as

    where use is made of the identity

    for the Gaussian QCFs(70)together with the momentgenerating function

    Substitution of the Hessian matrix

    of the function(95)into(96)leads to(87). ?

    The following theorem describes the computation of the inverse operator S-1Σwhich is required for the evaluation of(87).

    Theorem 5For any positive definite matrix Σ∈Sn,the inverse of the operator SΣin(88)can be computed as

    ProofSince Σ ? 0,the operator SΣcan be represented as the composition

    where I is the identity operator on Sn.Here,TΣis a positive definite self-adjoint operator acting on a matrix σ∈Snas

    The idempotence Π2= Π of the projection operator implies that

    A combination of(98)with(101)leads to the representation

    In combination with(97),equations(86)and(87)provide integral representations of the correction terms λ and σ in the modified quantum Kalman filter(81),(82)as nonlinear functions of μ and Σ.These integrals involve the spatialFouriertransformΨ ofthe nonquadratic part of the Hamiltonian.Their closed-form evaluation is possible,for example,if Ψ is a linear combination of quadratic-exponential functions(see[50,Section 9]),which corresponds to the presence of Gaussian-shaped“bumps”in the potential energy of the system[79];cf.(60).This consideration can be used in order to apply the above results to open quantum systems with multiextremum energy landscapes.However,the circle of questions in regard to the above described Gaussian approximation includes its error analysis and the study of conditions when(82)produces a physically meaningful matrix Σ satisfying the Heisenberg uncertainty principle Σ+iΘ ?0.

    7 Conclusions

    For a class of quantum stochastic systems,whose Hamiltonian and coupling operators are represented in the Weyl quantization form,we have obtained a nonlinear SIDE for the evolution of the posterior QCF conditioned on multichannel nondemolition measurements.This equation is driven by a classical diffusion process of innovations associated with the measurements.We have also considered a more specific form of the SIDE for the case of linear system-field coupling and outlined a Gaussian approximation of the posterior state governed by modified quantum Kalman filter equations.These ideas are applicable to the development of suboptimal quantum filtering algorithms which employ more complicated(for example,multi-Gaussian)approximations of the posterior QCF and QPDF.Furthermore,the results of this paper can be extended to more general system dynamics,field states and measurementsettings(such as nonlinear coupling,coherent and Gaussian states and photon counting measurements),for some of which the BKSE was considered in[36-38]without using the Weylquantization ofthe Hamiltonian and coupling operators.

    Acknowledgements

    The author thanks the anonymous reviewers for useful comments.

    [1] A.N.Kolmogorov.Interpolation and extrapolation of stationary random sequences.Selected Works of A.N.Kolmogorov.Dordrecht:Springer,1992:272-280.

    [2]N.Wiener.Extrapolation,Interpolation,and Smooth ing of Stationary Time Series.New York:Wiley,1949.

    [3] R.S.Liptser,A.N.Shiryaev.Statistics of Random Processes:Applications.Berlin:Springer,2001.

    [4]H.Kwakernaak,R.Sivan.Linear Optimal Control Systems.New York:Wiley,1972.

    [5]B.D.O.Anderson,J.B.Moore.Optimal Filtering,Englewood Cliffs:Prentice Hall,1979.

    [6]K.M.Nagpal,P.P.Khargonekar.Filtering and smoothing in an H∞setting.IEEE Transactions on Automatic Control,1991,36(2):152-166.

    [7] I.R.Petersen,A.V.Savkin.Robust Kalman Filtering for Signals and Systems with Large Uncertainties.Boston:Birkh¨auser,1999.

    [8]I.R.Petersen,V.A.Ugrinovskii,A.V.Savkin.Robust Control Design UsingH∞Methods.London:Springer,2000.

    [9] I.G.Vladimirov.Anisotropy-based optimal filtering in linear discrete time invariant systems.arXiv,2014:arXiv:1412.3010[cs.SY].

    [10]A.S.Holevo.Statistical Structure of Quantum Th eory.Berlin:Springer,2001.

    [11]E.Merzbacher.Quantum Mechanics.3rd ed.New York:Wiley,1998.

    [12]J.J.Sakurai.Modern Quantum Mechanics.Reading,MA:Addison-Wesley,1994.

    [13]S.Lloyd.Coherent quantum feedback.Physical Review A,2000,62(2):DOI 10.1103/PhysRevA.62.022108.

    [14]H.M.Wiseman,G.J.Milburn All-optical versus electro-optical quantum limited feedback.Physical Review A,1994,49(5):4110-4125.

    [15]I.R.Petersen.Quantum linear systems theory.Proceed ings of the 19th International Symposium on Mathematical Theory of Networks and Systems,Budapest,Hungary,2010:2173-2184.

    [16]M.R.James,H.I.Nurdin,I.R.Petersen.H∞control of linear quantum stochastic systems.IEEE Transactions on Automatic Control,2008,53(8):1787-1803.

    [17]H.I.Nurdin,M.R.James,I.R.Petersen.Coherent quantum LQG control.Automatica,2009,45:1837-1846.

    [18]Z.Miao,M.R.James.Quantum observer for linear quantum stochastic systems.Proceedings of the 51st IEEE Conference on Decision and Control,Hawaii:IEEE,2012:1680-1684.

    [19]A.I.Maalouf,I.R.Petersen.Coherent LQG control for a class of linear complex quantum systems.IEEE European Control Conference,Budapest,Hungary:IEEE,2009:2271-2276.

    [20]I.R.Petersen.A direct coupling coherent quantum observer.IEEE Multi-Conference on Systems and Control,Nice/Antibes,France:IEEE,2014:1960-1963.

    [21]I.R.Petersen,E.H.Huntington.A possible implementation of a direct coupling coherent quantum observer.Proceedings of the 5th Australian Control Conference(A UCC),Gold Coast,Australia:IEEE,2015:105-107.

    [22]I.G.Vladimirov,I.R.Petersen.Directly coupled observers for quantum harmonic oscillators with discounted mean square cost functionals and penalized back-action.IEEE Conference on Norbert Wiener in the 21st Century,University of Melbourne,Australia:IEEE,2016:78-83.

    [23]G.Zhang,M.R.James.Direct and indirect couplings in coherent feedback control of linear quantum systems.IEEE Transactions on Automatic Control,2011,56(7):1535-1550.

    [24]V.P.Belavkin.A stochastic calculus of quantum input-output processes and quantum nondemolition filtering.Itogi Nauki i Tekhniki,Seriya Sovremenn ye Problemy Matematiki,Noveishie Dostizheniya,1990,36:29-67.

    [25]I.Karatzas,S.E.Shreve.Brownian Motion and Stochastic Calculus.2nd ed.New York:Springer,1991.

    [26]D.Dong,I.R.Petersen.Quantum control theory and applications:a survey.IET Control Theory and Applications,2010,4(12):2651-2671.

    [27]C.W.Gardiner,P.Zoller.Quantum Noise.Berlin:Springer,2004.

    [28]H.M.Wiseman,G.J.Milburn.Quantum Measurement and Control,Cambridge:Cambridge University Press,2010.

    [29]V.P.Belavkin.Theory of the control of observable quantum systems.Automation and Remote Control,1983,44(2):178-188.

    [30]C.D’Helon,A.C.Doherty,M.R.James,et al.Quantum risksensitive control,Proceed ings of the 45th Conference on Decision and Control,San Diego:IEEE,2006:3132-3137.

    [31]S.C.Edwards,V.P.Belavkin.Optimal quantum filtering and quantum feedback control.arXiv,2005:arXiv:quant-ph/0506018v2.

    [32]J.Gough,V.P.Belavkin,O.G.Smolyanov.Hamilton-Jacobi-Bellman equations for quantum optimal feedback control.Journal of Optics B:Quantum and Semiclassical Optics,2005,7(10):237-244.

    [33]M.R.James.A quantum Langevin formulation of risk-sensitive optimal control.Journal of Optics B:Quantum and Semiclassical Optics,2005,7(10):198-207.

    [34]N.Yamamoto,L.Bouten.Quantum risk-sensitive estimation and robustness,IEEE Transactions on Automatic Control,2009,54(1):92-107.

    [35]L.Bouten,R.Van Handel,M.R.James.An introduction to quantum filtering.SIAM Journal on Control and Optimization,2007,46(6):2199-2241.

    [36]M.F.Emzir,M.J.Woolley,I.R.Petersen.Quantum filtering for multiple diffusive and Poissonian measurements.Journal of Physics A:Mathematical and Theoretical,2015,48(38):DOI 10.1088/1751-8113/48/38/385302.

    [37]J.E.Gough,C.K¨ostler.Quantum filtering in coherent states.Communications on Stochastic Analysis,2010,4(4):505-521.

    [38]H.I.Nurdin.Quantum filtering for multiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields.Russian Journal of Mathematical Physics,2014,21(3):386-398.

    [39]R.L.Hudson,K.R.Parthasarathy.Quantum It?o’s formula and stochastic evolutions.Communications in Mathematical Physics,1984,93:301-323.

    [40]K.R.Parthasarathy,An Introduction to Quantum Stochastic Calculus.Basel:Springer,1992.

    [41]K.R.Parthasarathy,K.Schmidt.Positive Definite Kernels,Continuous Tensor Products,and Central Limit Th eorems of Probability Theory.Berlin:Springer,1972.

    [42]G.B.Folland.Harmonic Analysis in Phase Space.Princeton:Princeton University Press,1989.

    [43]B.J.Hiley.On the relationship between the Wigner-Moyal and Bohm approaches to quantum mechanics:a step to a more general theory?Foundations of Physics,2010,40(4):356-367.

    [44]J.E.Moyal.Quantum mechanics as a statistical theory.Proceedings of Cambridge Philosophical Society,1949,45:99-124.

    [45]C.D.Cushen,R.L.Hudson.A quantum-mechanical central limit theorem.Journal of Applied Probability,1971,8(3):454-469.

    [46]J.Gough,T.S.Ratiu,O.G.Smolyanov.Feynman,Wigner,and Hamiltonian structures describing the dynamics ofopen quantum systems.Doklady Mathematics,2014,89(1):68-71.

    [47]J.Gough,T.S.Ratiu,O.G.Smolyanov.Wigner measures and quantum control.Doklady Mathematics,2015,91(2):199-203.

    [48]J.Kupsch,O.G.Smolyanov.Exact master equations describing reduced dynamics of the Wigner function.Journal of Mathematical Sciences,2008,150(6):2598-2608.

    [49]K.-P.Marzlin,S.Deering.The Moyal equation for open quantum systems.Journal of Physics A:Mathematical and Theoretical,2015,48(20):DOI 10.1088/1751-8113/48/20/205301.

    [50]I.G.Vladimirov.Evolution of quasi-characteristic functions in quantum stochastic systems with Weyl quantization of energy operators.arXiv,2015:arXiv:1512.08751[math-ph].

    [51]A.Kh.Sichani,I.G.Vladimirov,I.R.Petersen.Robust mean square stability of open quantum stochastic systems with Hamiltonian perturbations in a Weyl quantization form.Australian ControlConference,Canberra,Australia:IEEE,2014:83-88.

    [52]I.G.Vladimirov.A transverse Hamiltonian variational technique for open quantum stochastic systems and its application to coherentquantum control.IEEE Multi-Conference on Systems and Control,Sydney:IEEE,2015:29-34.

    [53]I.G.Vladimirov.Weyl variations and local sufficiency of linear observers in the mean square optimal coherent quantum filtering problem.Australian Control Conference,Gold Coast,Australia:IEEE,2015:93-98.

    [54]I.G.Vladimirov,I.R.Petersen.A quasi-separation principle and Newton-like scheme for coherentquantum LQGcontrol.Systems&Control Letters,2013,62(7):550-559.

    [55]I.G.Vladimirov,I.R.Petersen.Coherent quantum filtering for physically realizable linear quantum plants.European Control Conference,Zurich,Switzerland:IEEE,2013:2717-2723.

    [56]A.S.Holevo.Quantum stochastic calculus.Journal of Soviet Mathematics,1991,56(5):2609-2624.

    [57]V.Gorini,A.Kossakowski,E.C.G.Sudarshan.Completely positive dynamical semigroups of N-level systems.Journal of Math ematical Physics,1976,17(5):821-825.

    [58]G.Lindblad.On the generators of quantum dynamical semigroups.Communications in Mathematical Physics,1976,48(2):119-130.

    [59]D.W.Stroock.Partial Differential Equations for Probabilists.Cambridge:Cambridge University Press,2008.

    [60]A.J.Shaiju,I.R.Petersen.A frequency domain condition for the physical realizability oflinear quantum systems.IEEE Transactions on Automatic Control,2012,57(8):2033-2044.

    [61]A.I.Maalouf,I.R.Petersen.On the physical realizability of a class of nonlinear quantum systems.Proceed ings of th e 51st IEEE Conference on Decision and Control,Hawaii:IEEE,2012:1088-1092.

    [62]J.Gough,M.R.James.Quantumfeedback networks:Hamiltonian formulation.Communications in Mathematical Physics,2009,287(3):1109-1132.

    [63]M.R.James,J.E.Gough.Quantum dissipative systems and feedback control design by interconnection.IEEE Transactions on Automatic Control,2010,55(8):1806-1821.

    [64]I.R.Petersen,V.Ugrinovskii,M.R.James.Robust stability of uncertain linear quantum systems.Philosophical Transactions of the Royal Society A,2012,370(1979):5354-5363.

    [65]I.I.Gikhman,A.V.Skorokhod.The Theory ofStochastic Processes.Berlin:Springer,2004.

    [66]R.L.Hudson.Quantum Bochner theorems and incompatible observables.Kybernetika,2010,46(6):1061-1068.

    [67]R.L.Hudson.When is the Wigner quasi-probability density nonnegative?Reports on Mathematical Physics,1974,6(2):249-252.

    [68]K.Yosida.Functional Analysis.6th ed.Berlin:Springer,1980.

    [69]V.S.Vladimirov.Methods of the Theory of Generalized Functions.London:Taylor&Francis,2002.

    [70]G.J.Lord,C.E.Powell,T.Shardlow.AnIntroduction to Computational Stochastic PDEs.Cambridge:Cambridge University Press,2014.

    [71]A.Jentzen,P.E.Kloeden.Taylor Approximations for Stochastic Partial Differential Equations.Philadelphia:SIAM,2011.

    [72]P.E.Kloeden,E.Platen.Numerical Solution of Stochastic Differential Equations.Berlin:Springer,1992.

    [73]K.R.Parthasarathy.What is a Gaussian state?Communications on Stochastic Analysis,2010,4(2):143-160.

    [74]A.Renyi.On measures of entropy and information.Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability,Berkeley:University of California Press,1961:547-561.

    [75]I.G.Vladimirov,I.R.Petersen.Gaussian stochastic linearization for open quantum systems using quadratic approximation of Hamiltonians.arXiv,2012:arXiv:1202.0946v1[quant-ph].

    [76]R.Van Handel,H.Mabuchi.Quantum projection filterfora highly nonlinearmodelin cavity QED.JournalofOptics B:Quantum and Semiclassical Optics,2005,7(10):226-236.

    [77]L.Isserlis.On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables.Biometrika,1918,12:134-139.

    [78]S.Janson.Gaussian Hilbert Spaces.Cambridge:Cambridge University Press,1997.

    [79]P.A.Frantsuzov,V.A.Mandelshtam.Quantum statistical mechanics with Gaussians:equilibrium properties of van der Waals clusters.Journal of Chemical Physics,2004,121(19):9247-9256.

    [80]I.G.Vladimirov.A phase-space formulation of the Belavkin-Kushner-Stratonovich filtering equation for nonlinear quantum stochastic systems.IEEE Conference on Norbert Wiener in the 21st Century,University of Melbourne,Australia:IEEE,2016:84-89.

    31 January 2017;revised 5 May 2017;accepted 5 May 2017

    DOI 10.1007/s11768-017-7012-2

    E-mail:igor.g.vladimirov@gmail.com.

    This paper is dedicated to Professor Ian R.Petersen on the occasion of his 60th birthday.This work was initiated while the author was with the UNSW Canberra,Australia,where it was supported by the Australian Research Council,and was completed at the Australian National University under support of the Air Force Office of Scientific Research(AFOSR)under agreement number FA2386-16-1-4065.A brief version[80]of this paper was presented at the IEEE 2016 Conference on Norbert Wiener in the 21st Century,13-15 July 2016,Melbourne,Australia.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Igor G.VLADIMIROVreceived M.Sc.degree in Control Systems in 1989 and Ph.D.degree in Physics and Mathematics(with specialization in Mathematical Cybernetics)in 1992 from the DepartmentofControland Applied Mathematics of the Moscow Institute(State University)of Physics and Technology,Russia.He worked as a Senior Research Associate at the State Research Institute ofAviation Systems in 1993-1997 and the Institute for Information Transmission Problems,the Russian Academy of Sciences,Moscow,in 1994-2007,in the areas of applied Kalman filtering,stochastic robust control,hysteresis systems and spatially discretized dynamical systems.From 1997 to 2008,Dr.Vladimirov held research academic positions at the Mathematics Department and School of Engineering at the University of Queensland,Brisbane,Australia,working in the above areas and in stochastic modelling of econometric time series,lattice models of statistical mechanics and transport phenomena in random media.In 2000,he also had a visiting research fellowship at the School of Mathematical Sciences,Queen Mary and Westfield College,University of London,working onp-adic analysis of Hamiltonian roundoff.From 2009 to 2016,Dr.Vladimirov was a Senior Research Fellow at the University of New South Wales Canberra,doing research on quantum stochastic filtering and control,which he continues after moving to the Australian National University in 2017.In 2013,Dr.Vladimirov was awarded B.N.Petrov prize of the Russian Academy of Sciences for his works on the anisotropy-based theory of stochastic robust filtering and control.E-mail:igor.g.vladimirov@gmail.com.

    婷婷色综合www| 日本黄色日本黄色录像| 一级片'在线观看视频| 老司机午夜十八禁免费视频| 亚洲一码二码三码区别大吗| 观看av在线不卡| 亚洲av欧美aⅴ国产| av福利片在线| 精品久久蜜臀av无| 欧美日韩视频高清一区二区三区二| 国产免费视频播放在线视频| 精品少妇一区二区三区视频日本电影| 在线观看免费视频网站a站| 国产高清不卡午夜福利| 精品国产乱码久久久久久小说| 丰满人妻熟妇乱又伦精品不卡| 人妻人人澡人人爽人人| 精品人妻1区二区| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 久久国产精品人妻蜜桃| 另类精品久久| 久久精品国产亚洲av涩爱| 亚洲国产欧美一区二区综合| 国产亚洲午夜精品一区二区久久| 手机成人av网站| 亚洲成人免费av在线播放| 国产成人影院久久av| 91国产中文字幕| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 黄色 视频免费看| 国产不卡av网站在线观看| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 只有这里有精品99| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 午夜福利视频在线观看免费| 国产野战对白在线观看| 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| 国产高清视频在线播放一区 | 久久久久久人人人人人| 丝袜在线中文字幕| 超碰97精品在线观看| 欧美97在线视频| 久久精品人人爽人人爽视色| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线不卡| 国产免费一区二区三区四区乱码| 99国产精品一区二区三区| 美女国产高潮福利片在线看| 丝袜美足系列| 热99国产精品久久久久久7| 一级a爱视频在线免费观看| 久久久精品区二区三区| 国产野战对白在线观看| 蜜桃在线观看..| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| bbb黄色大片| 欧美国产精品一级二级三级| 久久久久久久精品精品| 免费日韩欧美在线观看| 亚洲欧美激情在线| 在线亚洲精品国产二区图片欧美| 美女午夜性视频免费| 国产欧美日韩一区二区三 | 日本91视频免费播放| 欧美黑人欧美精品刺激| 欧美xxⅹ黑人| 亚洲人成电影观看| 亚洲免费av在线视频| 国产精品三级大全| 色视频在线一区二区三区| 一级毛片女人18水好多 | 国产亚洲欧美在线一区二区| 日韩av不卡免费在线播放| 亚洲欧洲国产日韩| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 黄片播放在线免费| 国产精品久久久久成人av| 一区二区三区激情视频| 新久久久久国产一级毛片| 亚洲视频免费观看视频| 欧美激情高清一区二区三区| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 一级毛片女人18水好多 | 母亲3免费完整高清在线观看| 国产成人一区二区三区免费视频网站 | 国产一区亚洲一区在线观看| 天堂8中文在线网| 热99国产精品久久久久久7| 免费看av在线观看网站| 亚洲国产成人一精品久久久| 少妇被粗大的猛进出69影院| 国产av精品麻豆| 欧美精品一区二区免费开放| 欧美另类一区| 婷婷色综合www| 晚上一个人看的免费电影| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩精品久久久久久密 | 黑人猛操日本美女一级片| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区国产| 人人妻,人人澡人人爽秒播 | 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频| 真人做人爱边吃奶动态| 一边摸一边做爽爽视频免费| 国产亚洲精品第一综合不卡| 国产成人一区二区在线| 欧美精品一区二区大全| 欧美黄色淫秽网站| 久久午夜综合久久蜜桃| 一区二区三区乱码不卡18| 超碰97精品在线观看| tube8黄色片| 国产欧美日韩精品亚洲av| 欧美精品人与动牲交sv欧美| 十分钟在线观看高清视频www| 免费在线观看日本一区| 97人妻天天添夜夜摸| 精品人妻一区二区三区麻豆| 亚洲精品美女久久av网站| 婷婷色麻豆天堂久久| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 国产高清视频在线播放一区 | 亚洲国产精品999| 亚洲av日韩在线播放| 极品人妻少妇av视频| 人人澡人人妻人| 国产精品99久久99久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 成人免费观看视频高清| 亚洲精品日韩在线中文字幕| 又粗又硬又长又爽又黄的视频| 热re99久久国产66热| 天堂俺去俺来也www色官网| 亚洲国产看品久久| 成年美女黄网站色视频大全免费| 18禁黄网站禁片午夜丰满| 人人妻人人添人人爽欧美一区卜| 美女国产高潮福利片在线看| 乱人伦中国视频| 日韩,欧美,国产一区二区三区| 又大又爽又粗| 777米奇影视久久| 美国免费a级毛片| 好男人电影高清在线观看| 十八禁网站网址无遮挡| 日韩av在线免费看完整版不卡| 99热网站在线观看| 免费一级毛片在线播放高清视频 | 90打野战视频偷拍视频| 欧美成狂野欧美在线观看| 熟女少妇亚洲综合色aaa.| 日日夜夜操网爽| 欧美成人午夜精品| 国产又爽黄色视频| 黑丝袜美女国产一区| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 日日爽夜夜爽网站| 国产视频一区二区在线看| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区久久久樱花| 亚洲一区二区三区欧美精品| 成人国语在线视频| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 久久天堂一区二区三区四区| 精品免费久久久久久久清纯 | 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 日本五十路高清| 女性生殖器流出的白浆| 亚洲一码二码三码区别大吗| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 少妇人妻久久综合中文| 免费在线观看日本一区| 精品国产超薄肉色丝袜足j| 欧美变态另类bdsm刘玥| 成年美女黄网站色视频大全免费| 只有这里有精品99| 高清av免费在线| 亚洲国产最新在线播放| 91字幕亚洲| 国产一区二区三区综合在线观看| 亚洲人成电影观看| 亚洲av电影在线观看一区二区三区| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 国产精品.久久久| 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图| 久热爱精品视频在线9| av欧美777| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 在线观看免费视频网站a站| 高清黄色对白视频在线免费看| 亚洲国产欧美在线一区| 一边摸一边抽搐一进一出视频| 在线观看人妻少妇| 国产有黄有色有爽视频| 少妇的丰满在线观看| 欧美性长视频在线观看| 美女中出高潮动态图| 51午夜福利影视在线观看| 又粗又硬又长又爽又黄的视频| 五月天丁香电影| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| √禁漫天堂资源中文www| 欧美日韩av久久| 亚洲国产看品久久| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久 | 日日摸夜夜添夜夜爱| www.自偷自拍.com| 成人亚洲欧美一区二区av| 成人亚洲精品一区在线观看| 亚洲欧洲国产日韩| 一本久久精品| 午夜影院在线不卡| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 久热爱精品视频在线9| 久久天堂一区二区三区四区| 欧美成狂野欧美在线观看| 亚洲色图综合在线观看| 成年av动漫网址| 人体艺术视频欧美日本| 成年女人毛片免费观看观看9 | 777久久人妻少妇嫩草av网站| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品| 欧美久久黑人一区二区| 黄色 视频免费看| 夫妻性生交免费视频一级片| 亚洲伊人久久精品综合| 久久精品国产综合久久久| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 国产片内射在线| 晚上一个人看的免费电影| 美女高潮到喷水免费观看| av片东京热男人的天堂| 美女福利国产在线| 精品人妻1区二区| 国产成人精品无人区| 国产高清国产精品国产三级| 亚洲精品国产av蜜桃| 欧美日韩亚洲综合一区二区三区_| 午夜激情久久久久久久| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 七月丁香在线播放| 国产精品久久久久久精品电影小说| 欧美黄色片欧美黄色片| 亚洲天堂av无毛| 一级毛片我不卡| 午夜免费男女啪啪视频观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 99精品久久久久人妻精品| 亚洲欧美清纯卡通| 考比视频在线观看| 免费在线观看黄色视频的| 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| videos熟女内射| 亚洲精品自拍成人| 真人做人爱边吃奶动态| 国产一区亚洲一区在线观看| 日韩中文字幕欧美一区二区 | 国产成人精品久久二区二区免费| 国产xxxxx性猛交| 18在线观看网站| 好男人视频免费观看在线| 一区二区日韩欧美中文字幕| 日韩伦理黄色片| 欧美性长视频在线观看| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 美女国产高潮福利片在线看| 一二三四社区在线视频社区8| 七月丁香在线播放| 亚洲五月色婷婷综合| 国产免费现黄频在线看| √禁漫天堂资源中文www| 老汉色∧v一级毛片| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 日本91视频免费播放| 亚洲人成电影观看| 丰满少妇做爰视频| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频 | 亚洲中文字幕日韩| 国产av精品麻豆| 男女国产视频网站| 亚洲国产精品国产精品| 久久精品成人免费网站| 丁香六月欧美| 精品人妻在线不人妻| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品中文字幕在线视频| 免费观看人在逋| 国产精品一区二区免费欧美 | 国产精品国产av在线观看| 女警被强在线播放| 水蜜桃什么品种好| 视频区欧美日本亚洲| 国产视频首页在线观看| av天堂在线播放| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区久久| 欧美激情 高清一区二区三区| 性少妇av在线| 亚洲中文字幕日韩| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| 日本欧美视频一区| 一区在线观看完整版| 亚洲国产精品成人久久小说| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 国产成人一区二区三区免费视频网站 | 亚洲成人免费电影在线观看 | 不卡av一区二区三区| 一二三四社区在线视频社区8| 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美| 久久天躁狠狠躁夜夜2o2o | 少妇裸体淫交视频免费看高清 | 精品一区二区三卡| 99香蕉大伊视频| 老司机在亚洲福利影院| 成人亚洲欧美一区二区av| 久久综合国产亚洲精品| 一个人免费看片子| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 一区二区三区四区激情视频| 午夜免费男女啪啪视频观看| 在线av久久热| 久久久久久久国产电影| 1024视频免费在线观看| 2021少妇久久久久久久久久久| www.av在线官网国产| 国产人伦9x9x在线观看| 日本欧美视频一区| 国产成人91sexporn| 国产精品久久久久久精品古装| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 欧美黄色片欧美黄色片| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 18禁黄网站禁片午夜丰满| 国产精品一二三区在线看| 国产成人精品久久二区二区91| 亚洲国产欧美网| 91精品三级在线观看| 成人三级做爰电影| 新久久久久国产一级毛片| 日本色播在线视频| 侵犯人妻中文字幕一二三四区| 国产有黄有色有爽视频| av天堂在线播放| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 91麻豆av在线| 亚洲av在线观看美女高潮| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 好男人视频免费观看在线| 国产在线视频一区二区| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 新久久久久国产一级毛片| 在线观看免费午夜福利视频| 韩国高清视频一区二区三区| 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 国产精品.久久久| 亚洲精品久久午夜乱码| 宅男免费午夜| 国产精品三级大全| 欧美av亚洲av综合av国产av| bbb黄色大片| 国产一级毛片在线| 免费人妻精品一区二区三区视频| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 19禁男女啪啪无遮挡网站| 久久久精品94久久精品| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 欧美精品啪啪一区二区三区 | 午夜福利乱码中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜视频精品福利| 婷婷色麻豆天堂久久| 日本欧美国产在线视频| 波野结衣二区三区在线| 免费在线观看日本一区| a级片在线免费高清观看视频| 大片电影免费在线观看免费| 一个人免费看片子| 国产一区二区在线观看av| 国产精品久久久久久精品古装| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 成在线人永久免费视频| 啦啦啦视频在线资源免费观看| 亚洲男人天堂网一区| 男女国产视频网站| 男女无遮挡免费网站观看| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 香蕉国产在线看| 欧美成人午夜精品| 美女大奶头黄色视频| 欧美 亚洲 国产 日韩一| 久久国产精品大桥未久av| 久久 成人 亚洲| 久久精品国产亚洲av涩爱| 欧美大码av| 考比视频在线观看| 国产男女内射视频| 亚洲第一av免费看| 欧美黄色淫秽网站| 午夜免费成人在线视频| 又大又黄又爽视频免费| 国产一级毛片在线| 中文欧美无线码| 亚洲熟女毛片儿| 又大又爽又粗| 亚洲精品成人av观看孕妇| 9色porny在线观看| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 成年动漫av网址| 中文精品一卡2卡3卡4更新| 欧美av亚洲av综合av国产av| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区蜜桃| 成人黄色视频免费在线看| 久久久精品区二区三区| 十八禁人妻一区二区| 亚洲精品第二区| 久久免费观看电影| 一边摸一边抽搐一进一出视频| 亚洲成人免费电影在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品久久成人aⅴ小说| 国产黄频视频在线观看| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品一区三区| 两个人免费观看高清视频| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 精品欧美一区二区三区在线| 国产精品麻豆人妻色哟哟久久| 国产成人欧美在线观看 | 香蕉丝袜av| 又黄又粗又硬又大视频| 免费观看av网站的网址| 欧美 亚洲 国产 日韩一| 免费女性裸体啪啪无遮挡网站| 夜夜骑夜夜射夜夜干| 欧美激情高清一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产男女超爽视频在线观看| netflix在线观看网站| 99精国产麻豆久久婷婷| 一本综合久久免费| 中文字幕人妻丝袜制服| 婷婷色综合www| 免费观看人在逋| 高清欧美精品videossex| 欧美激情高清一区二区三区| 一本大道久久a久久精品| 免费观看人在逋| 中文字幕精品免费在线观看视频| 精品国产一区二区三区久久久樱花| 好男人视频免费观看在线| 精品久久久久久久毛片微露脸 | 久久午夜综合久久蜜桃| 亚洲av美国av| 亚洲精品久久午夜乱码| 九草在线视频观看| 国产成人a∨麻豆精品| 夫妻性生交免费视频一级片| 夜夜骑夜夜射夜夜干| 男女免费视频国产| 水蜜桃什么品种好| 久久99精品国语久久久| 国产成人欧美| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 日韩视频在线欧美| svipshipincom国产片| 久久亚洲国产成人精品v| 亚洲欧美日韩高清在线视频 | 亚洲欧美日韩另类电影网站| 91国产中文字幕| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 国产激情久久老熟女| 亚洲精品一二三| 亚洲 欧美一区二区三区| 午夜福利在线免费观看网站| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 欧美精品av麻豆av| 一二三四社区在线视频社区8| 真人做人爱边吃奶动态| 人体艺术视频欧美日本| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o | 久久精品亚洲av国产电影网| 悠悠久久av| 少妇人妻久久综合中文| 在线观看一区二区三区激情| 一级毛片电影观看| 中文字幕人妻丝袜一区二区| 91精品国产国语对白视频| 久久人妻福利社区极品人妻图片 | cao死你这个sao货| 麻豆乱淫一区二区| 亚洲美女黄色视频免费看| 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 国产午夜精品一二区理论片| 欧美久久黑人一区二区| 看十八女毛片水多多多| 高清欧美精品videossex| 日韩人妻精品一区2区三区| 欧美日韩黄片免| 亚洲国产av影院在线观看| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 午夜福利,免费看| 亚洲成人手机| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 国产精品 欧美亚洲| 久久精品国产亚洲av涩爱| 99九九在线精品视频| 欧美精品一区二区大全| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| 国产日韩欧美在线精品| 亚洲欧洲精品一区二区精品久久久| 九草在线视频观看| 一本综合久久免费| 久久精品成人免费网站| 三上悠亚av全集在线观看| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 国产av国产精品国产| 久久人妻熟女aⅴ| 午夜两性在线视频| 亚洲欧美成人综合另类久久久| 日本欧美视频一区| 国产一区二区 视频在线| 90打野战视频偷拍视频| 一边摸一边抽搐一进一出视频| 欧美精品一区二区免费开放| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放| 女人爽到高潮嗷嗷叫在线视频| 男女边摸边吃奶| 久久久久久久国产电影| 国产男人的电影天堂91| 人妻一区二区av| 女人爽到高潮嗷嗷叫在线视频| 1024视频免费在线观看| 亚洲专区中文字幕在线| 高清av免费在线|