• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries

    2017-12-18 03:25:50HELeiXUJunMinWANGYongJianZHANGChangJin
    物理化學(xué)學(xué)報(bào) 2017年8期
    關(guān)鍵詞:富鋰庫(kù)侖電流密度

    HE Lei XU Jun-Min,2, WANG Yong-Jian ZHANG Chang-Jin,3,

    ?

    LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries

    HE Lei1XU Jun-Min1,2,*WANG Yong-Jian1ZHANG Chang-Jin1,3,*

    (123)

    In this work, we present a new design for a surface protective layer formed by a facile aqueous solution process in which a nano-architectured layer of LiFePO4is grown on a Li-rich cathode material, Li1.2Mn0.54Ni0.13Co0.13O2. The coated samples are then calcined at 400 or 500 °C for 5 h. The sample after calcination at 400 °C demonstrates a high initial columbic efficiency of 91.9%, a large reversible capacity of 295.0 mAh?g?1at 0.1(1= 300 mA?g?1), and excellent cyclability with a capacity of 206.7 mAh?g?1after 100 cycles at 1. Meanwhile, voltage fading of the coated sample is effectively suppressed by protection offered by a LiFePO4coating layer. These superior electrochemical performances are attributed to the coating layer, which not only protects the Li-rich cathode material from side reaction with the electrolyte and maintains the stability of the interface structure, but also provides excess reversible capacity.

    Lithium-ion battery; Lithium-rich cathode materials; LiFePO4coating; High Columbic efficiency; Cyclability

    1 Introduction

    Lithium-ion batteries have been widely applied in portable electronic products and are prime candidates as the power source for electric vehicles owing to their superior performance characteristics, namely, long cycle life, high energy and power densities, and no memory effect1?3. Cathode materials as the key constituent part of lithium-ion batteries play a crucial role in determining the whole battery performance. Therefore, it is of great importance to develop cathode materials with large specific capacity to fulfill the requirements for advanced lithium-ion batteries. Among the various cathode materials being developed, the lithium-rich oxides, usually denoted as Li1+x/(x+2)M(2?2x)/(x+2)Mn2x/(x+2)O2orLi2MnO3?(1?)LiMO2(M represents the transition metal), are attracting intensive attention because of their excellent reversible capacity (~250 mAh?g?1)4?12.

    Although the Li-rich materials have the advantages of relatively high capacity and low cost, they suffer from several disadvantages, such as low initial coulombic efficiency, low rate capability and insufficient cyclability, which impose a great obstacle for their practical applications. It is well known that the particular electrochemical performance of the lithium-rich oxides including superior high capacity is mainly originated from an active process of Li2MnO3during the initial charge in the high potential range, which presents an irreversible removal of Li2O along with production of oxygen vacancies from the crystal lattice13,14. Due to this irreversible active reaction of Li2MnO3as well as the decomposition of the electrolyte in the high potential range, the lithium-rich oxides exhibit the low initial coulombic efficiency. The poor rate capability could be assigned to the obstruction of the electronic delocalization due to the introduction of Li and Mn ions in the transition metal layer and the increase of the surface resistance with cycling15?17. The poor cycling stability could correspond to the phase change from a layered to spinel structure during the subsequent cycling.

    To solve these problems, many efforts have been made in the past decade to stabilize the surface and the bulk phase structures of the lithium-rich oxides. One approach is to stabilize the crystal structure by cation doping in the bulk, including Mg-doping, Sn-doping, Ti-doping and Mo-doping12,18?20. Another and more effective way is deemed as the surface modification. As demonstrated in previous reports, surface coating of carbon, metal oxide (Al2O3, Cr2O3, ZrO2, MoO3)21?24, metal fluoride (AlF3, FeF3)25,26, metal phosphate (FePO4, SmPO4)27,28, and spinel11,29can substantially improve the initial discharge capacity and greatly enhance the cyclability, possibly due to the formation of a stable solid electrolyte interphase (SEI) film to alleviate the electrolyte decomposition and retain the oxide ion vacancies in the lattice at subsequent charge-discharge cycles. For example, Wu.30have reported that LiFePO4coated LiNi0.5Mn0.3Co0.2O2exhibits a higher reversible capacity and improved cycling performance in comparison with its pristine counterpart. To our knowledge, little work has been done on Li-rich cathodes modified with this stable cathode material, namely, LiFePO4for further enhancement of Li-ion batteries performance both of initial columbic efficiency and cyclability.

    In this study, we have designed a coated LiFePO4layered on Li1.2Mn0.54Ni0.13Co0.13O2a facile aqueous solution process. Subsequently, calcinations are conducted to enhance the interface interaction with polyanion penetration. Compared with the pristine sample, the LiFePO4coated Li1.2Mn0.54Ni0.13Co0.13O2shows significantly improved discharge capacity, coulombic efficiency and rate capability. The effect of the LiFePO4coating layer on the electrochemical performance of Li-rich cathode has been discussed in detail.

    2 Experimental

    2.1 Materials preparation

    Li1.2Mn0.54Ni0.13Co0.13O2(LMNCO) was synthesized by a sol-gel method using citric acid as the chelating agent. Stoichiometric amounts of LiCOOCH3?2H2O (Alfa Aesar, 99%), Ni(COOCH3)2?4H2O (Alfa Aesar, > 98%), Co(COOCH3)2?4H2O (Alfa Aesar, 98%), and Mn(COOCH3)2(Alfa Aesar, 99%) was dissolved in de-ionized water. Then the solution was added dropwisely into citric acid solution under continuous stirring. After being stirred thoroughly, the solution was heated at 80 °C and a continuous stirring was applied until a clear viscous gel was formed. The gel was dried in an oven at 80 °C to obtain the precursor powder. After heating at 480 °C in air for 5 h, the powder was ground and then calcined at 900 °C for 12 h in air. A 5% excess of lithium was used to compensate for lithium loss during the calcinations.

    For preparation of 5% () LiFePO4coated LMNCO composite, the required amounts of LiCOOCH3?2H2O and FeSO4?7H2O (Alfa Aesar, > 99%) were dissolved in de-ionized water, followed by adding NH4H2PO4(Alfa Aesar, ≥ 98%) solution under constantly stirring. The as-prepared LMNCO was dispersed in the above solution. Then, the mixture was heated at 80°C and stirred vigorously for 5 h. After that, the suspension was laid aside for 12 h, followed by centrifuging and washing the precipitates with de-ionized water and ethanol, and drying at 80°C overnight. After mild grinding, the as-obtained powder was further heated at 400 °C (LFP-400) and 500 °C (LFP-500) for 5 h in the flowing argon. The final amounts of LiFePO4in the composites (mass fraction) for the LFP-400 and LFP-500 samples are 4.95% and 4.8%, respectively.

    2.2 Morphology and structure characterizations

    Powder X-ray diffraction measurement was performed on Rigaku TTR3 (Japan) with high-intensity graphite monochromatized Curadiation between 10° and 80° at a scan rate of 2 (°)?min?1. The morphologies of the bare and coated samples were observed by Helios Nanlab 600i (Germany) scanning electron microscope (SEM) and JEM-2010 (Japan) high resolution transmission electron microscope (HRTEM). X-ray photoelectron spectroscopy of the samples was performed using Thermo ESCALAB 250 (USA) with monochromatic Alradiation.

    2.3 Electrochemical measurements

    The electrode materials were assembled into 2032 button cells for electrochemical measurements. A mixture of active material, carbon black (CB), and poly(vinyl difluoride) (PVDF) at a mass ratio of 75 : 15 : 10 was mixed in-methyl pyrrolidone (NMP) solution and pasted on an Al foil to prepare the working electrodes. The slurry was cast onto an Al foil and was then dried overnight in a vacuum oven at 120 °C. The loading mass of active material was adjusted to 3.6?3.9 mg. Pure lithium foil was used as a counter and reference electrode. The half-cell was composed of a cathode and a lithium metal anode separated by a Celgard 2400 porous polypropylene film separator. The electrolyte consisted of a solution of 1 mol?L?1LiPF6in ethylenecarbonate (EC)/dimethylcarbonate (DMC)/ diethyl- carbonate (DEC) (with mass ratio of 1 : 1 : 1). The batteries assembly was carried out in a glove box (M.BRAUN MB 20G, Germany) filled with high-purity argon. The galvano- static charge and discharge tests were performed between 2.0 and 4.8 V (Li+/Li) with a NEWARE CT-3008 instrument (Shenzhen, China) at room temperature. Electrochemical impedance spectra (EIS) were measured using a Zahner Zennium (Germany) electrochemical workstation in the frequency range of 1 MHz to 1 mHz, and the cyclic voltammetry (CV) measurement was conducted in the potential range of 2?4.8 V at a scan rate of 0.1 mV?s?1.

    3 Results and discussion

    Fig.1 shows the XRD patterns of the pristine and the LiFePO4coated LMNCO samples. The patterns of the pristine and LFP-400 samples can be indexed in characteristic of the O3 layered structure based on a hexagonal-NaFeO2with space group3. The weak superstructure reflections locating at around 20°?25° are corresponding to the Li+cation ordering in the transition metal layer (2/)31. Meanwhile, the separations between the adjacent peaks of (006)/(102) and (018)/(110) can be clearly observed, indicating a typical layered structure32.All the reflections are from the layered oxide without any peaks for olive phosphates, which is possibly due to the very low content of the LiFePO4layer coated on the surface of the LMNCO material. When the calcination temperature is 500 °C, the significantly weakening of superstructure reflections suggests that the structure of the solid solution is destroyed to some extent. The conductivity of the pristine sample is tested to be 0.12 S?m?1, while the value for the LFP-400 and LFP-500 samples are 1.84 × 10?3S?m?1and 0.88 × 10?3S?m?1, respectively.

    Fig.1 XRD patterns of the (a) Pristine, (b) LFP-400 and (c) LFP-500 samples.

    SEM images of the samples are shown in Fig.2. Fig.2(a) displays that the pristine sample is composed of uniformly distributed polyhedral particles. The diameters of the particles are ~250 nm with smooth facets and sharp edges. After the surface modification with LiFePO4, there is no apparent change in grain size. A tiny difference is that the surfaces of the pristine grains are smooth, while the surfaces of the coated samples are relatively coarse. From the SEM results, we expect that the LiFePO4coating of LMNCO can effectively decrease the direct contact area between the high-voltage cathode material and the electrolyte.

    Fig.2 SEM images of the (a, b) Pristine, (c, d) LFP-400 and (e, f) LFP-500 samples.

    To investigate the effective coating of LiFePO4on the surfaces of Li-rich particles, we carry out HRTEM characterizations for the pristine and coated samples. For the pristine sample (Fig.3(a)), a continuous interference fringe with a distance of 0.467 nm is found until the clear grain edge, which can be indexed to the (003) plane25. On the other hand, a distinct LiFePO4layer with a thickness of 7?10 nm appears on the top surface of LFP-400 and LFP-500 samples (Fig.3(b, c)). The distances between two lattice fringes on the internal and surface of the coated samples are 0.467 nm and 0.278 nm, corresponding to (003) plane of LMNCO and (301) plane of LiFePO433, respectively. The HRTEM give clear evidences of the existence of LiFePO4coating layers on the surface of the layered oxide. Fig.3(d) shows the results of EDS analysis. The EDS analysis reveals the presence of Ni, Co, Mn, O, Sm and P in the LFP-500 sample. The calculated molar ratio of Mn : Ni : Co is 0.54 : 0.19 : 0.18, which is very close to the chemical formula of Li1.2Mn0.54Ni0.13Co0.13O2(i.e., 0.54 : 0.13 : 0.13). The calculated atomic ratio of Fe : P is ~1 from the EDS analysis. These results indicate that the actual element compositions of the pristine and LFP-500 samples are well consistent with the original experimental project.

    In order to investigate the changes of surface properties and the chemical states of the elements in the surface coating layer, we perform the X-ray photoelectron spectroscopy measurements on the samples before and after the LiFePO4coating. As shown in Fig.4, the binding energy of P 2in the LFP-400 is about 133.4 eV, which is consistent with the value reported for P5+and PO43?. In the pristine sample, the P 2peaks are not detected34. There is an O 1peak at 529.35 eV in the pristine sample, which is shifted to 529.66 eV in the LFP-400 sample. The Fe 2spectrum consists of two parts, Fe 23/2and Fe 21/2, because of the spin–orbit coupling of the partially filled-orbitals (characteristic of transition metal ions). The Fe 23/2and Fe 21/2spectra are clearly seen at 711.04 eV and 724.9 eV, respectively, exhibiting the characteristic of Fe2+35,36. For Mn 2, the Mn 23/2peaks of the pristine and coated samples are located at 642.16 eV and 642.33 eV respectively, which indicates that the manganese ions are in a mixed valence of Mn4+with Mn3+37. The Ni 23/2peaks for both samples are located at 854.88 eV and 854.6 eV, respectively, while the difference between the binding energies of 21/2and 23/2levels is= 17.72 eV. Therefore, the valence state of Ni ions is +238,39. Comparatively, four signals are detected for Co 2core level. The positions of the satellite peaks and the values of, demonstrate that Co ions for both samples are in oxidation states between +2 and +340. Simultaneously considering the results of the TEM and XPS, it can be confirmed that LiFePO4has been successfully coated on the surface of the LMNCO.

    Fig.3 HRTEM images of the (a) Pristine, (b) LFP-400 and (c) LFP-500 samples, (d) EDS spectra of LFP-500 sample.

    The electrochemical performances of all samples are tested by galvanostatic charging and discharging in a voltage window of 2.0–4.8 V (Li+/Li) at room temperature. Fig.5(a) shows the initial charge/discharge curves of the pristine and coated samples at a low rate of 0.1(1= 300 mA?g?1). It can be seen that the pristine sample has a long plateau that begins at ~4.5 V during the first charge. The voltage plateau on the first charge corresponds to the removal of oxygen from the Li2MnO3component, which is accompanied by the diffusion of the transition metal ions from the surface to bulk41. Compared with the pristine sample, the coated samples display almost the same charge/discharge curves except for the additional plateau in the voltage range of 2.6?2.9 V during discharge, which contributes the excess reversible capacity for the coated samples. As can be seen, the LFP-400 sample delivers a higher first discharge capacity (295.0 mAh?g?1) than those of the pristine and LFP-500 sample, giving a high coulombic efficiency of 91.9%, whereas the pristine and LFP-500 samples deliver lower coulombic efficiency of 79.6% and 86.3%, respectively. As seen from the Table 1, the first discharge capacity and high coulombic efficiency of the LFP-400 sample are superior to the three typical LMNCO-based cathode materials12,24,29. This improvement demonstrates that the coated LiFePO4can effectively protect the layered core from erosion of electrolytes and stabilize the surface structure.

    Fig.4 XPS spectra of the (a) Pristine and (b) LFP-400 sample at the P 2p, O 1s, Fe 2p, Mn 2p, Ni 2p and Co 2p corelevels.

    Fig.5 (a) Charge/discharge curves of the Pristine, LFP-400 and LFP-500 samples at 0.1C; CV curves of the (b) Pristine,(c) LFP-400 and (d) LFP-500 samples at a scan rate of 0.1 mV?s?1.

    The CV curves of the pristine sample (Fig.5(b)) show two obvious oxidation peaks at ~3.9 V and ~4.6 V (Li+/Li) in the initial anodic scan, which are attributed to the reversible lithium intercalation/deintercalation in layered structure and the removal of lithium ions along with the simultaneous oxygen evolution, respectively. In the reversal scan, there is one reduction peak at ~3.2 V, which is ascribed to the Mn4+reduction to balance the charge of oxygen vacancies arising from the loss of oxygen in the first charge42. In the second scan, the CV features are significantly different from those observed in the first scan. The strongest peak at 4.6 V in the first scan disappears, indicating the irreversible reaction for Li2O removal from the crystal lattice. The CV curves of the coated samples shown in Fig.5(c, d) are similar to those of the pristine sample, except for the presence of one pair of redox peaks centered in the low voltage range of 2.6?2.9 V, which is the characteristic peak of the spinel phase. These peaks are corresponding to the reversible reaction of Mn3+/Mn4+couple, which is related to the Li+intercalation mechanism of the newly formed spinel phase component24.

    When the coated mass is further became to 2% () (LFP-2) and 10% () (LFP-10). The corresponding experimental results indicate that the electrochemical properties of these two samples are not comparable with those of the LFP-400 (shown in Fig.6). For instance, the LFP-2 exhibits a maximum capacity of 263.8 mAh?g?1and initial columbic efficiency of 80.3% at 0.1, and the LFP-10 exhibits a maximum capacity of 241.6 mAh?g?1and initial columbic efficiency of 80.1%. These are both smaller than the LFP-400 sample, so we deem that the best coated amount is 5% ().

    Table 1 Comparison of LFP-400 with some typical LMNCO-based materials in electrochemical performance.

    Fig.6 Charge/discharge curves of the LFP-2, LFP-400 and LFP-10 samples at 0.1C.

    The present work has provided evidence that high-rate discharge capacities could be achieved by LiFePO4coating on lithium-rich materials. Fig.7 shows a continuous cycling result at incremental rates from 0.1to 10then recovering back to 0.1. As can be seen, the LFP-400 sample exhibits the best rate performance among all samples, especially at 10. Such contrast observation might be related to the increasing the electrode/electrolyte contact area which may generate higher diffusion capability at an extremely high rate.

    It is generally known that voltage fading is a major issue of the Li-rich layered cathode materials43. The voltage fading could be caused by the deterioration of the electrode/electrolyte interface and the structure transforms from layered to spinel-like due to Mn ions migration. Fig.8 shows the voltage fading of the pristine and coated samples from the 10th cycle to the 100th cycle at 1rate in the voltage of 2.0?4.8 V. It is clear that, when the cycling number increases, the charge voltage increase to higher plateaus, meanwhile, the discharge voltage drop to lower plateaus for all samples. This indicates the enlargement of polarization. Serious voltage fading with cycling is observed in the pristine sample, owing to the continuous undesired layered-to-spinel phase transformation. However, the voltage fading of coated samples effectively slowed down, especially for the LFP-400 sample. Therefore, the LiFePO4coating layer is more beneficial for reducing the speed of voltage fading.

    Fig.7 Rate performances of the Pristine, LFP-400 and LFP-500 samples at various charge/discharge rates.

    Fig.8 Voltage profiles from galvanostatic cycling of the Pristine, LFP-400 and LFP-500 samples during different cycles at 1C rate in the potential range of 2.0–4.8 V.

    The cycle performances of the pristine and coated samples are evaluated at 1between 2.0 and 4.8 V. As shown in Fig.9(a), both of the coated samples deliver higher discharge capacity than the pristine sample. After 100 cycles, the LFP-400 sample exhibits a discharge capacity of 206.7 mAh?g?1, whereas the pristine and LFP-500 samples decay to 130.7 and 190.6 mAh?g?1. The interface layer with strong interaction can protect the cathode surface from further HF corrosion, which is favorable for ensuring the good cycle stability. To investigate the fast-charging ability, tests based on 5charge/discharge are conducted on the pristine and coated samples (Fig.9(b)). Fast extraction/insertion of Li+at high rates damages the fragile structure of pristine LMNCO, resulting in the obvious capacity fade on cycling26. Most surprisingly, the discharge capacity of the LFP-400 sample is 201.8 mAh?g?1and can retain 183.8 mAh?g?1after 50 cycles, while the corresponding discharge capacities of the LFP-500 sample are 121.1 and 168.1 mAh?g?1, respectively. However, the pristine sample can only deliver a discharge capacity of 151 mAh?g?1after 50 cycles. This superior reversible capacity and good cycling stability at high rates for the LFP-400 and LFP-500 are attributed to the fast Li+diffusion rate and structural features from the LiFePO4protective layer.

    Fig.9 Cycling performances of the Pristine, LFP-400 and LFP-500 samples cycled at 1C (a) and 5C (b) between the voltage limits of 2.0?4.8 V.

    Fig.10 Electrochemical impedance spectra (EIS) of the Pristine, LFP-400 and LFP-500 samples at a charge state of 4.1 V after 50 cycle in the frequency range of 1 MHz to 1 mHz.

    Electrochemical impedance spectroscopy (EIS) spectra are measured for the pristine and coated samples after 50 charge-discharge cycles at 1in order to find out the underlying reason of the improvement in high-rate capability. Before the EIS measurements, all samples are charged to 4.1 V at 1rate to reach an identical status. As shown in Fig.10, both Nyquist plots are composed of two semicircles and one slope, which can be explained by using the equivalent circuits (the insets in Fig.10): the first semicircle (at high frequency region) is ascribed to the lithium ion diffusion resistance through the surface layer (f), the second semicircle (at medium-to-low frequency region) is assigned to the charge transfer resistance (ct) at electrolyte-electrode interfacial, and the slope at the low frequency region is attributed to lithium ion diffusion Warburg impedance (w) in the bulk material24,44. All EIS spectra are fitted using the equivalent circuit shown the inset of Fig.10. The fitting results offandctfor all samples are tabulated in Table 2. It is obvious that the value offfor pristine sample is beyond 28.7 Ω, while those for the LFP-400 and LFP-500 samples are 7.0 and 7.7 Ω, respectively. For thect, it is about 125.7 Ω for the pristine sample, much larger than the LiFePO4coated samples. Especially for the LFP-400 sample, the value ofctis only 63.2 Ω. Among the three samples, the LFP-400 sample exhibits the lowestfandctvalues. This means that the side reaction between cathode electrode and electrolyte is markedly suppressed by LiFePO4coating layer. The lowerfandctvalues could accelerate the Li+diffusion rate at the electrode/electrolyte interface, and then are beneficial to enhancing the electrochemical properties of LMNCO during cycling45. Therefore, it is reasonable to conclude that the improvement of the electrochemical reaction activity and ion diffusion are responsible for the high coulombic efficiency, good cycle stability and remarkable fast-charging ability of the LFP-400 sample.

    Table 2 Fitted impedance parameters of the Pristine, LFP-400 and LFP-500 samples.

    4 Conclusions

    In summary, we have successfully prepared LiFePO4- coated Li1.2Mn0.54Ni0.13Co0.13O2by a facile aqueous solution method. The LFP-400 sample exhibits a high coulombic efficiency, high reversible capacity, good cycle stability and small voltage fading, which may eventually lead to advanced Lithium-ion batteries that meet the requirements of electric vehicles and renewable energy storage. Such an enhanced performance is associated with the active surface protective layer LiFePO4. The same strategy adopted in this work could also be extended to other high energy cathode materials with either high potential or high capacity.

    (1) Armstrong, A. R.; Lyness, C.; Panchmatia, P. M.; Islam, M. S.; Bruce, P. G.. 2011,, 223. doi:10.1038/nmat2967

    (2) Chiang, Y. M.2010,, 1485. doi: 10.1126/science.1198591

    (3) Gu, M.; Belharouak, I.; Genc, A.; Wang, Z.; Wang, D.; Amine, K.; Gao, F.; Zhou, G.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J., Wang, C.. 2012,, 5186.10.1021/nl302249v

    (4) Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.. 2004,, 1085. doi: 10.1016/j.elecom.2004.08.002

    (5) Wei,G. Z.; Xia, L.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G.2010,, 4364. doi: 10.1002/adma.201001578

    (6) Yu, H. J.; Zhou, H. S.. 2012,, 15507. doi: 10.1039/c2jm33484d

    (7) Kang, S. H.; Sun, Y. K.; Amine, K.. 2003,, A183. doi: 10.1149/1.1594411

    (8) Zhu, Z. Y.; Zhu, L. W.2014,, 178. doi: 10.1016/j.jpowsour.2014.01.068

    (9) Oh, P.; Ko, M.; Myeong, S.; Kim, Y.; Cho, J.. 2014,, 1400631. doi: 10.1002/aenm.201470087

    (10) He, F.; Wang, X. Q.; Du, C. Q.; Baker, A. P.; Wu, J. W.; Zhang, X. H.2015,, 484. doi: 10.1016/j.electacta.2014.11.139

    (11) Yang, C.; Zhang, Q.; Ding, W. X.; Zang, J.; Lei, M.; Zheng, M. S.; Dong, Q. F.2015,, 7554. doi: 10.1039/c5ta00009b

    (12) Jin, X.; Xu, Q. J.; Liu, H. M.; Yuan, X. L.; Xia, Y. Y.2014,, 19. doi: 10.1016/j.electacta.2014.05.043

    (13) Armstrong, A. R.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G.2006,, 8694.10.1021/ja062027+

    (14) Lu, Z.; Dahn, J. R.2002,, A815. doi: 10.1149/1.1480014

    (15) Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S.. 2011,, 2223. doi: 10.1039/C1EE01131F

    (16) Cong, L.; Lei, K. X.; Wang, J. W.; Wang, J. B.; Meng, H. J.; Chen. F. Y.; Chen, J.2016,, 2216. [叢 亮, 雷凱翔, 王紀(jì)偉, 王建斌, 孟煥菊, 程方益, 陳 軍. 科學(xué)通報(bào), 2016,, 2216.] doi: 10. 1360/N972016-00325

    (17) Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S.. 2011,, 4404. doi:10.1021/ja108588y

    (18) Zhao, Y. J.; Xia, M. H.; Hu, X. S.; Zhao, Z. K.; Wang, Y.; Lv, Z.2015,, 1167. doi: 10.1016/j.electacta.2015.05.068

    (19) Yamamoto, S.; Noguchi, H.; Zhao, W.2015,, 76. doi: 10.1016/j.jpowsour.2014.12.038

    (20) Du, J. Y.; Shan, Z. Q.; Zhu, K. L.; Liu, X. Y.; Tian, J. H.; Du, H. Y.. 2015,,1037. doi: 10.1007/s10008-014-2706-6

    (21) Kang, S. F.; Li, B.; Qin, H. F.; Fang, Y.; Li, X.; Wang, Y. G.. 2015,, 525. doi: 10.1007/s10008-014-2585-x

    (22) Li, B.; Li, C.; Cai, J. J.; Zhao, J. B.2015,, 21290. doi: 10.1039/c5ta06387f

    (23) Lee, H. J.; Park, Y. J.2013,, 222. doi: 10.1016/j.jpowsour.2013.01.154

    (24) Wang, C. L.; Zhou, F.; Chen, K. M.; Kong J. Z.; Jiang, Y. X.; Yan, G. Z.; Li J. X.; Yu, C.; Tang, W. P.2015,, 1171. doi: 10.1016/j.electacta.2015.07.167

    (25) Sun Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B.2012,, 1192. doi: 10.1002/adma.201104106

    (26) Zhao, T. L.; Li, L.; Chen, R. J.; Wu, H. M.; Zhang, X. X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K.2015,, 164. doi: 10.1016/j.nanoen.2015.04.013

    (27) Wang, Z. Y.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, J. J.; Zhao, N. Q.2013,, 25. doi: 10.1016/j.jpowsour.2013.02.022

    (28) He, L.; Xu, J. M; Han, T.; Han, H.; Wang, Y. J.; Yang, J.; Wang, J. R.; Zhu, W. K.; Zhang, C. J.; Zhang, Y. H.2017,, 5267. doi: 10.1016/j.ceramint.2017.01.052

    (29) Chen, Y. F.; Xie,K.;Zheng, C. M.;Ma, Z. Y.;Chen, Z. X.2014,, 16888. doi: 10.1021/am504412n

    (30) Wu, Z. Z.; Ji, S. P.; Liu, T. C.; Duan, Y. D.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F.. 2016,, 6357. doi: 10.1021/acs.nanolett.6b02742

    (31) Shi, S. J.; Tu, J. P.; Zhang, Y. D.; Zhang, Y. J.; Gu, C. D.; Wang, X. L.2013,, 828. doi: 10.1016/j.electacta.2013.08.002

    (32) Liu, J.; Manthiram, A.. 2010,, 3961. doi: 10.1039/b925711j

    (33) Gao, H. Y.; Zhe, H.; Zhang, K. Cheng, F. Y.; Chen, J.. 2013,, 3040. doi: 10.1039/c3cc40565f

    (34) Wu, Y.; Murugan, A. V.; Manthiram, A.. 2008,, A635. doi: 10.1149/1.2948350

    (35) Bhuvaneswari, M. S.; Bramnik, N. N.; Ensling, D.; Ehrenberg, H.; Jaegermann, W.2008,, 553. doi: 10.1016/j.jpowsour.2008.01.090

    (36) Li, X. L.; Jin, H. C.; Liu, S.; Xin, S.; Meng, Y.; Chen, J. J.2015,, 116.10.1039/C4TA04358H

    (37) Ivanova, S.; Zhecheva, E.; Stoyanova, R.; Nihtianova, D.; Wegner, S.; Tzvetkova, P.; Simova, S.2011,, 25170.10.1021/jp208976h

    (38) Kang, S. H.; Kim, J.; Stoll, M. E.; Abraham, D.; Sun, Y. K.; Amine, K.2002,, 41. doi: 10.1016/S0378-7753(02)00360-9

    (39) Yu, C.; Li, G.; Guan, X.; Zheng, J.; Li, L.; Chen, T.2012,, 283. doi: 10.1016/j.electacta.2012.06.084

    (40) Dahéron, L.; Dedryvère, R.; Martinez, H.; Ménétrier, M.; Denage, C.; Delmas, C.; Gonbeau, D. Chem. Mater. 2008, 20, 583. doi: 10.1021/cm702546s

    (41) Kim, J. M.; Kumagai, N.; Chung, H. T.2006,, A494. doi: 10.1149/1.2336988

    (42) Wang, Q. Y.; Liu, J.; Murugan, A. V.; Manthiram, A.2009,, 4965. doi: 10.1039/b823506f

    (43) Croy, J. R.; Kim, D.; Balasubramanian, M.; Gallagher, K.; Kang, S. H.; Thackeray, M. M.. 2012,, A781. doi: 10.1149/2.080206jes

    (44) He, W.; Yuan, D. D.; Qian, J. F.; Ai X. P.; Yang, H. X.; Cao, Y. L.2013,, 11397. doi: 10.1039/c3ta12296d

    (45) Kim, H. S.; Kong, M. Z.; Kim, K.; Kim, I. J.; Gu, H. B.2007,, 917. doi: 10.1016/j.jpowsour.2007.06.028

    LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2鋰離子電池正極材料:增強(qiáng)的庫(kù)倫效率和循環(huán)性能

    何 磊1徐俊敏1,2,*王永建1張昌錦1,3,*

    (1中國(guó)科學(xué)院強(qiáng)磁場(chǎng)科學(xué)中心,合肥 230031;2鄭州大學(xué)物理工程學(xué)院,材料物理教育部重點(diǎn)實(shí)驗(yàn)室,鄭州 450052;3南京大學(xué)人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京 210093)

    采用簡(jiǎn)單水溶液法制備LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2富鋰正極材料,包覆后的材料分別經(jīng)過400 °C或500 °C煅燒處理5 h。測(cè)試結(jié)果顯示,400 °C煅燒處理的包覆樣品在0.1(1= 300 mA?g?1)電流密度下充放電時(shí),首次庫(kù)侖效率可以高達(dá)91.9%,同時(shí),首次放電比容量可達(dá)到295.0 mAh?g?1。此外,該包覆樣品還具有良好的循環(huán)性能,在1電流密度下循環(huán)100次放電比容量仍可保持在206.7 mAh?g?1。進(jìn)一步的研究發(fā)現(xiàn)LiFePO4的包覆不僅可以提高Li1.2Mn0.54Ni0.13Co0.13O2富鋰材料的首次庫(kù)侖效率和循環(huán)穩(wěn)定性能,而且還能夠有效抑制材料在充放電過程中的電壓衰減。上述電化學(xué)性能的有效提升主要?dú)w因于LiFePO4包覆層可以阻礙Li1.2Mn0.54Ni0.13Co0.13O2富鋰材料與電解液之間的直接接觸,減少副反應(yīng)的發(fā)生,增強(qiáng)材料表面的結(jié)構(gòu)穩(wěn)定性,同時(shí)還可以為富鋰材料提供額外的可逆容量。

    鋰離子電池;富鋰正極材料;磷酸鐵鋰包覆;高庫(kù)侖效率;循環(huán)性能

    O646;O614;O469

    10.3866/PKU.WHXB201704145

    March 2, 2017;

    March 27, 2017;

    April 14, 2017.

    Corresponding authors.XU Jun-Min, Email: junminxu@zzu.edu.cn; Tel: +86-371-67767670. ZHANG Chang-Jin, Email:zhangcj@hmfl.ac.cn;

    Tel: +86-551-65595655.

    The project was supported by the Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (2015SRG-HSC025) and National Natural Science Foundation of China (U1532267, 11504379).

    中國(guó)科學(xué)院合肥科學(xué)中心科學(xué)研究項(xiàng)目(2015SRG-HSC025)和國(guó)家自然科學(xué)基金(U1532267, U11504379)資助

    猜你喜歡
    富鋰庫(kù)侖電流密度
    1976年唐山強(qiáng)震群震后庫(kù)侖應(yīng)力演化及其與2020年古冶5.1級(jí)地震的關(guān)系
    地震研究(2021年1期)2021-04-13 01:04:46
    富鋰錳基正極材料zMnOx·(1-z)Li[Ni0.2Li0.2Mn0.6]O2的電化學(xué)性能
    汽車電器(2018年1期)2018-06-05 01:23:04
    基于WIA-PA 無線網(wǎng)絡(luò)的鍍鋅電流密度監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
    滾鍍過程中電流密度在線監(jiān)控系統(tǒng)的設(shè)計(jì)
    電流密度對(duì)鍍錳層結(jié)構(gòu)及性能的影響
    電流密度對(duì)Fe-Cr合金鍍層耐蝕性的影響
    改進(jìn)共沉淀法合成富鋰正極材料Li1.2Mn0.6Ni0.2O2及性能表征
    基于粘彈庫(kù)侖應(yīng)力變化的后續(xù)最大地震震級(jí)估計(jì)及2008、2014年于田2次7.3級(jí)地震之間關(guān)系的討論
    富鋰錳基正極材料性能改性的研究進(jìn)展
    一種周期庫(kù)侖作用勢(shì)優(yōu)化法的改進(jìn)
    午夜福利欧美成人| 国产一区在线观看成人免费| 美女大奶头视频| 村上凉子中文字幕在线| 久久久久亚洲av毛片大全| 久久婷婷人人爽人人干人人爱| 欧美日韩中文字幕国产精品一区二区三区| 国产成人av教育| 国产在线精品亚洲第一网站| 久久香蕉精品热| 欧美黑人精品巨大| 在线观看午夜福利视频| 中文在线观看免费www的网站 | a级毛片在线看网站| 婷婷丁香在线五月| 老司机在亚洲福利影院| 国产一区二区在线观看日韩 | 亚洲精品一区av在线观看| 中文字幕人妻丝袜一区二区| 别揉我奶头~嗯~啊~动态视频| 国产片内射在线| 免费在线观看视频国产中文字幕亚洲| 亚洲真实伦在线观看| 女人高潮潮喷娇喘18禁视频| 久久久久久久午夜电影| 无人区码免费观看不卡| 人人妻人人看人人澡| 国产午夜精品论理片| 久久香蕉精品热| 神马国产精品三级电影在线观看 | 亚洲人成网站高清观看| 三级国产精品欧美在线观看 | 毛片女人毛片| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 久久九九热精品免费| 国产久久久一区二区三区| 757午夜福利合集在线观看| 国产精品影院久久| 一夜夜www| 桃色一区二区三区在线观看| 日日爽夜夜爽网站| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 欧美av亚洲av综合av国产av| cao死你这个sao货| 黄色丝袜av网址大全| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| xxx96com| 不卡一级毛片| 岛国视频午夜一区免费看| 国产成人影院久久av| 国产av一区在线观看免费| 国产精品一区二区精品视频观看| 1024香蕉在线观看| tocl精华| 色综合婷婷激情| 神马国产精品三级电影在线观看 | 国产精品免费视频内射| 黄片小视频在线播放| 亚洲精品久久国产高清桃花| 国产高清videossex| 久热爱精品视频在线9| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美一区二区综合| xxx96com| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 一级毛片精品| 亚洲美女黄片视频| 亚洲七黄色美女视频| 亚洲免费av在线视频| 国产午夜精品论理片| 无遮挡黄片免费观看| 我要搜黄色片| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 国产精品日韩av在线免费观看| 在线观看免费午夜福利视频| 欧美一级a爱片免费观看看 | 亚洲精品美女久久av网站| 国产成人一区二区三区免费视频网站| 欧美丝袜亚洲另类 | 精品久久久久久,| 18禁国产床啪视频网站| 久久人妻福利社区极品人妻图片| 色播亚洲综合网| 久久这里只有精品19| 伦理电影免费视频| 中文资源天堂在线| 国产精品久久久久久久电影 | 啦啦啦观看免费观看视频高清| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 国产视频一区二区在线看| 国产精品,欧美在线| 香蕉国产在线看| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 国产精品久久久久久久电影 | 色综合亚洲欧美另类图片| 日韩大码丰满熟妇| 91老司机精品| 好男人电影高清在线观看| 欧美一区二区国产精品久久精品 | 色哟哟哟哟哟哟| 亚洲精品国产精品久久久不卡| 狂野欧美白嫩少妇大欣赏| 亚洲午夜理论影院| 日本 av在线| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看 | 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 亚洲国产欧美人成| 国产精品久久电影中文字幕| 久久婷婷成人综合色麻豆| 亚洲国产欧美人成| 国产成人啪精品午夜网站| 在线a可以看的网站| 免费在线观看完整版高清| 亚洲一卡2卡3卡4卡5卡精品中文| 国产午夜精品论理片| 中文字幕人成人乱码亚洲影| 亚洲成av人片免费观看| 欧美高清成人免费视频www| 欧美又色又爽又黄视频| 性色av乱码一区二区三区2| 美女扒开内裤让男人捅视频| 久久久久久九九精品二区国产 | 欧美精品亚洲一区二区| 国产成年人精品一区二区| 亚洲人成电影免费在线| 日韩国内少妇激情av| 国产蜜桃级精品一区二区三区| 在线观看免费日韩欧美大片| 搞女人的毛片| 亚洲av美国av| 国产成人欧美在线观看| 国产99白浆流出| videosex国产| √禁漫天堂资源中文www| 精品一区二区三区视频在线观看免费| av有码第一页| 国产av一区在线观看免费| 成人av一区二区三区在线看| 欧美在线一区亚洲| 看片在线看免费视频| 亚洲成人精品中文字幕电影| 国产av又大| 久久久久免费精品人妻一区二区| 国产精品一及| av片东京热男人的天堂| 精品少妇一区二区三区视频日本电影| a级毛片a级免费在线| 午夜福利成人在线免费观看| 好男人电影高清在线观看| 精品免费久久久久久久清纯| 日日夜夜操网爽| 日韩欧美精品v在线| 国产精品 国内视频| 一级毛片女人18水好多| 国产不卡一卡二| 91国产中文字幕| 亚洲av成人一区二区三| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 日日爽夜夜爽网站| 一进一出好大好爽视频| 亚洲人与动物交配视频| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清 | 美女免费视频网站| 麻豆国产av国片精品| 日韩欧美在线乱码| 日韩欧美三级三区| 校园春色视频在线观看| 久久久久久人人人人人| 1024视频免费在线观看| 国产伦一二天堂av在线观看| 变态另类丝袜制服| 国产高清videossex| 午夜福利高清视频| 在线观看午夜福利视频| 黑人操中国人逼视频| 色综合亚洲欧美另类图片| 三级毛片av免费| 777久久人妻少妇嫩草av网站| 久久精品影院6| 亚洲欧美精品综合久久99| 在线观看www视频免费| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 中文字幕人成人乱码亚洲影| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 可以免费在线观看a视频的电影网站| 久久精品91蜜桃| 欧美日韩乱码在线| 91老司机精品| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 岛国在线免费视频观看| 亚洲国产日韩欧美精品在线观看 | 亚洲国产高清在线一区二区三| 精品乱码久久久久久99久播| 亚洲熟妇熟女久久| 国产免费av片在线观看野外av| 国产精品 国内视频| 精品日产1卡2卡| 国产成人av激情在线播放| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 最近视频中文字幕2019在线8| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 免费看十八禁软件| 久久久精品大字幕| 久久久久久免费高清国产稀缺| 久久精品国产清高在天天线| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 国产人伦9x9x在线观看| 这个男人来自地球电影免费观看| 久久人妻av系列| 一级黄色大片毛片| 国产成年人精品一区二区| 1024手机看黄色片| 男男h啪啪无遮挡| av国产免费在线观看| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 久久久久免费精品人妻一区二区| 色综合站精品国产| 国产99久久九九免费精品| 国内揄拍国产精品人妻在线| 久久久国产成人精品二区| 三级国产精品欧美在线观看 | 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 日本一区二区免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 日本一二三区视频观看| 一级黄色大片毛片| 最近最新免费中文字幕在线| 国产精品亚洲美女久久久| 九色成人免费人妻av| 午夜成年电影在线免费观看| 色噜噜av男人的天堂激情| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 欧美激情久久久久久爽电影| 90打野战视频偷拍视频| 天堂av国产一区二区熟女人妻 | 法律面前人人平等表现在哪些方面| 18禁观看日本| 国产真实乱freesex| 女同久久另类99精品国产91| 最近最新中文字幕大全免费视频| 国产免费男女视频| 极品教师在线免费播放| 色综合婷婷激情| 丰满人妻一区二区三区视频av | 又大又爽又粗| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 曰老女人黄片| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品sss在线观看| 久久精品成人免费网站| 亚洲天堂国产精品一区在线| 全区人妻精品视频| 一区福利在线观看| 美女 人体艺术 gogo| 中文资源天堂在线| 久久婷婷成人综合色麻豆| 亚洲人成77777在线视频| 老司机福利观看| 成人精品一区二区免费| 老汉色∧v一级毛片| 亚洲国产欧美人成| 男人的好看免费观看在线视频 | 无遮挡黄片免费观看| 最近最新免费中文字幕在线| 国产人伦9x9x在线观看| 国产爱豆传媒在线观看 | 在线十欧美十亚洲十日本专区| 宅男免费午夜| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 精品久久久久久,| 男人的好看免费观看在线视频 | 欧美日韩中文字幕国产精品一区二区三区| 狂野欧美激情性xxxx| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 亚洲成a人片在线一区二区| 国产乱人伦免费视频| 国产亚洲欧美在线一区二区| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美午夜高清在线| 麻豆国产av国片精品| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| netflix在线观看网站| 男女做爰动态图高潮gif福利片| 精品免费久久久久久久清纯| 99热这里只有精品一区 | 正在播放国产对白刺激| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 国产精品美女特级片免费视频播放器 | 男人的好看免费观看在线视频 | 久久精品综合一区二区三区| 国产成人欧美在线观看| 欧美不卡视频在线免费观看 | 男女那种视频在线观看| av天堂在线播放| 1024视频免费在线观看| 日日夜夜操网爽| 中文字幕人成人乱码亚洲影| av福利片在线| 欧美不卡视频在线免费观看 | 又黄又爽又免费观看的视频| 久久久国产精品麻豆| svipshipincom国产片| 成人av一区二区三区在线看| 日本a在线网址| 欧美一级a爱片免费观看看 | 热99re8久久精品国产| 日本熟妇午夜| 国产高清激情床上av| 精品熟女少妇八av免费久了| 欧美性长视频在线观看| 1024香蕉在线观看| xxxwww97欧美| 亚洲电影在线观看av| a级毛片a级免费在线| 亚洲第一电影网av| 国产精品影院久久| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 美女黄网站色视频| 国产成人欧美在线观看| 欧美日韩黄片免| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 亚洲片人在线观看| 热99re8久久精品国产| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 99精品在免费线老司机午夜| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 亚洲午夜理论影院| 我要搜黄色片| 曰老女人黄片| 在线观看午夜福利视频| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 欧美丝袜亚洲另类 | 丝袜美腿诱惑在线| 亚洲自偷自拍图片 自拍| 日本免费a在线| 超碰成人久久| 国产成人精品无人区| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 老熟妇乱子伦视频在线观看| 最近最新免费中文字幕在线| 全区人妻精品视频| 日本一二三区视频观看| 99久久久亚洲精品蜜臀av| 99精品久久久久人妻精品| 亚洲全国av大片| 99热6这里只有精品| 国产男靠女视频免费网站| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 中出人妻视频一区二区| 日本 av在线| www.熟女人妻精品国产| 少妇被粗大的猛进出69影院| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 少妇熟女aⅴ在线视频| 男女午夜视频在线观看| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 日韩欧美国产一区二区入口| 十八禁人妻一区二区| 不卡av一区二区三区| 床上黄色一级片| 法律面前人人平等表现在哪些方面| 国产爱豆传媒在线观看 | 成人欧美大片| 香蕉av资源在线| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看 | 757午夜福利合集在线观看| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 国产一区在线观看成人免费| 免费在线观看成人毛片| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 亚洲一区中文字幕在线| 99久久无色码亚洲精品果冻| 日韩中文字幕欧美一区二区| 在线观看免费午夜福利视频| 亚洲欧美日韩无卡精品| 在线播放国产精品三级| 天堂√8在线中文| 人人妻人人看人人澡| 国产黄色小视频在线观看| 国产黄片美女视频| 欧美色视频一区免费| 久久精品人妻少妇| 成人国语在线视频| 国产免费av片在线观看野外av| 两个人看的免费小视频| 久久久久久大精品| www日本在线高清视频| av视频在线观看入口| 欧美日韩国产亚洲二区| 亚洲精品色激情综合| 亚洲av电影在线进入| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久久久99蜜臀| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看 | 久久久久免费精品人妻一区二区| 国产精品九九99| 99久久综合精品五月天人人| 午夜视频精品福利| 国产亚洲av嫩草精品影院| 精品国产超薄肉色丝袜足j| 国产高清有码在线观看视频 | 亚洲专区中文字幕在线| 中国美女看黄片| 欧美乱色亚洲激情| 色综合站精品国产| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 1024手机看黄色片| 欧美三级亚洲精品| 一本久久中文字幕| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 日韩精品中文字幕看吧| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 色综合站精品国产| 免费一级毛片在线播放高清视频| 国产av不卡久久| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| svipshipincom国产片| 婷婷六月久久综合丁香| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| av超薄肉色丝袜交足视频| 成人高潮视频无遮挡免费网站| 国产成人精品无人区| 超碰成人久久| 夜夜爽天天搞| 精品少妇一区二区三区视频日本电影| 男人的好看免费观看在线视频 | 精品熟女少妇八av免费久了| 此物有八面人人有两片| 国产精品亚洲av一区麻豆| 丁香欧美五月| 国产97色在线日韩免费| 亚洲真实伦在线观看| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 免费在线观看黄色视频的| 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| 国产亚洲av高清不卡| 久久精品成人免费网站| 夜夜看夜夜爽夜夜摸| 两性夫妻黄色片| 妹子高潮喷水视频| www.www免费av| 动漫黄色视频在线观看| 亚洲人成电影免费在线| 悠悠久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| av中文乱码字幕在线| 久久久久国产一级毛片高清牌| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 久久这里只有精品中国| 国产人伦9x9x在线观看| 深夜精品福利| 国产精品野战在线观看| 舔av片在线| 不卡av一区二区三区| 久久精品91无色码中文字幕| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 韩国av一区二区三区四区| or卡值多少钱| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 一本大道久久a久久精品| 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 午夜精品一区二区三区免费看| 亚洲精品久久成人aⅴ小说| 天堂影院成人在线观看| www.999成人在线观看| 精品久久久久久久人妻蜜臀av| 中文字幕精品亚洲无线码一区| 亚洲熟女毛片儿| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三| 国产熟女午夜一区二区三区| 精品一区二区三区视频在线观看免费| 精品久久久久久久末码| 国语自产精品视频在线第100页| av超薄肉色丝袜交足视频| 91老司机精品| 中文字幕人妻丝袜一区二区| 国产激情久久老熟女| 神马国产精品三级电影在线观看 | 精品久久久久久久人妻蜜臀av| 欧美午夜高清在线| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 日韩大码丰满熟妇| 亚洲国产精品合色在线| 黄频高清免费视频| 一本综合久久免费| 国产亚洲欧美在线一区二区| 观看免费一级毛片| 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 国内少妇人妻偷人精品xxx网站 | 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 2021天堂中文幕一二区在线观| 在线观看免费午夜福利视频| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 在线十欧美十亚洲十日本专区| 19禁男女啪啪无遮挡网站| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 18禁观看日本| 嫁个100分男人电影在线观看| 国内精品一区二区在线观看| 国内毛片毛片毛片毛片毛片| 亚洲av成人一区二区三| 色综合站精品国产| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av | 啦啦啦韩国在线观看视频| 国产91精品成人一区二区三区| √禁漫天堂资源中文www| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| ponron亚洲| 后天国语完整版免费观看| 久久香蕉精品热| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 亚洲aⅴ乱码一区二区在线播放 | 久久精品影院6| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 日韩欧美三级三区| 亚洲人成网站高清观看| 草草在线视频免费看| 丰满人妻熟妇乱又伦精品不卡|