鄒小波,趙 號(hào),石吉勇,王 圣,翟曉東,胡雪桃
?
基于超聲成像技術(shù)的火腿腸質(zhì)構(gòu)分析與等級(jí)判別
鄒小波,趙 號(hào),石吉勇,王 圣,翟曉東,胡雪桃
(江蘇大學(xué)食品與生物工程學(xué)院,鎮(zhèn)江 212013)
為了研究超聲成像技術(shù)在火腿腸質(zhì)構(gòu)分析與等級(jí)判別方面應(yīng)用的可行性。通過對(duì)火腿腸蛋白質(zhì)、淀粉等理化指標(biāo)的測(cè)定將其分為特級(jí)、優(yōu)級(jí)、普通級(jí),并采集2個(gè)品牌3個(gè)等級(jí)的火腿腸共240份超聲圖像信息,在Matlab 7.0環(huán)境下提取圖像角二階矩、平均值等紋理特征值,最后利用線性判別式分析(linear discriminant analysis,LDA)和支持向量機(jī)(support vector machine,SVM)建立火腿腸的等級(jí)判別模型。結(jié)果表明:同品牌不同等級(jí)火腿腸超聲圖像、紋理特征值均具有較大差異,而同等級(jí)不同品牌火腿腸差異較小。建立的識(shí)別模型中:SVM優(yōu)于LDA模型,當(dāng)主成分為3時(shí),SVM模型對(duì)應(yīng)的校正集、預(yù)測(cè)集識(shí)別率均為100%,模型效果最佳。因此,超聲成像技術(shù)可實(shí)現(xiàn)火腿腸內(nèi)部質(zhì)構(gòu)的分析和等級(jí)的快速準(zhǔn)確識(shí)別,研究結(jié)果可為超聲成像技術(shù)在火腿腸內(nèi)部質(zhì)構(gòu)分析和等級(jí)判別方面的應(yīng)用提供參考。
質(zhì)構(gòu);圖像處理;模型;超聲成像;火腿腸;紋理特征;支持向量機(jī)
火腿腸營(yíng)養(yǎng)豐富、食用方便、風(fēng)味獨(dú)特且易于攜帶和儲(chǔ)藏,因此深受消費(fèi)者歡迎[1-2]。火腿腸質(zhì)構(gòu)情況是其質(zhì)地(如硬度、脆性、均勻性等)的綜合體現(xiàn),不同等級(jí)的火腿腸由于原料及比例的不同,往往質(zhì)構(gòu)情況不同。質(zhì)構(gòu)和等級(jí)與火腿腸食用品質(zhì)(口感、營(yíng)養(yǎng)價(jià)值等)密切相關(guān)。然而火腿腸為典型的肉糜制品,其內(nèi)部可能呈現(xiàn)一定不均勻,導(dǎo)致其局部品質(zhì)未達(dá)到實(shí)際等級(jí),因此對(duì)火腿腸等級(jí)的快速有效判別可幫助生產(chǎn)企業(yè)實(shí)現(xiàn)產(chǎn)品質(zhì)量的嚴(yán)格把控。多年以來(lái),國(guó)內(nèi)外常用感官評(píng)定法[3]對(duì)火腿腸質(zhì)構(gòu)情況進(jìn)行分析或等級(jí)判定,感官評(píng)定法具有快速、低成本等優(yōu)點(diǎn),但感官評(píng)定結(jié)果與評(píng)價(jià)員的情緒、嗜好、健康狀況等不穩(wěn)定因素有關(guān),具有一定的人為誤差,不利于標(biāo)準(zhǔn)化生產(chǎn)[4]。近年來(lái),許多學(xué)者嘗試通過質(zhì)構(gòu)儀等對(duì)火腿腸物理性質(zhì)進(jìn)行精確測(cè)定(例如彈性、硬度、黏附性等),以建立火腿腸物理性質(zhì)檢測(cè)方法及相應(yīng)標(biāo)準(zhǔn)[5],但檢測(cè)方法大多采用“以點(diǎn)代面”的方式,無(wú)法做到全面直觀且目前對(duì)不同等級(jí)火腿腸的質(zhì)構(gòu)特性評(píng)價(jià)仍以主觀判斷為主,缺乏系統(tǒng)、準(zhǔn)確的定量研究。
超聲波是一種頻率高于20 kHz的機(jī)械波[6],具有安全、高效、能穿透不透光物質(zhì)等優(yōu)點(diǎn)。超聲波依據(jù)攜帶的能量大小可分為功率超聲波與檢測(cè)超聲波[7],功率超聲波能量大,常被用于提取[8-9]、清洗[10]等食品加工領(lǐng)域;檢測(cè)超聲波能量小,常被用于組分測(cè)定、品質(zhì)監(jiān)測(cè)[11]等。超聲成像技術(shù)為超聲檢測(cè)技術(shù)的一個(gè)分支,其通過檢測(cè)超聲波對(duì)試樣全面掃描,利用超聲波對(duì)組織結(jié)構(gòu)變化的敏感性,將試樣反射回波處理后獲取試樣內(nèi)部超聲圖像,以進(jìn)行試樣內(nèi)部全面無(wú)損直觀的檢測(cè)[12],目前已在醫(yī)學(xué)診斷[13-14]與工業(yè)檢測(cè)[15-16]上得到廣泛應(yīng)用。然而超聲成像檢測(cè)技術(shù)在食品檢測(cè)領(lǐng)域還處于起步階段,僅有少量報(bào)道,仇登高等[17]利用超聲成像技術(shù),通過對(duì)超聲圖像特征值的分析,成功實(shí)現(xiàn)了對(duì)大西洋鮭早期性別的識(shí)別。不同等級(jí)的火腿腸具有不同原材料配比,質(zhì)構(gòu)有所不同,而超聲波對(duì)質(zhì)構(gòu)變化具有敏感性[18],通過對(duì)火腿腸的超聲掃描,不同質(zhì)構(gòu)的火腿腸反射的超聲波大小、分布等不同,對(duì)應(yīng)不同紋理特征的火腿腸超聲圖像。因此可通過火腿腸超聲圖像分析其質(zhì)構(gòu)并進(jìn)行等級(jí)判別。
本文通過對(duì)火腿腸蛋白質(zhì)、脂肪、淀粉等理化指標(biāo)的測(cè)定將其分為特級(jí)、優(yōu)級(jí)、普通級(jí),并根據(jù)組分結(jié)果分析質(zhì)構(gòu)情況。利用超聲成像技術(shù)采集火腿腸的超聲圖像,并結(jié)合質(zhì)構(gòu)情況分析圖像間差異;同時(shí),通過圖像處理技術(shù)提取圖像的角二階矩、平均值等紋理特征變量,分別利用線性判別式分析、支持向量機(jī)分類方法對(duì)火腿腸進(jìn)行等級(jí)判別,研究可為超聲成像技術(shù)在火腿腸質(zhì)構(gòu)分析及等級(jí)判別方面的應(yīng)用提供參考。
試驗(yàn)樣本:選取市售品牌A火腿腸特級(jí)、優(yōu)級(jí)與普通級(jí)各20根;品牌B火腿腸特級(jí)、優(yōu)級(jí)與普通級(jí)各20根。
主要試劑:硫酸銅、硫酸鉀、硫酸、氫氧化鈉、石油醚等均購(gòu)自國(guó)藥集團(tuán)有限公司。
根據(jù)國(guó)標(biāo)GB/T 20712-2006[19]可知,火腿腸的等級(jí)主要由其成分含量確定,因此有必要進(jìn)行火腿腸成分含量測(cè)定,進(jìn)而標(biāo)定火腿腸等級(jí)以便后續(xù)建模分析。參照國(guó)標(biāo)GB 5009.3-2016中直接干燥法進(jìn)行水分含量的測(cè)定[20];參照國(guó)標(biāo)GB 5009.5-2016中凱氏定氮法進(jìn)行蛋白質(zhì)含量的測(cè)定[21];參照國(guó)標(biāo)GB 5009.6-2016中索氏抽提法進(jìn)行脂肪含量的測(cè)定[22];參照國(guó)標(biāo)GB 5009.9-2016中酸水解法進(jìn)行淀粉含量的測(cè)定[23]。根據(jù)各成分含量參照國(guó)標(biāo)GB/T 20712-2006將火腿腸分為特級(jí)、優(yōu)級(jí)及普通級(jí)。
采用TA-XT2i(英國(guó)SMS公司)質(zhì)構(gòu)儀進(jìn)行測(cè)定,質(zhì)構(gòu)測(cè)定條件:環(huán)境溫度20 ℃;P50探頭;測(cè)前、測(cè)試和測(cè)后速率分別為2、0.8、0.8 mm/s;測(cè)定間隔時(shí)間5 s;壓縮比70%;樣品規(guī)格為厚度15 mm,直徑25 mm的圓柱體。質(zhì)構(gòu)測(cè)定結(jié)果采用儀器自帶程序TPA-macro分析。
超聲成像裝置采用實(shí)驗(yàn)室自主研發(fā)的掃描超聲成像系統(tǒng),主要包括UTEX 320超聲波發(fā)射/接收器(UTEX SCIENTIFIC INSTRUMENTS INC., 加拿大),20 MHz點(diǎn)聚焦型超聲波探頭(OLYMPUS CORPORATION INC.,日本),三軸精密直線電機(jī)掃描機(jī)構(gòu)(珠海創(chuàng)峰精工機(jī)械有限公司),計(jì)算機(jī)(研華科技(中國(guó))有限公司)等,其示意圖與實(shí)物圖如圖1。經(jīng)試驗(yàn)優(yōu)化后,采集圖像的最佳試驗(yàn)參數(shù)為:脈沖電壓300 V;脈沖寬度25 ns;脈沖頻率800 Hz;增益35 dB;焦距:25.4 mm;分辨率0.1 mm;掃描速度5 mm/s。
1. 換能器 2. 水平臺(tái) 3. 三軸運(yùn)動(dòng)平臺(tái) 4. 控制柜 5. 運(yùn)動(dòng)控制卡 6. 計(jì)算機(jī) 7. 數(shù)據(jù)采集卡 8. 超聲信號(hào)發(fā)射/接收器 9. 樣品槽 10. 試樣
每根火腿腸隨機(jī)取2個(gè)點(diǎn)進(jìn)行超聲圖像采集,取點(diǎn)及圖像采集過程如下:將每根火腿腸平均分為兩段,分別隨機(jī)從兩段中取尺寸為2.5 cm×1.5 cm的小圓柱體,共240份;將火腿腸片段放置于已調(diào)節(jié)水平的平臺(tái)上(見圖1),設(shè)定圖像采集參數(shù)及掃描起始與終止點(diǎn)進(jìn)行圖像采集;所有試樣均在相同參數(shù)下進(jìn)行測(cè)試并編號(hào)。
紋理是反映區(qū)域內(nèi)灰度級(jí)的空間分布,可以用來(lái)表征超聲信號(hào)的分布狀況,進(jìn)而分析并評(píng)價(jià)火腿腸內(nèi)部質(zhì)構(gòu)情況。常用的紋理提取方法為統(tǒng)計(jì)方法,其中應(yīng)用最為廣泛的是灰度共生矩陣法(grey level co-occurrence matrix,GLCM)。為了保證更多的原始信息參與生成灰度共生矩陣,試驗(yàn)將回波信號(hào)歸一化處理并映射到0~255灰度級(jí),分別以0、45°、90°和135°方向計(jì)算灰度共生矩陣,并在各方向下提取常用的角二階矩(angular second moment,ASM)、對(duì)比度(contrast,CON)、相關(guān)性(correlation,COR)、逆差矩(homogeneity,HOM),共產(chǎn)生16個(gè)特征變量,再結(jié)合圖像的平均灰度值(average,AVG)、灰度方差(variance,VAR)最終得到18個(gè)紋理特征變量。其中,ASM反映圖像分布的均勻程度;CON可以理解為紋理清晰度;COR是用來(lái)衡量灰度共生矩陣的元素在行的方向上的相似程度;HOM用來(lái)表現(xiàn)紋理平滑度;AVG反映了超聲波反射量;VAR一定程度反映了反射信號(hào)分布情況[24]。
因同品牌的同一等級(jí)火腿腸采用原料比與工藝基本相同,則同一等級(jí)火腿腸具有相似的內(nèi)部質(zhì)構(gòu)與紋理特征,因此嘗試采用紋理特征進(jìn)行火腿腸等級(jí)判別。本試驗(yàn)擬采用常用的紋理分類方法線性判別式分析(linear discriminant analysis,LDA)、支持向量機(jī)(support vector machine,SVM)進(jìn)行火腿腸等級(jí)分類。LDA是一種基于投影思想判別樣品所屬類型的常用統(tǒng)計(jì)方法[25],SVM是一種結(jié)構(gòu)最小化準(zhǔn)則上的機(jī)器學(xué)習(xí)算法,通過學(xué)習(xí),其可以自動(dòng)尋找那些對(duì)分類有較好區(qū)分能力的支持向量,由此構(gòu)造出的分類器可以最大化類之間的間隔,使不同的樣本能夠被分類器分開[26]。
利用軟件SPSS 19.0進(jìn)行方差分析,利用軟件Matlab 7.0進(jìn)行紋理提取與模型建立。
表1為根據(jù)國(guó)標(biāo)將所有樣本重新劃分后的結(jié)果,從表中可知,特級(jí)火腿腸蛋白質(zhì)含量最高、淀粉含量最少,普通級(jí)蛋白質(zhì)含量最少、淀粉含量最高;同等級(jí)不同品牌各組分差異較小。根據(jù)文獻(xiàn)[27]可知,蛋白質(zhì)經(jīng)過高溫?cái)嚢柽^后會(huì)變性、凝固粘合形成網(wǎng)狀結(jié)構(gòu),同時(shí)糊化后的淀粉將形成膠體并填充到網(wǎng)間隙中形成交融混合體,當(dāng)?shù)鞍踪|(zhì)較多、淀粉較少時(shí)交融混合體空隙小、組織結(jié)構(gòu)良好且穩(wěn)定,具有較好的持水性;當(dāng)?shù)鞍踪|(zhì)含量較少、淀粉較高時(shí),網(wǎng)狀結(jié)構(gòu)間隙多、大,且當(dāng)火腿腸在儲(chǔ)藏時(shí),由于溫度下降使得淀粉發(fā)生回生,重新組成混合微晶束,使得火腿腸交融體結(jié)構(gòu)松散。因此不同的組分含量直接導(dǎo)致火腿腸不同的質(zhì)構(gòu)情況。
表1 各等級(jí)火腿腸各組分測(cè)定結(jié)果
注:表中數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)偏差,采用Duncan’s multiple range test方法分析,同品牌中同一行不同字母表示差異顯著(<0.05,=40),下同。
Note: The data in the table are mean ± standard deviation. Analysis by Duncan's multiple range test showed that there were significant differences (<0.05,= 40) in different letters of the same line in the same brand, the same as be low.
從表2可知同品牌不同等級(jí)火腿腸各項(xiàng)質(zhì)構(gòu)具有顯著差異(<0.05),不同品牌同等級(jí)火腿腸差異較小且兩品牌火腿腸質(zhì)構(gòu)值均具有相同趨勢(shì)。硬度是火腿腸保持形狀的內(nèi)部結(jié)合力的外部體現(xiàn);脆性是牙齒對(duì)火腿腸破碎時(shí)產(chǎn)生的易碎感覺;黏著性是剝離附著(牙、空腔、舌)火腿腸所需要的力[4]?;鹜饶c的質(zhì)構(gòu)值因蛋白質(zhì)、淀粉和含水率的不同而呈現(xiàn)出特定的變化。由2.1中分析可知,特級(jí)火腿腸凝膠體最為穩(wěn)定,普通級(jí)最差,因此特級(jí)的硬度、脆性均最高,普通級(jí)最差。但黏著性與硬度、脆性趨勢(shì)不一,可能在測(cè)定過程中普通級(jí)火腿腸內(nèi)部穩(wěn)定性較差,破碎嚴(yán)重,使得樣品與探頭接觸的表面積增大從而導(dǎo)致黏著性增大,這也從側(cè)面反映了普通級(jí)火腿腸內(nèi)部穩(wěn)定性較差。
表2 各等級(jí)火腿腸質(zhì)構(gòu)測(cè)定結(jié)果
圖2為從品牌A與品牌B各等級(jí)火腿腸超聲圖像(共240份)中隨機(jī)抽取的1幅圖像,觀察圖像可知,同一品牌中不同等級(jí)火腿腸超聲圖像存在一定差異;特級(jí)火腿腸圖像較其他等級(jí)反射回波強(qiáng)度明顯偏小,但部分反射回波的聚集使得圖像均一性較差;優(yōu)級(jí)火腿腸圖像反射回波強(qiáng)度較特級(jí)偏大,反射回波聚集情況增多、聚集面積增大使得圖像相對(duì)特級(jí)均一性稍好;普通級(jí)火腿腸圖像反射回波強(qiáng)度最大,但由于回波聚集情況的急劇增多與回波強(qiáng)度的增大,使得圖像主觀感覺最為均一;不同品牌的同一等級(jí)火腿腸超聲圖像較為相似,其回波強(qiáng)度分布具有相似的趨勢(shì)。根據(jù)超聲反射原理[28]可知,當(dāng)試樣內(nèi)部質(zhì)構(gòu)發(fā)生變化時(shí),超聲波將會(huì)被反射,因此存在回波的區(qū)域其內(nèi)部質(zhì)構(gòu)特性發(fā)生了變化且回波強(qiáng)度越大變化程度越大;根據(jù)2.1分析結(jié)果可知普通級(jí)火腿腸內(nèi)部交融體結(jié)構(gòu)松散,部分淀粉在內(nèi)部產(chǎn)生微晶束,因此圖像上回波強(qiáng)度較大、聚集情況較多,圖像主觀感覺較為均一;特級(jí)火腿腸交融混合體的空隙小且穩(wěn)定,因此圖像回波強(qiáng)度小且聚集情況少。根據(jù)測(cè)得各組分含量可知,同等級(jí)不同品牌火腿腸在主要組分含量上相當(dāng),只是在微量成分上有所區(qū)別(例如風(fēng)味物質(zhì)、香辛料等),可能這些微量物質(zhì)對(duì)質(zhì)構(gòu)的影響低于超聲對(duì)質(zhì)構(gòu)變化的敏感性,最終導(dǎo)致同等級(jí)不同品牌火腿腸超聲圖像較為相似。經(jīng)分析對(duì)比各等級(jí)火腿腸所有超聲圖像可知,不同品牌同等級(jí)火腿腸之間超聲圖像特征差異較小,相同品牌不同等級(jí)火腿腸超聲圖像特征具有一定差異。表3的紋理特征值反映了同品牌不同等級(jí)火腿腸紋理特征值具有顯著差異(<0.05),不同品牌同等級(jí)差異較小。同時(shí)從表中可知,同品牌不同等級(jí)火腿腸的AVG與ASM差異最為顯著,其中各等級(jí)火腿腸的AVG變化趨勢(shì)與超聲圖像相符;ASM是紋理均勻性的度量,其值越大表明一種均一和規(guī)則的紋理模式[29],但本試驗(yàn)中火腿腸的ASM變化趨勢(shì)與超聲圖像并未表現(xiàn)出對(duì)應(yīng)關(guān)系,仍有待進(jìn)一步研究。
注:標(biāo)尺為超聲波回波強(qiáng)度(占原始強(qiáng)度百分比)
表3 各等級(jí)火腿腸超聲圖像部分紋理特征值提取結(jié)果
注:表中數(shù)據(jù)是經(jīng)單因素方差分析刷選具有顯著差異(<0.05)的各等級(jí)紋理特征值。
Note: The data in the table were selected by one-way analysis of variance with significant differences (P <0.05) among all texture features of different grades of sausages.
2.4.1 主成分分析
圖3為3個(gè)等級(jí)共240份火腿腸紋理特征值經(jīng)主成分分析后(principal component analysis,PCA)得到的三維主成分得分圖,其中前3個(gè)主成分的貢獻(xiàn)率分別為80.96%、12.56%和4.02%,累計(jì)貢獻(xiàn)率達(dá)到97.54%,基本代表了全部信息。從圖中可知,同等級(jí)不同品牌火腿腸未能分開,而同一品牌不同等級(jí)基本被分開,所有樣本被按照普通級(jí)、優(yōu)級(jí)及特級(jí)分為3類,這與圖像分析結(jié)果類似。每等級(jí)樣本分布較散,部分等級(jí)還出現(xiàn)交叉,可能因?yàn)榛鹜饶c為肉糜制品,難以做到統(tǒng)一均勻。經(jīng)以上分析可知,將紋理特征結(jié)合PCA可將不同等級(jí)火腿腸大致區(qū)分開來(lái)。
圖3 三維主成分得分圖
2.4.2 基于LDA的判別模型
模型建立時(shí)常常將樣本劃分為校正集與預(yù)測(cè)集,其中校正集是用于建立識(shí)別模型的樣本集合,預(yù)測(cè)集是用于驗(yàn)證模型預(yù)測(cè)準(zhǔn)確性的樣本集合。因此在主成分分析的基礎(chǔ)上,將各等級(jí)紋理特征值(共240份樣本)隨機(jī)分配,得到有162份樣本數(shù)據(jù)的校正集與有78份數(shù)據(jù)的預(yù)測(cè)集,并利用LDA對(duì)其進(jìn)行分析。將各主成分得分作為模型的輸入,不同等級(jí)的火腿腸所對(duì)應(yīng)的類別作為輸出,模型結(jié)果如圖4。從圖中可看到當(dāng)主成分?jǐn)?shù)為3,模型校正集識(shí)別率為95.06%,其中普通級(jí)中有3個(gè)樣本誤判為優(yōu)級(jí),優(yōu)級(jí)中有1個(gè)樣本被誤判為特級(jí),特級(jí)中有4個(gè)樣本被誤判為優(yōu)級(jí);預(yù)測(cè)集識(shí)別率為92.31%,其中普通級(jí)中有2個(gè)樣本誤判為優(yōu)級(jí),優(yōu)級(jí)沒有被誤判,特級(jí)中有2個(gè)樣本被誤判為優(yōu)級(jí)、1個(gè)樣本被誤判為普通級(jí),模型此時(shí)達(dá)到最佳,此后識(shí)別率先下降再上升,可能是冗余信息的進(jìn)入降低了模型的識(shí)別率。
圖4 基于LDA的各主成分的識(shí)別率
2.4.3 基于SVM的判別模型
從上面的LDA模型判別結(jié)果看,該線性算法對(duì)火腿腸等級(jí)的分類判別不是特別理想,因此繼續(xù)考慮使用非線性的算法建立模型。運(yùn)行支持向量機(jī)算法時(shí)采用徑向基函數(shù),并對(duì)核函數(shù)的參數(shù)(懲罰系數(shù)和正規(guī)化系數(shù))進(jìn)行優(yōu)化,同樣采用主成分作為模型的輸入向量。以訓(xùn)練集交互驗(yàn)證均方根誤差(rootsquare error of cross validation, RMSECV)值最小為指標(biāo),經(jīng)處理得出最佳主成分?jǐn)?shù)為3,最佳參數(shù)對(duì)(,)為(30.6991,7.5197)。如圖5所示,SVM模型隨著主成分?jǐn)?shù)的增加,預(yù)測(cè)集識(shí)別率先增加,后下降,再上升,與LDA趨勢(shì)相符,同時(shí)對(duì)比分析圖中各主成分?jǐn)?shù)時(shí)的識(shí)別率可知,當(dāng)主成分為3時(shí)模型最優(yōu),校正集識(shí)別率為100%,預(yù)測(cè)集識(shí)別率100%。說明前3個(gè)主成分基本包含了所有的紋理特征信息,與PCA分析相符。說明利用超聲成像技術(shù)結(jié)合SVM法對(duì)不同等級(jí)火腿腸進(jìn)行識(shí)別是可行的。
圖5 基于SVM的各主成分的識(shí)別率
2.4.4 模型比較
由上述模型識(shí)別結(jié)果可知,SVM識(shí)別率較LDA高,可以從分類鑒別算法的原理進(jìn)行解釋。LDA是一個(gè)經(jīng)典的線性分類方法,而基于徑向基函數(shù)的SVM 是非線性的方法,非線性的方法自身具有更強(qiáng)的魯棒性和自學(xué)習(xí)、自適應(yīng)性[30],當(dāng)面臨一些復(fù)雜問題的時(shí)候,非線性的方法更為適合;同時(shí)SVM為一種“監(jiān)督學(xué)習(xí)分類”方法,遵循結(jié)構(gòu)風(fēng)險(xiǎn)最小化準(zhǔn)則來(lái)構(gòu)造決策超平面[31],通過不斷修改參數(shù)來(lái)優(yōu)化結(jié)果,在復(fù)雜情況下能獲得較好的分類效果。因此,在本研究中建立分類模型時(shí),SVM法要優(yōu)于LDA法。
本文對(duì)不同品牌、等級(jí)火腿腸的質(zhì)構(gòu)進(jìn)行了分析,并利用超聲成像技術(shù)對(duì)不同品牌、等級(jí)火腿腸建立了快速識(shí)別模型,研究結(jié)果表明:
1)同品牌不同等級(jí)火腿腸的質(zhì)構(gòu)具有顯著差異(<0.05),而同等級(jí)不同品牌火腿腸質(zhì)構(gòu)差異較小;特級(jí)火腿腸內(nèi)部組織穩(wěn)定性好,普通級(jí)火腿腸內(nèi)部組織穩(wěn)定性較差。
2)同品牌不同等級(jí)火腿腸超聲圖像具有較大差異,同等級(jí)不同品牌火腿腸差異較?。煌放撇煌燃?jí)火腿腸紋理特征值差異顯著(<0.05),同等級(jí)不同品牌火腿腸紋理特征值差異較小;紋理特征值結(jié)合PCA未能將不同品牌火腿腸區(qū)分開,但不同等級(jí)火腿腸大致按照等級(jí)被區(qū)分開來(lái)。
3)利用紋理特征值建立的識(shí)別模型中LDA模型對(duì)應(yīng)的校正集識(shí)別率為95.06%,預(yù)測(cè)集識(shí)別率為92.31%;SVM模型對(duì)應(yīng)的校正集識(shí)別率為100%,預(yù)測(cè)集識(shí)別率為100%,均具有較高的識(shí)別率。
研究表明利用超聲成像技術(shù)對(duì)火腿腸內(nèi)部質(zhì)構(gòu)分析與等級(jí)判別是可行的,可為不同等級(jí)火腿腸質(zhì)構(gòu)分析和等級(jí)判別提供參考。
[1] 趙改名,郝紅濤,田瑋,等. 利用質(zhì)構(gòu)值對(duì)火腿腸進(jìn)行分級(jí)的研究[J]. 食品科學(xué),2013,34(7):28-33. Zhao Gaiming, Hao Hongtao, Tian Wei, et al. Grade identification of sausages based on instrumental texture parameters[J]. Food Science, 2013, 34(7): 28-33. (in Chinese with English abstract)
[2] Trevino T D, Jr H A, Machado T J. Influence of sorghum syrup as a sweetener in fresh pork sausage patties on oxidation during retail display compared to corn syrup[J]. Meat Science, 2016, 112(3): 126-132.
[3] 程煥,賀瑋,趙雷,等. 紅茶與綠茶感官品質(zhì)與其化學(xué)組分的相關(guān)性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):375-380. Cheng Huan, He Wei, Zhao Lei, et al. Correlation between sensory attributes and chemical components of black and green tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 375-380. (in Chinese with English abstract)
[4] 郝紅濤,趙改名,柳艷霞,等. 利用硬度、脆性和黏著性對(duì)火腿腸等級(jí)的判別分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(10):2182-2188.Hao Hongtao, Zhao Gaiming, Liu Yanxia, et al. Discriminant analysis of the grades of ham sausages based on hardness, fracturability and adhesiveness properties[J]. Scientia Agri-cul-tura Sinica, 2010, 43(10): 2182-2188. (in Chinese with English abstract)
[5] Spaziani M, Del Torre M, Stecchini M L. Changes of physicochemical, microbiological, and textural properties during ripening of Italian low-acid sausages. Proteolysis, sensory and volatile profiles[J]. Meat Science, 2009, 81(1): 77-85.
[6] 周向華,劉東紅,葉興乾. 低能量超聲檢測(cè)技術(shù)在食品工業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(3):292-295. Zhou Xianghua, Liu Donghong, Ye Xingqian. Application of low-intensity ultrasonic measurements in the food industry [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3): 292-295. (in Chinese with English abstract)
[7] Mohammadi V, Ghasemi-Varnamkhasti M, González L. Analytical measurements of ultrasound propagation in dairy products: A review[J]. Trends in Food Science & Technology, 2017, 61(3): 38-48.
[8] 王喜波,張澤宇,葛洪如,等. 超聲輔助制備抗凍融大豆分離蛋白工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):272-278. Wang Xibo, Zhang Zeyu, Ge Hongru, et al. Processing optimization for improving freeze-thaw stability of soybean protein isolate by ultrasonic assisted glycosylation[J]. Transactions of the Chinese Society of Agricultural En-gineering (Transactions of the CSAE), 2016, 32(14): 272-278. (in Chinese with English abstract)
[9] 李茉,倪元穎,彭郁,等. 超聲輔助提取辣椒籽蛋白工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):309-314. Li Mo, Ni Yuanying, Peng Yu. Optimization of ultrasound- assisted extraction of capsicum seed protein isolate [J]. Transactions of the Chinese Society of Agricultural En-gineering (Transactions of the CSAE), 2016, 32(24): 309-314. (in Chinese with English abstract)
[10] 馬少輝,張學(xué)軍. 超聲波紅棗清洗機(jī)工作參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):215-220. Ma Shaohui, Zhang Xuejun. Working parameters optimiz-ation of ultrasonic cleaning machine for jujube[J]. Trans-actions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 215-220. (in Chinese with English abstract)
[11] Chandrapala J, Oliver C, Kentish S, et al. Ultrasonics in food processing–food quality assurance and food safety[J]. Trends in Food Science & Technology, 2012, 26(2): 88-98.
[12] 姜燕. 超聲顯微系統(tǒng)自動(dòng)對(duì)焦技術(shù)及其應(yīng)用研究[D]. 杭州:浙江大學(xué),2012. Jiang Yan. Auto-focusing Technique for Scanning Acoustic Microscope and its Application[D]. Hangzhou: ZheJiang Univ-ersity, 2012. (in Chinese with English abstract)
[13] Soneji N, Peng P W. Ultrasound-guided interventional proce-dures in pain medicine: A review of anatomy, sono-an--atomy, and procedures: Part VI: Ankle Joint.[J]. Regional Anesthesia & Pain Medicine, 2016, 41(1): 99-109.
[14] Stone D E, Quiroz L H. Ultrasound Imaging of the Pelvic Floor[J]. Obstetrics & Gynecology Clinics of North America, 2016, 43(1): 141-153.
[15] Thornton M, Han L, Shergold M. Progress in NDT of resistance spot welding of aluminium using ultrasonic C-scan [J]. NDT & E International, 2012, 48(2):30-38.
[16] Wagner N, Eldar Y C, Friedman Z. Compressed beam-forming in ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4643-4657.
[17] 仇登高,徐世宏,劉鷹,等. 超聲成像技術(shù)在大西洋鮭早期性別及發(fā)育期鑒別的應(yīng)用研究[J]. 海洋科學(xué),2016,40(6):23-29. Qiu Denggao, Xu Shihong, Liu Ying, et al. The application of ultrasound imaging technology in the early determination of sex and gonadal development in Atlantic salmon (Salmo salar)[J]. Marine Sciences, 2016, 40(6): 23-29. (in Chinese with English abstract)
[18] 丁原濤,吳暉. 超聲波技術(shù)在食品工業(yè)中的應(yīng)用[J]. 糧油加工與食品機(jī)械,2004(5):67-69.
[19] 全國(guó)食品工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)肉禽蛋制品分技術(shù)委員會(huì). 火腿腸:GB/T 20712-2006[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2006:2-3.
[20] 全國(guó)食品工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)肉禽蛋制品分技術(shù)委員會(huì). 食品中水分的測(cè)定: GB 5009.3-2016[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016:1-2.
[21] 全國(guó)食品工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)肉禽蛋制品分技術(shù)委員會(huì). 食品中蛋白質(zhì)的測(cè)定: GB 5009.5-2016[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016:1-4.
[22] 全國(guó)食品工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)肉禽蛋制品分技術(shù)委員會(huì). 食品中脂肪的測(cè)定:GB 5009.6-2016[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016:1-2.
[23] 全國(guó)食品工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)肉禽蛋制品分技術(shù)委員會(huì). 食品中淀粉的測(cè)定:GB 5009.9-2016[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016:5-7.
[24] Zhu Y, Zou X, Shen T, et al. Determination of total acid content and moisture content during solid-state fermentation processes using hyperspectral imaging [J]. Journal of Food Engineering, 2016, 174: 75-84.
[25] 蔡健榮,劉夢(mèng)雷,孫力,等. 基于改進(jìn)慣性矩算法的冷鮮豬肉新鮮度激光散斑圖像檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):268-274. Cai Jiangrong, Liu Menglei, Sun Li, et al. Laser speckle image detection of chilled pork freshness based on improved moment of inertia algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 268-274. (in Chinese with English abstract)
[26] 胡曉華,劉偉,劉長(zhǎng)虹,等. 基于太赫茲光譜和支持向量機(jī)快速鑒別咖啡豆產(chǎn)地[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):302-307. Hu Xiaohua, Liu Wei, Liu Changhong, et al. Rapid identific-ation of producing area of coffe bean based on terahertz spectroscopy and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans-actions of the CSAE), 2017, 33(9): 302-307. (in Chinese with English abstract)
[27] 從浩,王海濱. 魚骨粉添加量對(duì)鮰魚魚肉火腿腸色度、質(zhì)構(gòu)及感官特性的影響[J]. 食品科學(xué),2012,33(13):83-86. Cong Hao, Wang Haibin. Effect of channel catfish bone meal addition on color, textural properties and sensory evaluation of fish sausages[J]. Food Science, 2012, 33(13): 83-86. (in Chinese with English abstract)
[28] 杜功煥,朱哲民,龔秀芬. 聲學(xué)基礎(chǔ)[M]. 南京:南京大學(xué)出版社,2012.
[29] Lin C H, Liu C W, Chen H Y. Image retrieval and classific-ation using adaptive local binary patterns based on texture features[J]. Image Processing Iet, 2012, 6(7):822-830.
[30] Chen Q, Hui Z, Zhao J, et al. Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost– OLDA classification algorithm[J]. LWT - Food Science and Technology, 2014, 57(2): 502-507.
[31] 鄒小波,申婷婷,朱瑤迪,等. 基于高光譜圖像的香醋醋醅均勻性快速判別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):215-220. Zou Xiaobo, Shen Tingting, Zhu Yaodi, et al. Quick discrimination of uniformity degree of Zhenjiang balsamic vinegar grains based on hyperspectral imaging techo-logy[J]. Transactions of The Chinese Society for Agricultural Machinery, 2016, 47(1): 215-220. (in Chinese with English abstract)
鄒小波,趙 號(hào),石吉勇,王 圣,翟曉東,胡雪桃.基于超聲成像技術(shù)的火腿腸質(zhì)構(gòu)分析與等級(jí)判別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):284-290. doi:10.11975/j.issn.1002-6819.2017.23.037 http://www.tcsae.org
Zou Xiaobo, Zhao Hao, Shi Jiyong, Wang Sheng, Zhai Xiaodong, Hu Xuetao. Texture analysis and grade discriminant of sausages based on ultrasound imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 284-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.037 http://www.tcsae.org
Texture analysis and grade discriminant of sausages based on ultrasound imaging
Zou Xiaobo, Zhao Hao, Shi Jiyong, Wang Sheng, Zhai Xiaodong, Hu Xuetao
(212013,)
Sausage is an emulsification-type, popular meat product, because of its unique flavor, high in nutrition and easy to store procedures. According to national standards of China (GB/T 20712-2006), sausage can be divided into three types of grades (general, excellent and premium). Traditional sausage grade detection methods are laborious and time consuming.So, it is imperative to develop a rapid and simple detection method. In this research, ultrasound imaging system was evaluated as rapid and precise detection method to differentiate between different grades of sausage. And, the texture of the sausage was also analyzed simultaneously. A total of 120 sausage samples from 2 different manufacturers were collected from local supermarkets of Zhenjiang, Jiangsu, China. From each sausage, small sample (2.5 cm×1.5 cm) were obtained for ultrasound imaging, moisture, starch and protein measurement. These measurements were utilized to divide sausages into general, excellent and premium quality grades. Ultrasound imaging system worked with the UTEX 320 equipment in pulse echo mode. The parameters of ultrasound imaging system were as follow: the pulse voltage; 300 V, the pulse repetition frequency; 800 Hz, the gain; 35 dB, and the scanning speed was 5 mm/s. Total of 240 ultrasound images (2 brands 3 grades, each had 40 samples) were collected by ultrasound imaging system. Images generated from different grades had obvious difference, however, different brands’ images with the same grade were similar. Grey level co-occurrence matrix (GLCM) was generated in 0, 45, 90 and 135° directions, respectively. The commonly used angular second moment (ASM), contrast (CON), correlation (COR) and homomorphity (HOM) were extracted in all directions, and a total of 16 texture feature variables were generated. Combined with the average average image (AVG), variance (VAR) of the image, 18 texture feature variables were finally obtained. Furthermore, the textural features of different grades had significant difference (<0.05). All the texture feature values were randomly divided into calibration set (162 samples data) and prediction set (78 samples data) to build calibration model and predication model. Principal component analysis (PCA) was performed to simple variable because that texture feature always carried redundant data and examined the qualitative difference of these sausage grades using the first 3 score vectors. From the results of PCA, all the samples of sausage were divided into three classes according to the grade of the sample. However, the brand of the sausages failed to be distinguished. The 3 groups of different class of sausages were almost apart from each other in the space of the first 3 principal components (PCs), although there were some overlaps among the groups, because the emulsification-type meat product hardly to achieve well-distributed in each part. Results from PCA was in accordance to the results of image analysis. The first 3 PCs accounted for the all variations of 97.54%, representing all the information of the variables. Therefore, all the samples were divided into 3 classes based on different grades. The linear discriminant analysis (LDA), used in statistics, pattern recognition and machine learning to find a linear combination of features that characterizes or separates two or more classes of objects or events, and support vector machine(SVM), as a learning algorithm used for classification and regression tasks, was used to get the identification model. All the models relatively had high recognition rate. The identification results of the SVM were compared with the LDA. From the comparison, it showed that the discrimination accuracy of all the 3 classes of sausages using the SVM was up to 100% in prediction set and 100% in calibration set, respectively. From the results, it can be concluded that the ultrasound imaging technology can be used as a powerful and attractive tool to identify and discriminate different grades of sausages. The study could provide a reference for ultrasonic imaging technology’s appalication in discriminating different grades of sausages.
texture; image processing; model; ultrasound imaging; sausages; texture features; support vector machine
10.11975/j.issn.1002-6819.2017.23.037
R445.1
A
1002-6819(2017)-23-0284-07
2017-08-27
2017-11-13
國(guó)家自然基金(31671844);國(guó)家科技支撐項(xiàng)目(2015BAD17B04);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0401104);國(guó)家自然科學(xué)基金(31601543);江蘇省自然科學(xué)基金(BK20160506)
鄒小波,博士生導(dǎo)師,教授,主要從事食品無(wú)損檢測(cè)研究。 Email:Zou_xiaobo@ujs.edu.cn