胡祝華,張逸然,趙瑤池,3※,曹 路,白 勇,黃夢(mèng)醒
?
權(quán)重約束AdaBoost魚眼識(shí)別及改進(jìn)Hough圓變換瞳孔智能測(cè)量
胡祝華1,2,張逸然1,趙瑤池1,3※,曹 路1,白 勇1,2,黃夢(mèng)醒1,2
(1. 海南大學(xué)信息科學(xué)技術(shù)學(xué)院,海口 570228;2. 海南大學(xué)南海海洋資源利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,???570228; 3. 天津大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,天津 330350)
針對(duì)傳統(tǒng)魚眼瞳孔直徑測(cè)量方法耗時(shí)、耗力,且數(shù)據(jù)主觀性強(qiáng)的問題,該文提出基于權(quán)重約束AdaBoost和改進(jìn)Hough圓變換的魚眼瞳孔直徑智能測(cè)量方法。首先,利用工業(yè)相機(jī)采集實(shí)驗(yàn)板上的魚圖像,從正負(fù)魚眼圖像樣本中訓(xùn)練出基于權(quán)重約束AdaBoost算法的魚眼分類器;然后,采用該分類器對(duì)試驗(yàn)圖像進(jìn)行檢測(cè),將檢測(cè)到的魚眼局部圖從整體圖中分離出來(lái);最后,采用改進(jìn)的Hough圓變換檢測(cè)出魚眼的瞳孔,并計(jì)算得到瞳孔直徑。對(duì)100條金鯧魚進(jìn)行試驗(yàn),魚眼分類精度達(dá)97.1%,瞳孔正確檢測(cè)率達(dá)94.2%,相比改進(jìn)前分別提升了1.7個(gè)百分點(diǎn)和10.5個(gè)百分點(diǎn),與人工測(cè)量瞳孔直徑值的平均偏差為6.5%,比改進(jìn)前低了5.9個(gè)百分點(diǎn),總的平均測(cè)量時(shí)間為324.371 ms,比改進(jìn)前減少了10.707 ms。試驗(yàn)證明:該文提出的方法能夠精確、實(shí)時(shí)、自動(dòng)地測(cè)量出魚眼瞳孔的直徑,有效避免了傳統(tǒng)測(cè)量方式的復(fù)雜性和測(cè)量數(shù)據(jù)的主觀性,可為魚體生長(zhǎng)狀況評(píng)估、良種選育提供重要參考。
水產(chǎn)養(yǎng)殖;圖像處理;測(cè)量;魚眼識(shí)別;瞳孔;計(jì)算機(jī)視覺;AdaBoost;改進(jìn)Hough 圓變換
在智慧和健康水產(chǎn)養(yǎng)殖中,魚體特征參數(shù)具有重要的意義[1]。在魚類良種選育、魚的等級(jí)、新鮮度分類評(píng)價(jià)方面,魚的體長(zhǎng)、體寬尤其是魚眼瞳孔數(shù)據(jù)是重要的評(píng)判參數(shù)。然而,傳統(tǒng)的魚類體征參數(shù)的測(cè)量方法是在魚體離水的情況下用直尺和游標(biāo)卡尺等測(cè)量工具分步多次測(cè)量的,而且為了減少魚類的強(qiáng)烈應(yīng)激反應(yīng),需要先將魚麻醉后再進(jìn)行測(cè)量,這樣不僅耗時(shí)、耗力,并且在測(cè)量后部分測(cè)量活體可能會(huì)出現(xiàn)停止進(jìn)食,甚至無(wú)法?;畹默F(xiàn)象,對(duì)魚類的生長(zhǎng)和存活都造成了難以逆轉(zhuǎn)的影響[2-4]。因此,水產(chǎn)養(yǎng)殖者希望能夠?qū)崿F(xiàn)魚類體征測(cè)量的完全自動(dòng)化、精準(zhǔn)化和無(wú)接觸化,而使用計(jì)算機(jī)視覺和圖像處理技術(shù)來(lái)測(cè)量魚的各項(xiàng)體征指標(biāo)不僅可以實(shí)現(xiàn)自動(dòng)化、無(wú)接觸化,還能夠解決人工測(cè)量數(shù)據(jù)主觀性高的問題,很大程度上提高了測(cè)量效率和準(zhǔn)確度,因此,應(yīng)用計(jì)算機(jī)視覺和圖像處理的方法到水產(chǎn)養(yǎng)殖領(lǐng)域是國(guó)內(nèi)外在此方面研究的趨勢(shì)。
國(guó)內(nèi)外在利用計(jì)算機(jī)視覺等技術(shù)在魚體提取、體征數(shù)據(jù)測(cè)量和進(jìn)一步分級(jí)、分類方面已開展了一些研究[5]。王文靜等[6]利用計(jì)算機(jī)視覺技術(shù)、聚類法將魚體圖像從背景中分離出來(lái),計(jì)算魚體面積,再根據(jù)其提出的模型計(jì)算出魚體質(zhì)量。張志強(qiáng)等[7]建立了對(duì)應(yīng)淡水魚的質(zhì)量預(yù)測(cè)模型,從而實(shí)現(xiàn)對(duì)魚按質(zhì)量進(jìn)行預(yù)測(cè)分級(jí)。為了實(shí)現(xiàn)魚體的自動(dòng)檢測(cè),通常可以采用的訓(xùn)練魚體分類器的方法有:AdaBoost訓(xùn)練法[8]、神經(jīng)網(wǎng)絡(luò)法[9]。Hsieh等[10]基于投影轉(zhuǎn)換法提出一種簡(jiǎn)單有效的金槍魚長(zhǎng)度測(cè)量方法,將方法應(yīng)用于漁船甲板上,操作便捷。Jeong等[11]利用傳感器技術(shù),實(shí)現(xiàn)了對(duì)魚體部分特征指標(biāo)的測(cè)量。Yao等[12]將機(jī)器學(xué)習(xí)算法中的K-均值聚類算法應(yīng)用于復(fù)雜背景下的魚類提取,得到了較好的試驗(yàn)效果。余心杰等[13]結(jié)合機(jī)器視覺和稱重傳感器技術(shù),設(shè)計(jì)了一種可對(duì)大黃魚質(zhì)量、體長(zhǎng)和體寬等指標(biāo)進(jìn)行自動(dòng)檢測(cè)的系統(tǒng)。Ivorra等[14]結(jié)合3D成像和光譜分析技術(shù),實(shí)現(xiàn)了對(duì)大西洋鯛魚的新鮮度預(yù)測(cè)。張?zhí)鞎r(shí)等[2]發(fā)明了一種測(cè)量臺(tái),用相機(jī)拍攝整個(gè)測(cè)量板,由人工對(duì)圖像中魚體對(duì)應(yīng)的臺(tái)面刻度進(jìn)行讀取,再根據(jù)縮小倍數(shù)換算出圖像上魚的瞳孔直徑的實(shí)際長(zhǎng)度。
上述研究雖然一定程度上解決了傳統(tǒng)魚體征數(shù)據(jù)測(cè)量效率低下、主觀性高的問題,但大都是針對(duì)體長(zhǎng)、體寬和質(zhì)量數(shù)據(jù)的測(cè)量,在魚眼瞳孔測(cè)量方面,由于魚眼嵌入在魚體之內(nèi),給測(cè)量技術(shù)提出了較高的要求,目前在魚眼瞳孔測(cè)量方面少有研究。文獻(xiàn)[2]可以實(shí)現(xiàn)無(wú)接觸測(cè)量,但是測(cè)量方法還是人工測(cè)量,同樣存在主觀性強(qiáng),精度差,人力耗費(fèi)巨大的問題。受到利用Haar-like特征和AdaBoost算法進(jìn)行人臉檢測(cè)[15-17]和人眼檢測(cè)[18-19]的啟發(fā),本文以金鯧魚作為研究對(duì)象,提出了一種基于權(quán)重約束AdaBoost算法和改進(jìn)Hough圓變換的魚眼檢測(cè)和瞳孔直徑測(cè)量方法,以解決魚眼瞳孔直徑測(cè)量中耗時(shí)、耗力且精度差、效率低的問題。
圖1為定制的圖像采集裝置結(jié)構(gòu)圖,由標(biāo)準(zhǔn)測(cè)量盤(平臺(tái)底長(zhǎng)560 mm ,寬400 mm)和機(jī)械臂構(gòu)成。本文的試驗(yàn)對(duì)象為金鯧魚,所有魚例圖像(彩色JPG格式,4 608×3 456像素)均采集于海南省陵水縣新村鎮(zhèn)鹽墩村海南藍(lán)海洋水產(chǎn)養(yǎng)殖有限公司(海南大學(xué)海洋學(xué)院產(chǎn)學(xué)研基地),使用裝有相機(jī)(OLYMPUS TG-4,f/2.0,焦距:4 mm,自帶鏡頭畸變校正)的采集裝置對(duì)在正常光照下拍攝的金鯧魚圖像進(jìn)行算法的分析和測(cè)試。試驗(yàn)的硬件環(huán)境為:Intel(R) Core(TM) i3-3110M CPU @ 2.40 GHz,4 GB內(nèi)存;軟件環(huán)境為:64位Windows10操作系統(tǒng),VS2013+ OpenCV3.0編譯套件。
1. 測(cè)量盤 2. 固定夾 3. 旋鈕 4. 機(jī)械臂 5. 末端執(zhí)行器
魚例圖像的采集過程為:采集相機(jī)固定在機(jī)械臂的末端執(zhí)行器上,并通過數(shù)據(jù)線與筆記本直接相連,將魚置于測(cè)量盤上后,通過調(diào)節(jié)機(jī)械手臂可設(shè)置相機(jī)位置、高度,使拍攝的畫面正好能夠覆蓋平臺(tái)底長(zhǎng),相機(jī)鏡頭平行于平臺(tái),且位于魚體的正上方。采集與分析過程如圖2所示。
圖2 魚體圖像采集和分析流程圖
通過圖像采集裝置采集到800張4 608×3 456像素的魚例圖像,700張作為訓(xùn)練魚眼分類器的樣本,100張用于分類器的驗(yàn)證和魚眼瞳孔直徑的測(cè)量。訓(xùn)練過程是先從樣本中提取出Haar-like特征值,用改進(jìn)的基于權(quán)重約束的Adboost算法進(jìn)行訓(xùn)練,得到魚眼分類器。測(cè)量過程中首先對(duì)魚例測(cè)量圖像提取Haar-like特征,將特征值輸入到AdaBoost分類器中,分割出魚眼部分,然后采用改進(jìn)的Hough圓變換得到魚眼瞳孔和瞳孔像素直徑,最后將瞳孔像素直徑轉(zhuǎn)換得到實(shí)際直徑。測(cè)量方法的流程如圖3所示。
圖3 魚眼瞳孔直徑測(cè)量方法流程圖
從原始的魚例圖像(圖4a)中手動(dòng)截取出魚眼部分,灰度化后作為正樣本,如圖4b所示。將原始的魚例圖像灰度化后等分成若干個(gè)小圖像,將這些小圖像中包含魚眼的部分剔除,剩下的作為負(fù)樣本集,如圖4c所示。
圖4 魚的原始圖像和正負(fù)樣本圖
AdaBoost(adaptive boosting)算法[20]是一種自適應(yīng)的Boost算法,通過改變同一個(gè)訓(xùn)練集中樣本的權(quán)重,得到不同權(quán)重下的最優(yōu)弱分類器,然后將這些弱分類器級(jí)聯(lián)起來(lái),構(gòu)成一個(gè)強(qiáng)分類。但是在此權(quán)重更新機(jī)制下,AdaBoost算法在下一輪的弱分類器訓(xùn)練中重點(diǎn)關(guān)注錯(cuò)分樣本[21]。隨著難以錯(cuò)誤分類樣本的權(quán)重的增大,最后的分類器將會(huì)發(fā)生退化,導(dǎo)致分類效果很差[22-23]。針對(duì)此問題,本文提出權(quán)重約束的AdaBoost,對(duì)樣本的權(quán)重設(shè)置了一個(gè)約束閾值(式(2)),以限制其增長(zhǎng),改進(jìn)的AdaBoost算法如下
3)迭代:為指定的迭代次數(shù)
4)輸出:強(qiáng)分類器:
采用構(gòu)建好的魚眼分類器檢測(cè)魚眼區(qū)域的過程為:對(duì)整張魚例測(cè)試圖像灰度化,提取Haar-like特征值;利用一個(gè)滑動(dòng)窗口,在整個(gè)圖像里滑動(dòng),將滑動(dòng)到的圖像區(qū)域的Haar-like特征值輸入到魚眼分類器判斷是否存在魚眼,從而檢測(cè)出魚眼矩形區(qū)域;并計(jì)算矩形區(qū)域的內(nèi)接圓得到魚眼圓形區(qū)域,將魚眼分離出來(lái)。
2.4.1 魚眼瞳孔檢測(cè)
魚眼瞳孔檢測(cè)是指:從前述得到的魚眼圓形區(qū)域中檢測(cè)魚眼瞳孔。魚眼瞳孔近圓形,檢測(cè)圓的方法有Hough變換[24-26]和擬合圓方法。由于Hough圓變換對(duì)噪聲相對(duì)來(lái)說(shuō)不敏感,因此,本文采用該方法。經(jīng)典Hough圓變換在經(jīng)過Canny算子提取以及形態(tài)學(xué)開閉運(yùn)算過濾、封閉修復(fù)[27]后的邊緣上隨機(jī)選取3點(diǎn),再根據(jù)圓的方程和三點(diǎn)位置求取圓心和半徑,多次重復(fù)取點(diǎn)和計(jì)算圓的過程,最終選取圓心密集的位置作為待求圓的圓心。
但是在取點(diǎn)過程中,隨機(jī)取的3點(diǎn)必須先判斷是否在同一個(gè)圓上,且在不規(guī)則圓形中,這3點(diǎn)還可能由于分布緊密而對(duì)參數(shù)求解造成較大誤差。針對(duì)此缺陷,本文對(duì)于Hough圓變換中3點(diǎn)的選取方法進(jìn)行了改進(jìn)以提高準(zhǔn)確度和檢測(cè)效率。具體步驟為:1)在前述封閉修復(fù)后的邊緣上選取2個(gè)點(diǎn)1和2,過這2個(gè)點(diǎn)做一條直線12,再過點(diǎn)2做12的垂線,并在此垂線上找第3個(gè)點(diǎn)3,即垂線與邊緣的交點(diǎn)。2)若此交點(diǎn)存在,則1、2、3這3個(gè)點(diǎn)構(gòu)成直角三角形RT△123。3)根據(jù)直角三角形斜邊中點(diǎn)必為其外接圓圓心的定律,可以得出直線13的中點(diǎn)即為圓心,直線1即為圓的半徑。4)若3不存在,即12的垂線與邊緣無(wú)交點(diǎn),則另選兩點(diǎn)1、2,重復(fù)以上步驟,直到找到直角三角形,確定圓心。
由圖5所示,所選取的點(diǎn)1、2和3一定在同一個(gè)圓上,因此可以省略判斷3點(diǎn)是否在同一個(gè)圓上的步驟;同時(shí)這3點(diǎn)不會(huì)由于過于密集而造成對(duì)參數(shù)求解帶來(lái)較大的誤差。魚眼瞳孔檢測(cè)的過程及結(jié)果圖如圖6所示。
圖5 改進(jìn)Hough圓變換求取直徑原理
圖6 Hough圓變換瞳孔檢測(cè)
2.4.2 魚眼瞳孔直徑計(jì)算
通過上述步驟檢測(cè)到瞳孔,圓心的坐標(biāo)可以直接通過計(jì)算直線13的中點(diǎn)的坐標(biāo)而求得,圓的直徑,可以通過求直線13的長(zhǎng)度而求得,提高了Hough圓檢測(cè)的效率。
上述得到魚眼瞳孔直徑為像素距離,實(shí)際使用時(shí)需轉(zhuǎn)換為實(shí)際距離。圖像采集裝置底長(zhǎng)為L,對(duì)應(yīng)采集所得圖像長(zhǎng)為L,通過本文前述方法計(jì)算得到的瞳孔直徑像素距離記為L,轉(zhuǎn)換后的瞳孔直徑實(shí)際距離L可通過式(4)計(jì)算求得。
對(duì)700張魚眼的正樣本圖像(24×24像素),2 124張負(fù)樣本圖像(284×284像素)進(jìn)行訓(xùn)練。分別獲得基于AdaBoost和權(quán)重約束AdaBoost的魚眼分類檢測(cè)器,對(duì)100張金鯧魚圖像進(jìn)行魚眼分類檢測(cè),檢測(cè)的魚眼性能對(duì)比如表1所示。由表1可知基于權(quán)重約束的AdaBoost算法的魚眼分類檢測(cè)器對(duì)于魚眼的檢測(cè)正確率提高了1.7個(gè)百分點(diǎn),漏檢率下降了1.7個(gè)百分點(diǎn)。
表1 傳統(tǒng)AdaBoost和權(quán)重約束AdaBoost算法性能對(duì)比
部分檢測(cè)的效果對(duì)比如圖7所示,其中圖7a為基于傳統(tǒng)AdaBoost的魚眼分類器檢測(cè)效果,圖7b為基于權(quán)重約束AdaBoost的魚眼分類器檢測(cè)效果。顯然,基于權(quán)重約束AdaBoost的分類檢測(cè)器能檢測(cè)出魚眼,雖然有些檢測(cè)結(jié)果沒有將魚眼完整地圈出,但是都能夠?qū)Ⅳ~眼瞳孔包括進(jìn)來(lái),在裁切過程中不會(huì)被漏掉,便于下一步對(duì)瞳孔直徑的測(cè)量。圖7c是在圖7b的基礎(chǔ)上采用經(jīng)典Hough變換得到的瞳孔,采用未改進(jìn)的方法是無(wú)法魯棒地圈出瞳孔區(qū)域的;圖7d是在圖7b的基礎(chǔ)上采用改進(jìn)Hough圓變換得到的瞳孔,由圖7d可知,獲得的結(jié)果基本是準(zhǔn)確有效的。
對(duì)100張金鯧魚圖像完成魚眼分類檢測(cè)后,采用基于Hough圓變化的方法對(duì)檢測(cè)出來(lái)的魚眼部分進(jìn)行瞳孔直徑測(cè)量。為了驗(yàn)證本文方法的有效性和準(zhǔn)確性,對(duì)試驗(yàn)素材中金鯧魚魚眼瞳孔直徑進(jìn)行3次人工測(cè)量,并取平均值作為標(biāo)準(zhǔn)數(shù)據(jù)。人工測(cè)量的過程為:首先在魚排上將魚麻醉;然后平放在量魚板上;技術(shù)人員用卡尺對(duì)魚眼分別進(jìn)行3次獨(dú)立的測(cè)量,每次測(cè)量不要求快速,但要求盡可能地準(zhǔn)確,記錄測(cè)量結(jié)果。若采用本文方法測(cè)量所得數(shù)據(jù)與標(biāo)準(zhǔn)數(shù)據(jù)的相對(duì)偏差在5%之內(nèi),則認(rèn)為正確檢測(cè)。
圖7 改進(jìn)前后的魚眼檢測(cè)對(duì)比和瞳孔檢測(cè)結(jié)果對(duì)比
分別對(duì)前述檢測(cè)到的魚眼進(jìn)行傳統(tǒng)Hough圓變換和改進(jìn)后的Hough圓變換,進(jìn)而計(jì)算魚眼瞳孔數(shù)據(jù),統(tǒng)計(jì)分析結(jié)果如表2所示:正確檢測(cè)率達(dá)到了94.2%,與傳統(tǒng)Hough圓變換相比提高了10.5個(gè)百分點(diǎn),漏檢率下降了5.8個(gè)百分點(diǎn),誤檢率降低了4.7個(gè)百分點(diǎn)。因此,改進(jìn)后的Hough圓變換能夠更加準(zhǔn)確、快速地找到魚眼瞳孔的位置,從而提高了算法的性能。
表2 傳統(tǒng)Hough圓變換和改進(jìn)Hough圓變換測(cè)量性能對(duì)比
與人工測(cè)量的直徑進(jìn)行比較,由圖8可知,改進(jìn)前的經(jīng)典Hough變換的相對(duì)偏差均值為12.4%;而改進(jìn)后的Hough圓變換測(cè)量的魚眼瞳孔直徑相對(duì)偏差的均值為6.5%,可知改進(jìn)后的方法與人工測(cè)量的標(biāo)準(zhǔn)數(shù)據(jù)更加吻合,測(cè)量精度比改進(jìn)前高出了5.9個(gè)百分點(diǎn)。算法測(cè)得的魚眼瞳孔直徑是有效可靠的,本文算法較為穩(wěn)定,精度較高。
圖8 魚眼瞳孔直徑測(cè)量數(shù)據(jù)比較和相對(duì)偏差比較
另外,基于Hough圓變換的瞳孔檢測(cè)會(huì)在一定程度上依賴于魚眼區(qū)域質(zhì)量,即通過分類器得到的魚眼的區(qū)域的效果將會(huì)影響到后續(xù)的Hough圓變換,如果魚眼區(qū)域效果較差,將造成后續(xù)canny算子邊緣提取時(shí)存在較多的干擾邊緣,影響到魚眼瞳孔的檢測(cè)。下一步的工作將考慮增加改進(jìn)Hough圓變換的魯棒性,對(duì)測(cè)量瞳孔直徑的方法進(jìn)行優(yōu)化,達(dá)到更加精準(zhǔn)的測(cè)量。
分別對(duì)100張?jiān)囼?yàn)圖像利用改進(jìn)后的算法以及原始算法進(jìn)行計(jì)算測(cè)量,記錄經(jīng)過圖像預(yù)處理、魚眼檢測(cè)、魚眼瞳孔直徑測(cè)量所需的時(shí)間,如圖9所示。本文所提出的魚眼檢測(cè)與瞳孔直徑測(cè)量方法平均耗時(shí)為324.371 ms,原始算法下的平均耗時(shí)為335.075 7 ms,本文所提出的改進(jìn)方法可以節(jié)省10.707 ms,完全可達(dá)到實(shí)時(shí)測(cè)量的要求。
圖9 改進(jìn)和經(jīng)典Hough圓變換的消耗時(shí)間對(duì)比
以金鯧魚為研究對(duì)象,對(duì)拍攝到的魚例圖像提取Harr-like特征值,并用權(quán)重約束Adaboost算法訓(xùn)練出魚眼檢測(cè)分類器;利用分類器從魚例圖像中檢測(cè)到魚眼區(qū)域,利用改進(jìn)的Hough變換檢測(cè)瞳孔,并計(jì)算出實(shí)際直徑。采用該分類器對(duì)100條金鯧魚例圖像進(jìn)行檢測(cè)得到魚眼區(qū)域,魚眼分類器的正確檢測(cè)率達(dá)到了97.1%。采用改進(jìn)Hough圓變換方法能更準(zhǔn)確、快速地從魚眼區(qū)域中檢測(cè)出瞳孔,進(jìn)而計(jì)算瞳孔直徑。其正確檢測(cè)率達(dá)到了94.2%,與傳統(tǒng)Hough圓變換相比提高了10.5個(gè)百分點(diǎn),漏檢率下降了5.8個(gè)百分點(diǎn),誤檢率降低了4.7個(gè)百分點(diǎn),檢測(cè)時(shí)間下降了10.707 ms。
參照人工測(cè)量的標(biāo)準(zhǔn)數(shù)據(jù),本文提出方法所測(cè)得數(shù)據(jù)的相對(duì)偏差的平均值為6.5%;利用本文方法測(cè)量的平均時(shí)間為324.371 ms,遠(yuǎn)小于人工測(cè)量時(shí)間,也比改進(jìn)前的方法所用時(shí)間更少。研究結(jié)果表明,本文所提出的魚眼瞳孔直徑測(cè)量方法具有穩(wěn)定性好、測(cè)量精度高、速度快的特點(diǎn),能夠有效解決魚眼檢測(cè)效率低、數(shù)據(jù)主觀性高的問題,從而可實(shí)現(xiàn)實(shí)時(shí)、大批量的魚眼檢測(cè)和瞳孔直徑測(cè)量。
[1] 胡祝華,曹路,張逸然,等. 基于圖像處理和線性擬合的魚體尾柄測(cè)量方法研究[J]. 漁業(yè)現(xiàn)代化,2017,44(2):43-49. Hu Zhuhua, Cao Lu, Zhang Yiran, et al. Study on fish caudal peduncle measuring method based on image processing and linear fitting[J]. Fishery Modernization, 2017, 44(2): 43-49. (in Chinese with English abstract)
[2] 張?zhí)鞎r(shí),梁興明,李素紅. 一種快速測(cè)量魚體生長(zhǎng)性狀的裝置:CN203323799U [P]. 2013-10-09.
[3] 段延娥,李道亮,李振波,等. 基于計(jì)算機(jī)視覺的水產(chǎn)動(dòng)物視覺特征測(cè)量研究綜述[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):1-11. Duan Yan’e, Li Daoliang, Li Zhenbo, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 1-11. (in Chinese with English abstract)
[4] 范興. 麻醉對(duì)羅非魚和金鯧魚離水?;畹挠绊慬D]. 南寧:廣西大學(xué),2014. Fan Xing. Effect of Anesthetic on Transporting Live Tilapia and Golden Pompano Without Water[D]. Nanning: Guangxi University, 2014. (in Chinese with English abstract)
[5] 徐建瑜,崔紹榮,苗香雯,等. 計(jì)算機(jī)視覺技術(shù)在水產(chǎn)養(yǎng)殖中的應(yīng)用與展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(8):174-178. Xu Jianyu, Cui Shaorong, Miao Xiangwen, et al. Application and prospect of computer vision technology in aquacul-ture [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 174-178. (in Chinese with English abstract)
[6] 王文靜,徐建瑜,呂志敏,等. 基于機(jī)器視覺的水下鲆鰈魚類質(zhì)量估計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):153-157. Wang Wenjing, Xu Jianyu, Lü Zhimin, et al. Weight estimation of underwater cynoglossus semilaevis based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 153-157. (in Chinese with English abstract)
[7] 張志強(qiáng),牛智有,趙思明,等. 基于機(jī)器視覺技術(shù)的淡水魚質(zhì)量分級(jí)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):350-354. Zhang Zhiqiang, Niu Zhiyou, Zhao Siming, et al. Weight grading of freshwater fish based on computer vision[J]. Tran-sactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 350-354. (in Chinese with English abstract)
[8] Benson B, Cho J, Goshorn D, et al. Field Programmable Gate Array (FPGA) Based Fish Detection Using Haar Classi-fiers[M]. Atlanta: American Academy of Underwater Sciences, 2009.
[9] Alsmadi M K, Omar K B, Noah S A, et al. Fish recognition based on robust features extraction from size and shape measurements using neural network[J]. Journal of Computer Science, 2010, 6(10):1059-1065.
[10] Hsieh C L, Chang H Y, Chen F H, et al. A simple and effective digital imaging approach for tuna fish length me-asur-ement compatible with fishing operations [J]. Computers & Electronics in Agriculture, 2011, 75(1): 44-51.
[11] Jeong S J, Yang Y S, Lee K, et al. Vision-based automatic system for non-contact measurement of morphometric char-acteristics of flatfish [J]. Journal of Electrical Engine-ering & Technology, 2013, 8(5): 1194-1201.
[12] Yao H, Duan Q, Li D, et al. An improved K-means clustering algorithm for fish image segmentation [J]. Mathematical and Computer Modelling, 2013, 58(3): 790-798.
[13] 余心杰,吳雄飛,王建平,等. 基于機(jī)器視覺的大黃魚形態(tài)參數(shù)快速檢測(cè)方法[J]. 集成技術(shù),2014(5):45-51.Yu Xinjie, Wu Xiongfei, Wang Jianping, et al. Rapid detecting method for Pseudosciaena Crocea Morphological parameters based on the machine vision[J]. Journal of Integration Technology, 2014(5): 45-51. (in Chinese with English abstract)
[14] Ivorra E, Verdu S, Sánchez A J, et al. Predicting gilthead sea bream (sparus aurata) freshness by a novel combined tech-nique of 3D imaging and SW-NIR spectral analysis[J]. Sensors, 2016, 16(10): 1735.
[15] 龍伶敏. 基于Adaboost的人臉檢測(cè)方法及眼睛定位算法研究[D]. 成都:電子科技大學(xué),2008.
Long Lingmin. Face detection method and eye location algorithm based on Adaboost [D]. Chengdu: University of Electronic Science and Technology of China, 2008. (in Chinese with English abstract)
[16] 王海川,張立明. 一種新的Adaboost快速訓(xùn)練算法[J]. 復(fù)旦學(xué)報(bào)(自然科學(xué)版),2004,43(1):27-33. Wang Haichuan, Zhang Liming. A novel fast training algori-thm for Adaboost[J]. Journal of Fudan University (Natural Science), 2004, 43(1): 27-33. (in Chinese with English abstract)
[17] 武勃,黃暢,艾海舟,等. 基于連續(xù)Adaboost算法的多視角人臉檢測(cè)[J]. 計(jì)算機(jī)研究與發(fā)展,2005,42(9):1612-1621. Wu Bo, Huang Chang, Ai Haizhou, et al. A multi-view face detection based on real Adaboost algorithm[J]. Journal of Computer Research and Development, 2005, 42(9): 1612-1621. (in Chinese with English abstract)
[18] 徐來(lái),周德龍. 人眼檢測(cè)技術(shù)的方法研究[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用,2010,19(6):226-232. Xu Lai, Zhou Delong. Technology of human eyes detec-tion[J]. Computer Systems & Applications, 2010, 19(6): 226-232. (in Chinese with English abstract)
[19] 甘玲,朱江,苗東. 擴(kuò)展Haar特征檢測(cè)人眼的方法[J]. 電子科技大學(xué)學(xué)報(bào),2010,39(2):247-250. Gan Ling, Zhu Jiang, Miao Dong. Application of the ex-pansion Haar features in eye detection[J]. Journal of Univ-ersity of Electronic Science and Technology of China, 2010, 39(2): 247-250. (in Chinese with English abstract)
[20] Freund Y, Schapire R E. Experiments with a new boosting algorithm [C]//In Proceedings of the 13th Conference on Machine Learning, Morgan Kaufmann. USA, 1996, 148-156.
[21] 詹文田,何東健,史世蓮. 基于Adaboost算法的田間獼猴桃識(shí)別方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):140-146.
Zhan Wentian, He Dongjian, Shi Shilian. Recognition of kiwifruit in field based on Adaboost algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 140-146. (in Chinese with English abstract)
[22] 郭喬進(jìn),李立斌,李寧. 一種用于不平衡數(shù)據(jù)分類的改進(jìn)AdaBoost算法[J]. 計(jì)算機(jī)工程與應(yīng)用,2008,44(21):217-221.
Guo Qiaojin, Li Libin, LI Ning. Novel modified AdaBoost algorithm for imbalanced data classification [J]. Computer Engineering and Applications, 2008, 44(21) : 217-221. (in Chinese with English abstract)
[23] Lienhart R, Kuranov A, Pisarevsky V. Empirical analysis of detection cascades of boosted classifiers for rapid object detection [C]// Proceedings of the 25th German Pattern Recognition Sysposium. Magdeburg, 2003, 297-304.
[24] Hough P V C. Method and means for recognizing complex patterns: 3069654 [P]. 1962-03-25.
[25] 孫亦南,劉偉軍,王越超. 一種用于圓檢測(cè)的改進(jìn)Hough變換方法[J]. 計(jì)算機(jī)工程與應(yīng)用,2003,39(20):35-37. Sun Yinan, Liu Weijun, Wang Yuechao. A method for circle detection using modified Hough transform[J]. Computer Systems & Applications, 2003, 39(20): 35-37. (in Chinese with English abstract)
[26] 馬翠花,張學(xué)平,李育濤,等. 基于顯著性檢測(cè)與改進(jìn)Hough變換方法識(shí)別未成熟番茄[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):219-226. Ma Cuihua, Zhang Xueping, Li Yutao, et al. Identification of immature tomatoes base on salient region detection and improved Hough transform method[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 219-226. (in Chinese with English abstract)
[27] 吳露露,馬旭,齊龍,等. 改進(jìn)Hough變換的農(nóng)作物病斑目標(biāo)檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):152-159. Wu Lulu, Ma Xu, Qi Long, et al. A method of target detection for crop disease spots by improved Hough transform[J]. Transactions of the Chinese Society of Agricul-tural Engineering (Transactions of the CSAE), 2014, 30(10): 152-159. (in Chinese with English abstract)
胡祝華,張逸然,趙瑤池,曹 路,白 勇,黃夢(mèng)醒.權(quán)重約束AdaBoost魚眼識(shí)別及改進(jìn)Hough圓變換瞳孔智能測(cè)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):226-232. doi:10.11975/j.issn.1002-6819.2017.23.029 http://www.tcsae.org
Hu Zhuhua, Zhang Yiran, Zhao Yaochi, Cao Lu, Bai Yong, Huang Mengxing. Fish eye recognition based on weighted constraint AdaBoost and pupil diameter automatic measurement with improved Hough circle transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 226-232. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.029 http://www.tcsae.org
Fish eye recognition based on weighted constraint AdaBoost and pupil diameter automatic measurement with improved Hough circle transform
Hu Zhuhua1,2, Zhang Yiran1, Zhao Yaochi1,3※, Cao Lu1, Bai Yong1,2, Huang Mengxing1,2
(1.570228,; 2.570228,; 3.330350,)
In aquaculture, fisheye pupil diameters are important for the assessment of the growth of fish, which provide reference for later breeding and selection. Since fisheye pupil is embedded in the body of fish, it is harder to measure the diameter of fisheye pupil than measure body length, width and tail length. Traditional measurement of fish eye diameter in aquaculture, which is direct touching of the fish body using measuring tools, has low efficiency as well as high subjectivity since it is only based on manual work. Considering the above factors, we introduce computer vision and machine learning to the measurement of fisheye pupil diameters. An improved AdaBoost algorithm based on weighted constraint is proposed in this paper, which is used in fisheye classifier training; and an improved Hough circle transform is put forward to achieve real-time fish eye pupil diameter measurement. Firstly, in natural light conditions, fishes are placed on the base plate of a customized measuring device and are photographed using CCD (charge-coupled device) installed in the device, in which the distance between base plate and the CCD is fixed. Secondly, the Haar-like features in fish images are extracted and used to train a classifier with the improved Adaboost algorithm to distinguish whether some region is fish eye or not. The improved Adaboost algorithm is proposed based on weighted constraint, in which the weight value does not change only according to error rate but is limited by the weight value constraint. With the trained classifier of fish eye, the whole region of fish image is scanned, and fish eye region can be detected and then separated from the full image. Thirdly, the edges in the fish eye region are obtained with canny operator; noise and interference are filtered to some extent using morphologic transform. Then, we use an improved Hough circle transformation method, proposed in this paper, to circle the fish eye pupil and get its diameter. In the processing of finding a circle, 3 points are selected randomly in traditional Hough circle transform to construct a circle, while in the improved Hough circle transform proposed in this paper, the position of the 3rd point is fixed relying on the 1st and 2nd point, avoiding the problem of parameters error caused by random points. Finally, the diameter of fish eye pupil can be calculated using the conversion ratio between pixel diameter and real diameter. To validate the feasibility of the proposed method, we compare the measured data obtained by our method with the already-known standard reference data obtained from manual measurement. If the relative deviation is less than or equal to 5%, the result is considered correct. The experimental results show that the accuracy has reached 94.2% and the average relative deviation is 6.5%, which prove the validity of the data obtained by our method. In addition, the average measuring time is 324.371 ms, which is shortened significantly, compared with that of artificial measurement. Hence, the method proposed in this paper can measure the diameter of fish eye pupil timely and accurately, and reduce the complexity of traditional methods and the subjectivity of measured data. Furthermore, the method can also prevent the situation that fishes are harmed or even killed during the measurement process and require no more manual work.
aquaculture; image processing; measurement; fish eye recognition; pupil; computer vision; AdaBoost; improved Hough circle transform
10.11975/j.issn.1002-6819.2017.23.029
TP301.6
A
1002-6819(2017)-23-0226-07
2017-06-01
2017-11-26
海南省重大科技計(jì)劃項(xiàng)目(ZDKJ2016015);海南省自然科學(xué)基金資助項(xiàng)目(617033);海南大學(xué)南海海洋資源利用國(guó)家重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目子課題(2016013B);海南大學(xué)南海海洋資源利用國(guó)家重點(diǎn)實(shí)驗(yàn)室導(dǎo)向課題(DX2017012)
胡祝華,男,湖南桃江人,博士研究生,副教授,主要從事智慧農(nóng)業(yè)、圖像處理與計(jì)算機(jī)視覺的研究。Email:eagler_hu@hainu.edu.cn
趙瑤池,女,湖南湘潭人,副教授,主要從事圖像處理與計(jì)算機(jī)視覺的研究。Email:yaochizi@163.com