周國朋,謝志堅(jiān),曹衛(wèi)東,徐昌旭,白金順,曾鬧華,高嵩涓,楊璐
?
稻草高茬-紫云英聯(lián)合還田改善土壤肥力提高作物產(chǎn)量
周國朋1,2,謝志堅(jiān)3※,曹衛(wèi)東1,4,徐昌旭3,白金順1,曾鬧華1,高嵩涓1,2,楊璐1,2
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)部植物營養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京 100081; 2. 中國農(nóng)業(yè)科學(xué)院研究生院,北京 100081;3. 江西省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所/農(nóng)業(yè)部長江中下游作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室/國家紅壤改良工程技術(shù)研究中心,南昌 330200; 4. 青海大學(xué)青海省農(nóng)林科學(xué)院土壤肥料研究所,西寧 810016)
研究旨在探討稻草留高茬套種綠肥、稻草-綠肥聯(lián)合還田下的生產(chǎn)及土壤肥力特征,為南方稻區(qū)綜合利用稻草和綠肥提供理論及技術(shù)支撐。2012—2016年設(shè)置定位試驗(yàn),研究高茬稻草-綠肥聯(lián)合還田下的綠肥和水稻產(chǎn)量、土壤碳氮庫活性及其他養(yǎng)分特征。試驗(yàn)包括5個處理:冬閑+稻草不還田(CK),冬閑+稻草全量還田(RS),冬種紫云英+稻草不還田(MV),冬種紫云英+稻草低茬全量還田(MV+LRS),冬種紫云英+稻草高茬全量還田(MV+HRS),各處理施用等量化肥。結(jié)果表明:稻草-綠肥聯(lián)合還田提高綠肥產(chǎn)草量及其含氮量,與MV相比,分別增加了13.1%和6.8%(MV+LRS)、32.2%和5.2%(MV+HRS);增加水稻產(chǎn)量,以MV+HRS處理最高,4 a平均產(chǎn)量較RS、MV增加556.8和412.8 kg/hm2。2013和2015年,MV+HRS處理水稻產(chǎn)量高于MV+LRS。稻草-綠肥聯(lián)合還田培肥地力效果明顯,土壤有機(jī)質(zhì)、全氮含量均比CK、RS和MV增加;且聯(lián)合還田下有效養(yǎng)分提升更為全面。與稻草和綠肥單獨(dú)應(yīng)用相比,稻草-綠肥聯(lián)合還田還能提升土壤微生物量氮及可溶性有機(jī)碳氮含量??梢?,稻草-綠肥聯(lián)合還田能夠改善綠肥生長、提高水稻產(chǎn)量、提升土壤肥力;其中,高茬稻草與綠肥聯(lián)合還田下的紫云英和水稻產(chǎn)量最高,土壤肥力也優(yōu)于低茬處理,是綜合利用稻草和綠肥資源的較好方式。
綠肥;肥力;氮;稻;紫云英;產(chǎn)量
水稻是中國的重要糧食作物之一,稻田培肥對水稻持續(xù)高產(chǎn)穩(wěn)產(chǎn)起著至關(guān)重要的作用。稻草還田和冬種綠肥是中國南方稻田土壤培肥的重要措施。研究表明,稻草還田和冬種綠肥均有效增加作物產(chǎn)量,提高土壤有機(jī)質(zhì)、全氮及其他礦質(zhì)養(yǎng)分含量[1-2]。稻草還田可以通過歸還養(yǎng)分和減少土壤吸附來提高礦質(zhì)養(yǎng)分的生物有效性[3-4];豆科綠肥與根瘤菌共生固氮及根系分泌酸性物質(zhì)可以提高土壤礦質(zhì)養(yǎng)分活性[5-6]。
稻草、豆科綠肥因其各自相對固定的碳氮組成,單獨(dú)還田時(shí)有一定的局限性。例如,高C/N比稻草還田往往引起短期內(nèi)土壤有效氮含量下降,易造成作物生育前期吸氮困難[7];新鮮豆科綠肥還田易引起“激發(fā)效應(yīng)”,造成土壤原有機(jī)質(zhì)分解,不利于土壤碳儲存[8]。有關(guān)研究表明,不同種類有機(jī)物料配合還田,分解時(shí)會發(fā)生交互作用,表現(xiàn)出不同的腐解規(guī)律[9-10]。Pramanik等[11]認(rèn)為,豆科與非豆科作物殘茬配合還田可提高有機(jī)質(zhì)的礦化速率;夏志敏等[12]發(fā)現(xiàn)玉米與蠶豆秸稈配合應(yīng)用促進(jìn)了秸稈碳和土壤氮的礦化,增加土壤微生物量碳氮含量??梢姡煌N類有機(jī)物料聯(lián)合還田可改變單一物料還田后的礦化特征,影響其培肥效應(yīng)。
目前,綠肥研究小組已經(jīng)探索出稻草留高茬套種紫云英(L.)的生產(chǎn)模式。該模式下高留茬稻草為紫云英出苗、越冬提供適宜的環(huán)境,提高紫云英的出苗率與越冬率;紫云英后期覆蓋稻草,可促進(jìn)稻草腐解。冬后紫云英與稻草聯(lián)合還田可調(diào)節(jié)還田物料的養(yǎng)分組成,必然導(dǎo)致其養(yǎng)分效應(yīng)的改變,但有關(guān)該模式的生產(chǎn)與培肥效應(yīng)鮮有報(bào)道。本文通過田間小區(qū)試驗(yàn),分析稻草留高茬套種紫云英、稻草與紫云英聯(lián)合還田下的生產(chǎn)及土壤肥力特征,旨在為綜合利用稻草與綠肥資源提供科學(xué)依據(jù)。
1.1 試驗(yàn)點(diǎn)概況
試驗(yàn)在江西省豐城市張巷鎮(zhèn)范橋村(28°07′N、115°56′E,海拔25.4 m)進(jìn)行。該地屬中亞熱帶季風(fēng)氣候區(qū),年平均氣溫、降水量、年日照時(shí)間分別為15.3~17.7 ℃、1 552.1 mm和1 935.7 h。供試土壤為河流沖積物發(fā)育而成的水稻土,種植方式為稻-稻-冬閑(綠肥),耕層土壤(0~20 cm)pH值5.2,有機(jī)質(zhì)25.0 g/kg,全氮1.8 g/kg,堿解氮155 mg/kg,有效磷6.0 mg/kg,有效鉀109 mg/kg。
2012—2016年設(shè)5個處理(表1):1)冬閑+稻草不還田(CK);2)冬閑+稻草全量還田(RS);3)冬種紫云英+稻草不還田(MV);4)冬種紫云英+稻草低茬全量還田(MV+LRS);5)冬種紫云英+稻草高茬全量還田(MV+HRS)。低茬指水稻近地面收割,高茬指水稻收割時(shí)留茬高度約30 cm。各處理重復(fù)3次,各小區(qū)面積為12 m2(3 m×4 m),隨機(jī)排列。紫云英盛花期刈割鮮草,還田量為22 500 kg/hm2。
表1 2012—2016年試驗(yàn)設(shè)計(jì)
供試早稻品種為株兩優(yōu)35,晚稻品種為Ⅱ優(yōu)305。每年4月中旬翻壓稻草和綠肥,并施基肥,4月下旬移栽早稻,7月中旬適時(shí)收割;晚稻于每年7月中下旬施基肥并移栽,10月中下旬適時(shí)收割。早、晚稻種植密度為27萬株/hm2。紫云英播種量30 kg/hm2于晚稻收割前20 d套播,而且其生長期間不使用任何肥料和除草劑。早稻和晚稻分別按照N∶P2O5∶K2O=150∶75∶120 kg/hm2和180∶75∶150 kg/hm2用量施肥。供試化學(xué)氮、磷和鉀肥分別為尿素(46% N)、過磷酸鈣(12% P2O5)和氯化鉀(60% K2O)。磷肥全部作基肥,氮肥和鉀肥按基肥∶分蘗肥∶穗肥=4∶3∶3施用。分蘗肥在移栽后5~7 d撒施,穗肥在主莖幼穗長1~2 cm時(shí)施用。所有處理化肥用量相同。早、晚稻生長期間,田面灌溉水保持5~8 cm,水稻收獲前20 d排水,冬季不進(jìn)行灌溉。
1.3.1 綠肥和水稻測產(chǎn)
每年于早、晚稻成熟期,各小區(qū)單打單收,測定稻谷產(chǎn)量,全年稻谷產(chǎn)量為當(dāng)季早、晚稻稻谷產(chǎn)量之和;紫云英盛花期分小區(qū)測定其地上部鮮草產(chǎn)量。
1.3.2 綠肥含氮量及土壤化學(xué)性狀測定
2016年早稻收獲后,每小區(qū)按5點(diǎn)取樣法采集0~20 cm土層土樣,分取部分鮮土進(jìn)行活性碳氮分析,剩余土樣自然風(fēng)干、過篩后用于理化性狀分析。
土壤活性碳氮分析:超純水浸提(土水比:2∶1,4 ℃、200 r/min下振蕩2 h,4 ℃、12 000 r/min離心15 min,上清液過0.45m濾膜)獲得土壤可溶性有機(jī)質(zhì)(dissolved organic matter,DOM)浸提液,采用TOC/N儀(Multi N/ C2100,德國)測定可溶性有機(jī)碳(dissolved organic carbon,DOC),可溶性總氮(total dissolved nitrogen,TDN),連續(xù)流動分析儀(SEAL AutoAnalyzer3,德國)測定無機(jī)氮(inorganic nitrogen,IN),可溶性有機(jī)氮(dissolved organic nitrogen,DON)為TDN減去IN[13]。土壤微生物量碳(microbial biomass carbon,MBC)和土壤微生物量氮(microbial biomass nitrogen,MBN)采用氯仿熏蒸浸提法,即0.5 mol/L K2SO4浸提(水土比為4∶1),MBC、MBN含量以熏蒸和不熏蒸的碳氮含量(TOC/N儀測定)之差除以相應(yīng)轉(zhuǎn)化系數(shù)(碳為0.45,氮為0.54)獲得[14]。
2016年紫云英盛花期,各種植綠肥小區(qū)隨機(jī)采取紫云英植株體10株,105 ℃下殺青30 min,80 ℃烘干后粉碎,濃H2SO4-H2O2消煮,凱氏法測定其含氮量[15]。
土壤理化性質(zhì)測定方法如下[15]:土壤礦質(zhì)態(tài)氮(NO3–-N和NH4+-N)采用2 mol/L KCl按水土比為2∶1浸提,振蕩0.5 h,連續(xù)流動分析儀測定;土壤有機(jī)質(zhì)(soil organic matter,SOM)、土壤全氮(total nitrogen,TN)分別采用重鉻酸鉀外加熱法和凱氏法測定;土壤有效磷采用0.5 mol/L NaHCO3提取-鉬銻鈧比色法;土壤有效鉀采用1 mol/L NH4Ac浸提-原子吸收法;土壤pH值采用電位法(水土比2.5∶1)。
采用SAS 8.0軟件進(jìn)行方差分析,Duncan新復(fù)極差法多重比較判斷處理間差異顯著性(<0.05)。表格采用Excel 2007制作。
不同處理綠肥產(chǎn)量及其含氮量如表2所示。
表2 不同處理下紫云英鮮草量及植株含氮量
注:表中同一指標(biāo)平均數(shù)使用鄧肯多重比較,標(biāo)有不同小寫字母表示在0.05水平上差異顯著,下同。
Note: Same lowercase letters in the same vertical column mean no significant difference among treatments at 0.05 level by Duncan`s multiple analysis, the same below.
由表2可知,晚稻稻草不同處理方式對綠肥地上部鮮草量(翻壓期)及其含氮量具有一定影響。4 a中,冬種綠肥的3個處理間綠肥產(chǎn)量差異顯著(<0.05),其中MV+LRS和MV+HRS處理綠肥的4 a平均產(chǎn)量較MV分別顯著提高了13.1%和32.2%(<0.05)。稻草還田也提高了綠肥的含氮量,MV+LRS和MV+HRS比MV分別顯著增加了6.8%和5.2%(<0.05),但稻草低茬與高茬處理間差異不大。綜上可知,稻草-綠肥聯(lián)合還田提高綠肥產(chǎn)草量和含氮量,稻草留高茬處理提高綠肥產(chǎn)量的效果最佳。
試驗(yàn)第1年(2012年),與CK相比,其他處理均顯著降低晚稻和全年稻谷產(chǎn)量(<0.05)(表3)。隨著稻草和綠肥應(yīng)用的年限增加,二者逐漸表現(xiàn)出增產(chǎn)效應(yīng),且對早稻產(chǎn)量貢獻(xiàn)更大。4 a中,稻草不同留茬方式間全年稻谷產(chǎn)量差異明顯,2012年MV+HRS低于MV+LRS處理,2013年和2015年MV+HRS顯著高于MV+LRS處理(<0.05)(表3)。
表3 2012—2015不同處理下稻谷產(chǎn)量及方差分析
Note: *<0.05; * *<0.01.
與CK相比,其他處理的水稻平均產(chǎn)量均顯著提高(<0.05)。與RS和MV比較,MV+HRS處理4 a早稻平均增產(chǎn)839.4和1 147.6 kg/hm2,全年稻谷平均增產(chǎn)556.8和412.8 kg/hm2(<0.05)。高留茬處理早稻產(chǎn)量顯著高于低留茬處理,增產(chǎn)735.3 kg/hm2(<0.05)。此外,年際間、處理間以及兩者交互作用均達(dá)顯著水平(<0.05)或極顯著水平(<0.01)(表3),說明處理以及稻草和綠肥應(yīng)用的年限均對水稻產(chǎn)量有較大影響。
與試驗(yàn)初相比,經(jīng)過4 a的水稻種植后,SOM、TN均有不同程度增加(表4)。試驗(yàn)結(jié)束時(shí),與CK相比,稻草和綠肥單獨(dú)處理下SOM顯著增加了6.8%~8.0%(<0.05),但對土壤TN影響不大。與MV和RS相比,MV+LRS處理下SOM和TN顯著增加了9.1%和8.6%,MV+HRS增加了9.8%和10.7%(0.05),MV+HRS和MV+LRS處理間差異不顯著(<0.05)。綜上可知,稻草-綠肥聯(lián)合還田較稻草、綠肥單獨(dú)應(yīng)用更利于土壤碳氮儲存,且高留茬處理下土壤SOM、TN增幅更大。
表4 2016年不同處理對土壤養(yǎng)分的影響
不同處理對土壤有效養(yǎng)分也產(chǎn)生較大影響(表4)。與CK相比,RS和MV顯著降低、MV+LRS顯著增加土壤無機(jī)氮含量(<0.05)。與無機(jī)氮不同,綠肥的3個處理比CK有提高土壤有效磷含量的趨勢,以MV+HRS處理最高,顯著增加了18.0%(<0.05)。與綠肥提高土壤有效磷類似,稻草的3個處理土壤有效鉀比CK顯著增加了8.0%(RS)、9.2%(MV+LRS)和22.8%(MV+HRS),且稻草高茬與低茬處理間差異顯著(<0.05)??梢?,稻草-綠肥聯(lián)合還田可發(fā)揮稻草、綠肥各自的培肥優(yōu)勢,土壤養(yǎng)分提升更為全面,并以MV+HRS處理培肥效果最佳。
由表5可知,與CK相比,其他處理土壤MBC增加了19.1%~33.7%,MBN增加了30.6%~57.8%(<0.05)。稻草-綠肥聯(lián)合還田的MBN含量高于其單獨(dú)處理。MV+LRS和MV+HRS處理下MBC比RS顯著增加了433.5和402.8 mg/kg(<0.05);MBN比RS和MV分別顯著增加了23.6、22.4 mg/kg和17.4、16.2 mg/kg(<0.05)。與土壤微生物量碳氮不同,不同處理下土壤DOC、DON含量變異較大。與CK相比,RS對土壤DOC、RS和MV對土壤DON影響不大;MV+LRS和MV+HRS顯著增加了土壤DOC和DON含量(< 0.05),但聯(lián)合還田兩處理間差異不顯著。綜上可知,與稻草和綠肥單獨(dú)應(yīng)用相比,稻草-綠肥聯(lián)合還田能大幅提高土壤活性有機(jī)碳(MBC和DOC)、氮(MBN和DON)含量,利于土壤養(yǎng)分供應(yīng)及土壤健康[16-17]。
表5 2016年不同處理對土壤活性有機(jī)碳氮的影響
由表6可知,MBC和MBN占土壤碳氮庫的比例遠(yuǎn)高于DOC和DON。與CK相比,其他處理均有效提高土壤MBC/SOC和MBN/TN,但稻草、綠肥單獨(dú)應(yīng)用降低土壤IN/TN,單獨(dú)綠肥降低土壤DOC/SOC,差異顯著(<0.05)。與RS、MV相比,MV+LRS和MV+HRS均不同程度增加DON/TN和IN/TN??梢姡静?綠肥聯(lián)合還田較稻草、綠肥單獨(dú)還田更利于增加土壤活性氮占土壤氮庫的比例,提高土壤氮庫活性,利于提升土壤肥力及其養(yǎng)分供應(yīng)能力[17]。
表6 稻草綠肥應(yīng)用下土壤活性有機(jī)碳氮占土壤有機(jī)碳和全氮的比例
土壤肥力和作物產(chǎn)量是評價(jià)農(nóng)田生態(tài)系統(tǒng)可持續(xù)生產(chǎn)的2個重要指標(biāo)[18]。試驗(yàn)開始年份(2012年),稻草、綠肥還田均不同程度降低了全年稻谷產(chǎn)量,但隨著試驗(yàn)?zāi)晗拊黾?,二者逐漸表現(xiàn)出增產(chǎn)效應(yīng)(表3),表明稻草、綠肥應(yīng)用的年限影響其肥效。有研究認(rèn)為,施用化肥的基礎(chǔ)上稻草或綠肥還田,短期內(nèi)水稻產(chǎn)量低于單獨(dú)化肥處理[19-20]。這是由于高C/N比稻草還田易降低土壤氮的有效性,不利于作物吸氮[21],同時(shí),厭氧條件下秸稈可分解產(chǎn)生有機(jī)酸類物質(zhì)抑制水稻幼苗生長[21-22]。再者,水稻生育期內(nèi)紫云英養(yǎng)分并非完全釋放[23],加之試驗(yàn)初土壤有效磷含量低,土壤供磷受限也可造成試驗(yàn)第1年綠肥處理下全年稻谷產(chǎn)量低于對照處理(表3)。隨著秸稈還田和冬種綠肥的年限增加,土壤肥力水平大幅提升,二者的培肥能力愈加明顯,增產(chǎn)效應(yīng)逐漸顯現(xiàn)。
總體而言,稻草-綠肥聯(lián)合還田的增產(chǎn)效應(yīng)高于各自單獨(dú)應(yīng)用(表3)。一方面,聯(lián)合還田下物料投入量大,培肥能力也相應(yīng)增加(表4,表5);再者,稻草與豆科綠肥混合還田能夠提高土壤有機(jī)質(zhì)礦化速率,促進(jìn)礦質(zhì)養(yǎng)分釋放,利于作物養(yǎng)分吸收,增加作物產(chǎn)量[11,24]。本研究中,稻草-綠肥聯(lián)合還田可發(fā)揮稻草提高土壤有效鉀、綠肥增加土壤有效磷的優(yōu)勢,且無機(jī)氮含量高于稻草和綠肥單獨(dú)處理(表4),利于提高水稻產(chǎn)量。聯(lián)合還田下,高茬稻草處理綠肥產(chǎn)草量高,較多的綠肥根茬利于形成較高的土壤肥力(表4),使其4 a早稻平均產(chǎn)量高于低茬處理。
稻草還田提高綠肥產(chǎn)草量及其含氮量,且以高茬處理效果最佳(表2)。研究表明,稻草覆蓋可為綠肥生長創(chuàng)造比較適宜的溫度和水分環(huán)境,促進(jìn)綠肥的干物質(zhì)積累和對氮、磷、鉀等養(yǎng)分的吸收[25]。同時(shí),鄭偉等[26]認(rèn)為稻草適當(dāng)留茬不僅能夠改善土壤水熱條件,還可避免因稻草覆蓋量過大引起作物漚苗死苗,利于提高作物產(chǎn)量。湯樹德等[27]研究表明,麥秸還田可提高大豆的結(jié)瘤數(shù)和根瘤固氮酶活性,顯著增加大豆單株固氮酶活性和植株含氮量。綜上可知,稻草留高茬還田可為冬綠肥營建適宜的生長環(huán)境,提高豆科綠肥產(chǎn)草量及生物固氮能力。
大量研究表明,秸稈還田和種植綠肥均有效提高土壤有機(jī)質(zhì)和全氮含量[5,28],這與本研究結(jié)果一致(表4)。稻草與綠肥聯(lián)合還田由于較高的物料投入,使聯(lián)合還田下有機(jī)質(zhì)和全氮含量最高。對土壤有效礦質(zhì)養(yǎng)分而言,稻草與綠肥聯(lián)合還田土壤無機(jī)氮含量顯著高于兩者單獨(dú)應(yīng)用。Pramanik等[11]認(rèn)為稻草與豆科綠肥聯(lián)合還田提高土壤有機(jī)質(zhì)礦化速率,利于氮素釋放;另外,聯(lián)合還田較多的氮投入也利于產(chǎn)生較多的無機(jī)氮。本研究還發(fā)現(xiàn),稻草增加土壤有效鉀,綠肥提高有效磷含量。這與其各自培肥機(jī)理有關(guān)。水稻成熟時(shí),鉀素回流并儲存于秸稈,稻草還田可歸還大量鉀素,增加土壤有效鉀含量;種植綠肥不僅吸收、儲存有效磷,避免其被土壤固定,而且豆科綠肥生長期間根系分泌質(zhì)子,活化土壤難溶性磷[6,29],提高磷的有效性。稻草與綠肥聯(lián)合還田可發(fā)揮稻草和綠肥各自培肥優(yōu)勢,促使土壤養(yǎng)分全面提升。
有機(jī)物料還田為土壤微生物提供充足的碳源,使微生物長期保持活躍狀態(tài)[30]。有機(jī)物料種類、C/N比、碳源有效性等均是影響土壤MBC、MBN含量的重要因子[31]。豆科作物秸稈還田,可迅速分解并釋放大量有效碳氮,利于土壤微生物利用并維持較大的生物群落[32];稻草還田雖能提供充足的有效碳,但較低的氮含量往往成為微生物群落增加的限制因子[32-33]。研究認(rèn)為,有機(jī)物料混合還田可完善底物養(yǎng)分組成,提高土壤微生物量基數(shù)[12]。本研究也發(fā)現(xiàn),稻草-綠肥聯(lián)合還田MBC和MBN含量高于各自單獨(dú)處理(表5)。聯(lián)合還田下,較多的碳氮投入,以及較為完善的養(yǎng)分組成,使土壤MBC、MBN含量高于稻草和綠肥單獨(dú)應(yīng)用[12,34]。
土壤DOC、DON是土壤活性有機(jī)碳氮庫中最易損失的化學(xué)組分,受微生物數(shù)量和活性、有機(jī)物料投入、水分、耕作活動、pH值等因素的影響[35]。本研究發(fā)現(xiàn),單獨(dú)綠肥處理降低土壤DOC,稻草-綠肥聯(lián)合還田提高土壤DOC和DON含量(表5)。筆者在綠肥配施不同量化肥的研究中發(fā)現(xiàn),物料的C/N比對土壤DOC的影響較大,C/N比過低或過高均不利于DOC含量增加[13]。一般認(rèn)為,還田有機(jī)物料C/N比越低土壤呼吸強(qiáng)度越大[32],單位質(zhì)量碳產(chǎn)生更多的腐殖質(zhì)[36],不利于DOC累積;C/N比越高物料分解速率越低,DOC產(chǎn)生緩慢[32]??梢?,稻草與綠肥聯(lián)合還田較多的碳氮投入以及較為適宜的物料C/N比,利于土壤DOC和DON含量維系在較高水平。
稻茬留高茬套種綠肥、稻草-綠肥聯(lián)合還田有利于稻草和綠肥資源的綜合利用,主要表現(xiàn)在3個方面:1)稻草還田比稻草不還田綠肥產(chǎn)草量提高了13.1%和32.2%(<0.05),植株氮增加了6.8%和5.2%(<0.05),稻草留高茬處理效果最佳;2)稻草-綠肥聯(lián)合還田較稻草、綠肥單獨(dú)應(yīng)用水稻產(chǎn)量更高,且隨著聯(lián)合還田的年限增加,高留茬處理水稻增產(chǎn)潛力最大,比低茬處理4 a 早稻平均增產(chǎn)735.3 kg/hm2(<0.05);3)與稻草、綠肥單獨(dú)處理相比較,稻草-綠肥聯(lián)合還田提高土壤有機(jī)質(zhì)、全氮、微生物量碳氮和可溶性有機(jī)碳氮含量,同時(shí)發(fā)揮稻草、綠肥各自培肥優(yōu)勢,土壤有效礦質(zhì)養(yǎng)分全面提升,并以稻草高茬處理時(shí)養(yǎng)分增幅最大。
[1] 高菊生,曹衛(wèi)東,李冬初,等. 長期雙季稻綠肥輪作對水稻產(chǎn)量及稻田土壤有機(jī)質(zhì)的影響[J]. 生態(tài)學(xué)報(bào),2011,31(16):4542-4548. Gao Jusheng, Cao Weidong, Li Dongchu, et al. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542-4548. (in Chinese with English abstract)
[2] 吳建富,曾研華,潘曉華,等. 稻草還田方式對雙季水稻產(chǎn)量和土壤碳庫管理指數(shù)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(6):1572-1578. Wu Jianfu, Zeng Yanhua, Pan Xiaohua, et al. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double rice-cropping system[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1572-1578. (in Chinese with English abstract)
[3] Li Xueyuan, Wang Qifa, Xu Fenglin. Effect of returning application of straw on soil K, P, Zn adsorption-desorption and their availability[J]. Journal of Huazhong Agricultural University, 2000, 19(3): 227-232.
[4] Wu Minna, Qin Hongling, Chen Zhe, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4), 397-405.
[5] 高菊生,徐明崗,董春華,等. 長期稻-稻-綠肥輪作對水稻產(chǎn)量及土壤肥力的影響[J]. 作物學(xué)報(bào),2013,39(2):343-349. Gao Jusheng, Xu Minggang, Dong Chunhua, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343-349. (in Chinese with English abstract)
[6] 蘭忠明,林新堅(jiān),張偉光,等. 缺磷對紫云英根系分泌物產(chǎn)生及難溶性磷活化的影響[J]. 中國農(nóng)業(yè)科學(xué),2012,45(8):1521-1531. Lan Zhongming, Lin Xinjian, Zhang Weiguang, et al. Effect of P deficiency on the emergence ofL. root exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. (in Chinese with English abstract)
[7] 李勇,曹紅娣,儲亞云,等. 麥稈還田氮肥運(yùn)籌對水稻產(chǎn)量及土壤氮素供應(yīng)的影響[J]. 土壤,2010,42 (4):569-573. Li Yong, Cao Hongdi, Chu Yayun, et al. Effects of wheat straw returning and nitrogen application model on rice yield and soil nitrogen supply[J]. Soils, 2010, 42 (4): 569-573. (in Chinese with English abstract)
[8] Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? [J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843.
[9] Hoorens B, Aerts R, Stroetenga M. Litter quality and interactive effects in litter mixtures: More negative interactions under elevated CO2?[J]. Journal of Ecology, 2002, 90(6): 1009-1016.
[10] Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter[J]. Oikos, 2004, 104(2): 230-246.
[11] Pramanik P, Haque M M, Kim S Y, et al. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season[J]. Science of the Total Environment, 2014, 490: 622-628.
[12] 夏志敏,周建斌,梅沛沛,等. 玉米與蠶豆秸稈配施對秸稈分解及土壤養(yǎng)分含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2012,23(1),103-108. Xia Zhimin, Zhou Jianbin, Mei Peipei, et al. Effects of combined application of maize and horsebean straws on the straws decompositionand soil nutrient contents[J]. Chinese Journal of Applied Ecology, 2012, 23(1), 103-108. (in Chinese with English abstract)
[13] 周國朋,曹衛(wèi)東,白金順,等. 多年紫云英-雙季稻下不同施肥水平對兩類水稻土有機(jī)質(zhì)及可溶性有機(jī)質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),2016,49(21):4096-4106. Zhou Guopeng, Cao Weidong, Bai Jinshun, et al. The effect of years of Chinese milk vetch-double cropping rice under different fertilization levels on soil organic matter and DOM in two paddy soils[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. (in Chinese with English abstract)
[14] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.
[15] 鮑士旦. 土壤農(nóng)化分析:第三版[M]. 北京:中國農(nóng)業(yè)出版社,2000:44-49.
[16] Perucci P, Dumontet S, Bufo S A, et al. Effects of organic amendment and herbicide treatment on soil microbial biomass[J]. Biology and Fertility of Soils, 2000, 32(1): 17-23.
[17] 駱坤,胡榮桂,張文菊,等. 黑土有機(jī)碳,氮及其活性對長期施肥的響應(yīng)[J]. 環(huán)境科學(xué),2013,34(2):676-684. Luo Kun, Hu Ronggui1, Zhang Wenju, et al. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization[J]. Environmental Science, 2013, 34(2): 676-684. (in Chinese with English abstract)
[18] Tirol-Padre A, Ladha J K, Regmi A P, et al. Organic amendments affect soil parameters in two long-term rice-wheat experiments[J]. Soil Science Society of America Journal, 2007, 71(2): 442-452.
[19] Pathak H, Singh R, Bhatia A, et al. Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution[J]. Paddy and Water Environment, 2006, 4(2): 111-117.
[20] 趙娜,趙護(hù)兵,魚昌為,等. 夏閑期種植翻壓綠肥和施氮量對冬小麥生長的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2010,19(12):41-47. Zhao Na, Zhao Hubing, Yu Changwei, et al. Effect of green manure in summer fallow period and nitrogen rate on winter wheat growth[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(12): 41-47. (in Chinese with English abstract)
[21] Kumar K, Goh K M. Biological nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for white clover () and field pea () grown for seed[J]. Field Crops Research, 2000, 68(1): 49-59.
[22] 單玉華,蔡祖聰,韓勇,等. 淹水土壤有機(jī)酸積累與秸稈碳氮比及氮供應(yīng)的關(guān)系[J]. 土壤學(xué)報(bào),2006,43(6):941-947. Shan Yuhua, Cai Zucong, Han Yong, et al. Accumulation of organic acids in relation to C:N rations of straws and application in flooded soil[J]. Acta Pedologica Sinica, 2006, 43(6): 941-947. (in Chinese with English abstract)
[23] 王飛,林誠,李清華,等. 亞熱帶單季稻區(qū)紫云英不同翻壓量下有機(jī)碳和養(yǎng)分釋放特征[J]. 草業(yè)學(xué)報(bào),2012,21(4):319-324. Wang Fei,Lin Cheng, Li Qinghua, et al. A study on organic carbon and nutrient releasing characteristics of differentmanure use levels in a single cropping region of subtropical China[J]. Acta Prataculturae Sinica, 2012, 21(4): 319-324. (in Chinese with English abstract)
[24] Palm C A, Gachengo C N, Delve R J, et al. Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database[J]. Agriculture, Ecosystems & Environment, 2001, 83(1): 27-42.
[25] 蘇偉,魯劍巍,周廣生,等. 稻草還田對油菜生長、土壤溫度及濕度的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2011,17(2):366-373. Su Wei, Lu Jianwei, Zhou Guangsheng, et al. Influence of straw-returning on rapeseed () growth, soil temperature and moisture[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 366-373. (in Chinese with English abstract)
[26] 鄭偉,肖國濱,肖小軍,等. 稻茬高度對谷林套播油菜生長發(fā)育及產(chǎn)量形成的影響[J]. 中國農(nóng)業(yè)科學(xué),2017,50(4):648-656. Zheng Wei, Xiao GuoBin, Xiao XiaoJun, et al. Effects of rice stubble height on growth, development, and yield components of interplanted rapeseed in rice[J]. Scientia Agricultura Sinica, 2017, 50(4): 648-656. (in Chinese with English abstract)
[27] 湯樹德,石晶波. 秸稈還田對大豆結(jié)瘤狀況、固氮活性和生育產(chǎn)量的影響[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),1986(1):9-16. Tang Shudeng, Shi Jingbo. Influence of returning straws to field upon the bearing nodule of soybean azofication activity and growth harvest[J]. Journal of Heilongjiang Bayi Agricultural University, 1986(1): 9-16. (in Chinese with English abstract)
[28] 王玄德,石孝均,宋光煜. 長期稻草還田對紫色水稻土肥力和生產(chǎn)力的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2005,11(3):302-307. Wang Xuande, Shi Xiaojun, Song Guangyu. Effects of long- term rice straw returning on the fertility and productivity of purplish paddy soil[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 302-307. (in Chinese with English abstract)
[29] Eichler-L?bermann B, Schiemenz K, Makadi M, et al. Nutrient cycling by using residues of bio-energy production- effects of biomass ashes on plant and soil parameters[J]. Cereal Research Communications, 2008, 36: 1259-1262.
[30] Anderson J P E, Domsch K H. Quantities of plant nutrients in the microbial biomass of selected soils[J]. Soil Science, 1980, 130(4): 211-216.
[31] Brookes P C, Wu J, Ocio J A. Soil microbial biomass dynamics following the addition of cereal straw and other substrates to soil[M]//The Ecology of Temperate Cereal Fields. London: Blackwell Scientific Publications. 1990: 94-111.
[32] Wang Yunfeng, Liu Xingmei, Butterly C, et al. pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime[J]. Journal of Soils and Sediments, 2013, 13(4): 654-663.
[33] 邵月紅,潘劍君,孫波. 長期施用有機(jī)肥對瘠薄紅壤有效碳庫及碳庫管理指數(shù)的影響[J]. 土壤通報(bào),2005,36(2):177-180. Shao Yuehong, Pan Jianjun, Sun Bo. Effects of long -term application of organic manure on available carbon pool and carbon pool management indexes in infertile red soils[J]. Chinese Journal of Soil Science, 2005, 36(2): 177-180. (in Chinese with English abstract)
[34] Abouelenien F, Namba Y, Kosseva M R, et al. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes[J]. Bioresource technology, 2014, 159:80-87.
[35] 陳安強(qiáng),付斌,魯耀,等. 有機(jī)物料輸入稻田提高土壤微生物碳氮及可溶性有機(jī)碳氮[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):160-167. Chen Anqiang, Fu Bin, Lu Yao, et al. Exogenous organic materials applied to paddy field improving soil microbial biomass C, N and dissolved organic C, N[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 160-167. (in Chinese with English abstract)
[36] Nicolardot B, Recous S, Mary B. Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues[J]. Plant and Soil, 2001, 228(1): 83-103.
周國朋,謝志堅(jiān),曹衛(wèi)東,徐昌旭,白金順,曾鬧華,高嵩涓,楊 璐. 稻草高茬-紫云英聯(lián)合還田改善土壤肥力提高作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):157-163. doi:10.11975/j.issn.1002-6819.2017.23.020 http://www.tcsae.org
Zhou Guopeng, Xie Zhijian, Cao Weidong, Xu Changxu, Bai Jinshun, Zeng Naohua, Gao Songjuan, Yang Lu. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 157-163. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.020 http://www.tcsae.org
Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice
Zhou Guopeng1,2, Xie Zhijian3※, Cao Weidong1,4, Xu Changxu3, Bai Jinshun1, Zeng Naohua1, Gao Songjuan1,2, Yang Lu1,2
(1.100081;2.100081; 3.330200; 4.810016)
Rice straw return and green manure cultivation in winter fallow season are 2 effective ways of improving soil fertility in south China. Due to the relatively stable carbon to nitrogen ratio, either the rice straw return or green manure cultivation alone has its own limits in practice. Recently, the combined application of green manure and rice straw has been developed, while little is known about the impacts on crop yield and soil fertility. A field trial was conducted at an experimental station managed by National Engineering and Technology Research Center for Red Soil Improvement in Fengcheng, Jiangxi Province, China to explore effects of remaining high rice stubble, inter-planting green manure (Chinese milk vetch,) and co-incorporation of rice straw and green manure on double rice and green manure yield and soil fertility. Field experiments were conducted in a rice-rice-winter fallow or rice-rice-Chinese milk vetch (MV) rotation system. A total of 5 treatments with different cultivation practices were included, (i) CK, rice-rice-winter fallow without rice straw return; (ii) RS, rice-rice-winter fallow with rice straw return; (iii) MV, rice-rice-MV without rice straw; (iv) MV+LRS, rice-rice-MV with return of low stubble (0 cm) of rice straw; (v) MV+HRS rice-rice-MV with return of high stubble (30 cm) of rice straw. The results showed that co-incorporation of RS and MV significantly increased fresh yield and nitrogen content of MV plants by 13.1% and 6.8% in MV+LRS and 32.2% and 5.2% in MV+HRS than those in MV alone, respectively. The average yield of double rice yield over the 4 years was significantly increased by 556.8 and 412.8 kg/hm2in MV+HRS than in RS and MV, respectively. Compared to CK, the soil organic matter (SOM) content was significantly increased by 6.8% to 8.0% in RS and MV, the total nitrogen (TN) was marginally affected by the 2 treatments. Compared to CK, the soil inorganic N content was significantly decreased in treatments with RS and MV alone, while the available K was increased in RS. Different from soil inorganic nitrogen, manure treatments greatly improve available P content and the treatment of MV with HRS increased the available P by 18.0%. However, the treatments with rice straw could greatly increased soil available K by 8.0% (RS), 9.2%(MV+LRS) and 22.8%(MV+HRS), respectively. The soil microbial nitrogen were also significantly enhanced in the combinations than in MV or RS alone (<0.05). The dissolved organic carbon and nitrogen were greater in the manure-rice straw combination treatments than CK. The treatments with rice straw enhanced the proportion of microbial biomass C in SOC and that of microbial biomass N in TN. Compared with the rice straw and manure alone, the co-incorporation of rice straw and manure increased the proportion of dissolved organic N in TN and inorganic N in TN. Collectively, the co- incorporation of rice straw and green manure could improve the rice yield and soil fertility in present conditions. The practice of keeping high stubble of rice straw standing in the field and returned together withgreen manure had the great promise to maintain and improve soil fertility and rice yield in south China.
manure; fertility; nitrogen; rice; Chinese milk vetch; yield
10.11975/j.issn.1002-6819.2017.23.020
S158.5;S541+.3
A
1002-6819(2017)-23-0157-07
2017-07-24
2017-10-10
國家綠肥產(chǎn)業(yè)技術(shù)體系(CARS-22);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程;現(xiàn)代農(nóng)業(yè)人才支撐計(jì)劃;Newton Fund(Grant Ref: BB/N013484/1);國家農(nóng)作物種質(zhì)資源平臺(NICGR2017-019);作物種質(zhì)資源保護(hù)和利用項(xiàng)目(2017NWB038)
周國朋,山東菏澤人,博士生,主要從事南方稻田土壤碳氮轉(zhuǎn)化研究。Email:zhouguopeng29@163.com。
謝志堅(jiān),江西萍鄉(xiāng)人,助理研究員,博士,主要從事農(nóng)田生態(tài)與肥料資源利用研究。Email:hoblecat@126. com。