• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NMR Relaxation Response of CO2 Hydrate Formation and Dissociation in Sand

    2017-12-18 06:56:16CHENHeLongWEIChangFuTIANHuiHuiWEIHouZhen
    物理化學(xué)學(xué)報(bào) 2017年8期
    關(guān)鍵詞:液態(tài)水水合水合物

    CHEN He-Long WEI Chang-Fu* TIAN Hui-Hui WEI Hou-Zhen

    ?

    NMR Relaxation Response of CO2Hydrate Formation and Dissociation in Sand

    CHEN He-Long1,2WEI Chang-Fu1,* TIAN Hui-Hui1WEI Hou-Zhen1

    (1;2)

    Quantification and characterization of hydrate formation and dissociation in sediments are highly important in the study of the physical properties of hydrate-bearing sediments. In this paper, the behavior of CO2hydrate formation and dissociation in sand is studied using the nuclear magnetic resonance (NMR) technique. The components of the pore space, including gas, liquid water, and hydrate, were quantified using a convenient method by which the hydration number was determined. No abrupt change in the relaxation behavior of the sample was found during hydrate formation and dissociation. In addition, the value of mean-log2appeared to be proportional to the liquid water content of the sample with or without the pore hydrate. A straightforward explanation is that the liquid water in the pore space remains in contact with grain surfaces, and relaxation occurs mainly at the grain surface. The results suggest that, rather than coating the grains, the hydrate is pore-filling or cementing.

    Nuclear magnetic resonance; Hydrate saturation; Hydration number;Hydrate distribution; Relaxation behavior

    1 Introduction

    Gas hydrates are crystalline solids composed of water and small molecular-weight gases. The gas molecules are trapped in water cavities that are composed of hydrogen-bonded water molecules1. Natural gas hydrates occur widely in continental margins and arctic areas, where the conditions are suitable for hydrate formation (temperature and pressure as well as the availability of gas and water). Besides being considered as a potential unconventional energy resource2, gas hydrate is also a driver for global climate change3or a contributing factor in large submarine slide4,5.

    To map hydrate occurrences and estimate the hydrate saturation, acoustic remote sensing technique is extensively used. This technique is based on the fact that hydrate stiffens the host sediment, thus increasing theandwave velocities. The stiffening effect, however, depends not only on hydrate saturation but also on the hydrate occurrence habit. Namely, pore-filling hydrate does not affect the shear stiffness unless hydrate saturates over 25%-40% of pore space to become load-bearing, while cementing hydrate stiffens the host sediment dramatically even at low hydrate saturation6. This increases the ambiguity when try to infer hydrate saturation from measured velocities7,8. Therefore, intensive efforts are directed to pore-scale measurement for hydrate formation. Modern imaging techniques, including X-ray computed tomography (CT)9,10, micro CT11-13and magnetic resonance imaging (MRI)14,15, have been widely used in the study of hydrate distribution in porous media.

    The NMR relaxation technique is also capable of shedding insight into the pore-structure of hydrate-bearing sediments16. Compared to other imaging techniques, which can detail discrete pores within small samples, the NMR technique allows us to obtain static pore structure information which can be more readily used in physical modeling17.

    In contrast to the common application in saturated porous media, the application of NMR in unsaturated soils, especially as complex as hydrate-bearing sediments, is scarce. In this study, the CO2hydrate was formed and dissociated in mono-disperse sands. The NMR relaxation measurements were performed. The evolution of hydrate saturation and hydration number was determined, and the NMR relaxation data were analyzed, from which the pore structure and the hydrate habit were characterized.

    2 NMR relaxation in porous media

    Here the principle of nuclear magnetic resonance is only briefly introduced, and a more comprehensive introduction of the technique can be found in Kleinberg17. In a static magnetic field, magnetic nuclei, such as hydrogen, are directionally aligned, and precess about the field with the Lamor frequency, resulting in additional macroscopic magnetization along the direction of the magnetic field. In NMR measurement, the magnetization is reoriented by irradiating the magnetic nuclei with the Larmor frequency pulses. After the pulse is stopped, the magnetization relaxes back to its equilibrium state.

    Decaying of the magnetization component perpendicular to the static magnetic field is called the spin-spin relaxation or transverse relaxation, and in porous media it is generally described by a multi-exponential function, i.e.,

    (1)

    The relaxation rate,2i, is given by

    (2)

    where2Bi,2Si,2Diare bulk relaxation time, surface relaxation time and diffusion relaxation time, respectively.2Biis usually larger than2Siby one order. Inside the pore space, diffusion relaxation is caused by the naturally inhomogeneous magnetic field due to the susceptibility contrast between the solid phase and the fluid in the pores and thus it is negligible at low field. Further, in a surface-limited region, the relaxation time is given by

    (3)

    where2is the relaxivity, accounting for the effect of the solid on the relaxation of pore fluid, and is specific for a certain combination of solid and fluid. (/)is theth pore surface-to-volume ratio. Eq.(3) can only be applied to saturated porous media.

    For partially water-saturated porous media, the relaxation time can be described with the dependence on the water saturation through18

    (4)

    whereS2mLandU2mLare the mean-log values of the2distribution of saturated and unsaturated samples, respectively.NMRis the degree of saturation of pore water determined from the NMR signal amplitude.is a fitting parameter.

    3 Equipment and methods

    In this study, an experiment is sequentially performed in three phases: host sand sample preparation, hydrate formation and dissociation, and NMR relaxation measurement.

    3.1 Host sample preparation

    Silica sands were retrieved from Wuhan section of the Yangtze River, and sieved into particles having diameters in the range 0.25?0.5 mm. The sand was step-wise wetted with distilled, deionized water to a desired water content (11.9%), and mixed until water distributed visually homogeneous. 25.42 g of moistened sand was tampered gently into a cylindrical bottle to a porosity of 43.3% and water saturation of 0.42. The sample bottle, having the volume of 15 cm3, is made of Polytetrafluoroethylene (PTEE) that imposes no interference in magnetic field and has no NMR signals.

    3.2 Hydrate formation and dissociation

    A pressure cell was manufactured with polyetheretherketone (PEEK), a high-strength material, which can withstand the high pressure of hydrate reaction and has no NMR signals and imposes no interference to the magnetic field. The bottle containing moistened sands was put into the pressure cell. The cell was evacuated for about 5 min to remove the air in the cell and sample, then it was weighted again and the water loss induced by evacuation was subtracted from the sample. About 3.8 MPa CO2gas (purity >99.9%) (produced by Wuhan Xiangyun Gas Co.) was injected into the cell in a smooth way such that the disturbance to the sample can be minimized. In the cell, the ratio of the mole of CO2gas to the mole of water is nearly 0.55, meaning that the gas in the cell is sufficient to convert all the water content into hydrate (ideally, the guest-gas-to-water ration in hydrate is 1 : 5.75). The cell was then immersed in a cool bath (product ID: THD 2020, by Ningbo Tianheng Instrument Factory), and kept at 283.15 K for about 2 h. The bath temperature was reduced to 279.15 K and kept for nearly 12 h. Although the pressure and temperature was kept within the stable zone of hydrate, no hydrate formation was detected during this period. The bath temperature was further reduced to 274.15 K to induce hydrate formation.

    The variations of the gas pressure in the cell and bath temperature were recorded once per minute. It was observed that when the temperature difference between the interior of the cell and the bath was about 5 K, it took about 15 min for the cell to reach the same temperature as the bath. Considering the fact that hydrate formation is time-consuming (tens of hours), it is reasonable to regard the temperature of bath as the temperature of the sample inside the cell throughout the test.

    An indicator of hydrate formation is observed from the measured pressure data (Fig.1). From the temporal variation curve of the cell pressure, a steep drop can be clearly identified. Such a drop in pressure resulted from hydrate formation that consumed CO2gas from the gas phase. After hydrate formed at 274.15 K for about 24 h, the temperature was increased stepwise to allow the hydrate to dissociate. At each temperature step the system was maintained for about 4 or 12 h. During application of temperature step, additional rise of gas pressure resulting from hydrate dissociation was observed. It can be seen that hydrate started to dissociate when the temperature rose from 279.15 to 280.15 K.

    Fig.1 Temporal variations of gas pressure and temperature during the experiment.

    The circle denotes the start point of the steep pressure drop due to hydrate formation.

    3.3 NMR relaxation measurement

    NMR relaxation measurements were performed using a 23 MHz MiniMR system developed jointly by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, and Niumag Corporation. Combined with a cool-dry air supply unit, the NMR analysis system is applicable to hydrate-bearing or frozen samples. The dead time of NMR system is 70 μs, which is much longer than the relaxation time of proton in hydrate. Thus it is reasonable to assume that all the signals detected by the NMR system come from the liquid water.

    The transverse relaxation measurements were conducted throughout the test, using the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence withE= 240 μs and 10000 echoes. Before putting the whole cell into the sample cube in NMR system, the cube was blown with cool dry air to keep at such a low temperature that minimize interference of environment temperature to the sample in the cell. An iterative regularization method based on the Trust-Region Algorithm was used for the inversion of2distribution. The time when relaxation measurement were performed and the signal amplitudes are listed in Table 1, for brevity. Also listed are the gas pressure and temperature of the sample during the relaxation measurements. The end of gas injection is set to the time zero of the test.

    Table 1 Series of NMR relaxation measurements.

    * In the brackets the number is the time when the NMR relaxation measurement was conducted with the end of gas injection set as the time zero. ** The column lists the temperature and gas pressure in the sample.

    3.4 Quantification of CO2 and water contained in hydrate

    As noted above, the NMR signals from hydrate are absent and thus all the signals are solely due to the liquid water. Since the liquid water in the sample is proportional to the NMR signal magnitude, the amount of water molecules in hydrate is readily determined through the difference between the current and initial signal values.

    No hydrate was formed in the system at the start of test, thus the initial amount of CO2was the sum of gaseous and dissolved one. The solubility of CO2in water and the molar volume of gaseous CO2were calculated using a routine offered by Diamond and Akinfiev19When the hydrate formed, the total amount of CO2was equal to the sum of CO2in the phases of hydrate and non-hydrate. Here, the non-hydrate phase is referred to the combination of the gas phase and the liquid phase. Another routine proposed by Sun and Duan20was used to compute the solubility of CO2in liquid water in the presence of hydrate. In this test, the total amount of CO2in the system was unchanged. Eventually subtracting from the total the amount of non-hydrated CO2, which included gaseous and dissolved CO2, the amount of CO2contained in hydrate was determined. The ratio of the amount of water molecules to guest molecules in hydrate, which is called hydration number, can also be calculated.

    Assuming reasonably a constant hydrate molar volume for the narrow range of temperature and pressure in the test, hydrate saturation is determined:

    (5)

    Fig.2 NMR measurements series.

    The number in brackets is the hydrate saturation (%). Lw-H-V equilibria data are referred to Sloan and Koh1: Lw-liquid water, H-hydrate, and V-gas.

    The temporal variations of hydration number and hydrate saturation during hydrate formation process are plotted in Fig.3. The time axis is shifted with zero corresponding to the start point of the steep pressure drop that was regarded as the beginning of hydrate formation. As the reaction progressed, the rate of hydrate formation decreased. In contrast, the decreasing hydration number suggested that the empty cages, emerged at the early stage of hydrate formation, were gradually filled by CO2molecules. This phenomenon was also discussed by Geng22. If the hydration number was fitted with an exponential function, a value 19.6 of hydration number was obtained at= 0. This value is close to the ratio of the number of water molecules to guest molecules in the metastable solution on the verge of hydrate nucleation obtained by Guo and Rodger.23, showing consistency with previous results.

    Fig.3 Temporal variations of hydrate saturation and hydration number.

    For clarity, some but not all of the2spectrums during hydrate formation and dissociation are shown in Fig.4. The2spectrums obtained during hydrate dissociation are indicated with dashed line (M14 and M16), others by solid lines. It is clear that each2spectrum has two peaks, showing the occurrence of water that resides in pores of two distinct sizes17. As hydrate formed, both peak amplitudes decreased, indicating that liquid water in the large and small pores had been converted into hydrate simultaneously. This is because that the freezing point depression in coarse sand is negligible. In addition, the sample is over-cooled for about 6 K, thus thermodynamic control of pore size is not the dominant factor16.

    Fig.4 T2 distribution evolution during hydrate formation and dissociation.

    It can be also seen that as the hydrate grows, the2distribution moves to the regime of shorter relaxation times, and as the hydrate dissociates the2distribution moves back. The appearance or disappearance does not result in abrupt shift of the two peaks of2distribution. Such a relaxation response makes it possible to identify the growth habit of hydrate in the sample. Before doing this, we shall emphasize a subtle but important point. As noted in Section 2, the relaxation time is controlled by surface relaxation which is specific for liquid-solid combination. At the water-grain interface, the relaxation mainly occurs at paramagnetic centers at grain surface17. At the water-hydrate interface, the proton spin is relaxed dominantly by intra-dipole-dipole interaction which is a totally different mechanism24.

    Four possible hydrate growth habits in rich-gas condition is shown in Fig.5. If hydrate formed as coating grains (Fig.5(a)), hydrate formation would have created a water-hydate interface instead of the water-grain interface, and different relaxation response would have occurred. If hydrate formed as layers over liquid water (Fig.5(b)), additional fast relaxation at water-hydrate interface24would have made the relaxation time much shorter. Clearly, the relaxation data in this study are inconsistent with the above two hydrate habits. The other two hydrate habits, pore filling (Fig.5(c)) and cementing (Fig.5(d)), do not alter the pore environment of water, and thus do not cause an abrupt change of relaxation time, which is consistent with the relaxation response observed in our experiments.

    Fig.5 Illustration for hydrate habits.

    (a) hydrate coats the grain, (b) a layer of water coats the grain, and hydrate forms at the surface of water, (c) hydrate forms at certain location on the grain surface, and grows into pore space, and (d) hydrate forms at the contact of grains, cementing the grains together.

    The mean-log relaxation time is plotted against water content in Fig.6. Data collected with the same sand sample of different water contents in absence of hydrate is also shown in the figure. As clearly seen, the data points can be reasonably well fitted by a straight line. According to Eq.(4), it is also clear that the relaxivities in sands with or without hydrate are the same, and= 1; this further verifies that hydrate formation did not significantly change the pore environment of liquid water. Similarly, possible hydrate habit is directed to pore filling or cementing. Compared to pore-filling hydrate, cementing hydrate isolates pores from each other since it forms at the throats of pore space, dramatically reducing water diffusion. Therefore, although these two hydrate habits cannot be distinguished through the relaxation measurements, it is possible to identify which one is the true hydrate habit by the diffusion measurements.

    Fig.6 Relationship between mean-log T2 and water volume.

    The squares denote data collected during hydrate formation and dissociation test, and circles denote data collected with the partially water-saturated sand in the absence of hydrate. The dashed line is a linear fitting for all data.

    5 Conclusions

    This study presents a set of NMR relaxation measurements of sand within which CO2hydrate formed and dissociated. It is shown that in coarse sand, rather than the pore sizes, the thermal condition was the dominant factor in the hydrate formation and dissociation. A convenient and accurate method has been proposed to quantify various components in the hydrate-bearing sand. Based on this quantitative method, a reasonable value of the ratio of the number of water molecules to guest molecules in the metastable solution prior to hydrate nucleation was obtained. A comprehensive analysis for the relaxation behavior of the pore water during the hydrate formation and dissociation is presented, which can shed new light into the hydrate occurrence habit in sediments. It is suggested that combined with the NMR diffusion measurement, the NMR technique could provide further evidence to identify whether hydrate forms at grain surface or at grain contact.

    (1) Sloan, E.D.; Koh, C. A., 3rd ed.; CRC Press: New York, 2008.

    (2) Makogon, Y. F.; Holditch, S. A.; Makogon, T. Y..2007,, 14. doi: 10.1016/j.petrol.2005.10.009

    (3) Kvenvolden, K. A.. 1993,, 173. doi: 10.1029/93RG00268.

    (4) Mienert, J.; Posewang, J.; Baumann, M. Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margins instabilities and possible release of methane. In; Henriet, J. P., Mienert, J. Eds.; Geological Society: London, 1998; Vol. 134, pp 275-291 (Special Publication). doi: 10.1144/GSL.SP.1998.137.01.22

    (5) Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.2004,, 379. doi: 10.1016/j.margeo.2004.10.015.

    (6) Waite, W. F.; Santamarina, J. C.; Cortes, D. D.; Dugan, B.; Espinoza, D. N.; Germaine, J.; Jang, J.; Jung, J. W.; Kneafsey, T. J.; Shine, H.; Soga, K.; Winters, W. J.; Yun, T. S.2009,, RG4003. doi: 10.1029/2008RG000279

    (7) Helgerud, M. B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. S.1999,, 2021. doi: 10.1029/1999GL900421

    (8) Priest, J. A.; Rees, E. V. L.; Clayton, C. R. I..2009,, B11205. doi: 10.1029/2009JB006284

    (9) Ersland, G.; J. Husebo, A.; Graue, B. A.; Howard, B. J.; Stevens, J.2010,, 25. doi: 10.1016/j.cej.2008.12.028.

    (10) Kneafsey, T. J.; Tomutsa, L.; Moridis, G. J.; Seol, Y.; Freifeld, B. M.; Taylor, C. E.; Gupta, A.2007,, 108. doi: 10.1016/j.petrol.2006.02.002

    (11) Zhao, J.; Yang, L.; Xue, K.; Lam, W.; Li, Y.; Song, Y.2014,, 124. doi: 10.1016/j.cplett.2014.07.066

    (12) Rees, E. V.L.; Priest, J. A.; Clayton, C. R. I.2011,, 1283. doi: 10.1016/j.marpetgeo.2011.03.015

    (13) Kerkar, P. B.; Horvat, K.; Jones, K. W.; Mahajan, D.. 2014,, 4759. doi: 10.1002/2014GC005373.

    (14) Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W. F.2015,, 1711. doi: 10.1002/2015GC005811.

    (15) Bagherzadeh, S. A.; Moudrakovski, I. L.; Ripmeester, J. A.; Englezos, P.2015,, 3083. doi: 10.1021/ef200399a.

    (16) Kleinberg, R. L.; Flaum, C.; Griffin, D. D.; Brewer, P. G.; Malby, G. E.; Peltzer, E. T.; Yesinowski, J. P. J.2003,, 2508. doi: 10.1029/2003JB002389.

    (17) Kleinberg, R. L. Nuclear Magnetic Resonance, In; Wong, P. Z. Eds.; Academic Press: San Diego, USA, 1999; pp 337–385. doi: 10.1016/S0076-695X(08)60420-2

    (18) Costabel, S.; Yaramanci, U.2011,(2), 155. doi: 10.3997/1873-0604.2010055

    (19) Diamond, L. W.; Akinfiev, N. N.2003,, 265. doi: 10.1016/S0378-3812(03)00041-4

    (20) Sun, R.; Duan, Z.2005,(18), 4411. doi: 10.1016/j.gca.2005.05.012

    (21) Yan, R.T.; Wei, H. Z.; Wu, E. L.; Wang, S. Y.; Wei, C. F.2011,, 295. [顏榮濤, 魏厚振, 吳二林, 王淑云, 韋昌富. 物理化學(xué)學(xué)報(bào), 2011,,295.] doi: 10.3866/PKU.WHXB20110204

    (22) Geng, C. Y.; Ding, L. Y.; Han, Q. Z.; Wen, H.2008,, 595. [耿春宇, 丁麗穎, 韓清珍, 溫 浩. 物理化學(xué)學(xué)報(bào), 2008,,595.] doi: 10.3866/PKU.WHXB20080409

    (23) Guo, G.; Rodger, P. M.2013,, 6498. doi: 10.1021/jp3117215

    (24) Gao, S.; Chapman, W. G.; House, W.. 2009,, 208. doi: 10.1016/j.jmr.2008.12.022

    CO2水合物在砂中生成和分解的核磁共振弛豫響應(yīng)

    陳合龍1,2韋昌富1,*田慧會(huì)1魏厚振1

    (1中國(guó)科學(xué)院武漢巖土力學(xué)研究所,巖土力學(xué)與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430071;2中國(guó)科學(xué)院大學(xué),北京 100049)

    水合物在沉積物中生成和分解的定量和表征對(duì)于含水合物沉積物的物理性質(zhì)的研究有重要意義?;诤舜殴舱?NMR)技術(shù)研究了水合物在砂中的形成和分解行為,以一種簡(jiǎn)便的方式計(jì)量了孔隙空間中各組分的含量,包括氣體、液態(tài)水和水合物,并確定了水合數(shù)。在水合物形成和分解過(guò)程中試樣的弛豫行為并沒(méi)有發(fā)生突變,此外,對(duì)于含或不含水合物的試樣,平均對(duì)數(shù)2時(shí)間都與含水量成比例關(guān)系,直接的解釋是液態(tài)水始終保持與顆粒表面的接觸,弛豫主要發(fā)生在顆粒表面,表明水合物以孔隙填充或膠結(jié)的形式而不是顆粒涂層的方式存在。

    核磁共振;水合物飽和度;水合數(shù);水合物分布;弛豫行為

    O642

    10.3866/PKU.WHXB201704194

    March 13, 2017;

    April 6, 2017;

    April 19, 2017.

    Corresponding author. Email: cfwei@email.com; Tel: +86-27-87197153.

    The project was supported by the National Natural Science Foundation of China (51239010, 41572295, 41502301) and Youth Innovation Promotion Association ofChinese Academy of Sciences (2015272).

    國(guó)家自然科學(xué)基金項(xiàng)目(51239010, 41572295, 41502301)和中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(2015272)資助

    猜你喜歡
    液態(tài)水水合水合物
    基于微波輻射計(jì)的張掖地區(qū)水汽、液態(tài)水變化特征分析
    Ka/Ku雙波段毫米波雷達(dá)功率譜數(shù)據(jù)反演液態(tài)水含量方法研究
    氣井用水合物自生熱解堵劑解堵效果數(shù)值模擬
    熱水吞吐開(kāi)采水合物藏?cái)?shù)值模擬研究
    零下溫度的液態(tài)水
    天然氣水合物保壓轉(zhuǎn)移的壓力特性
    PEMFC氣體擴(kuò)散層中液態(tài)水傳輸實(shí)驗(yàn)研究綜述
    我國(guó)海域天然氣水合物試采成功
    紅球菌菌株腈水合酶提取方法優(yōu)化
    花生蛋白水合性質(zhì)的研究進(jìn)展
    黄色毛片三级朝国网站| 国产片内射在线| 国产在线一区二区三区精| 一区二区三区精品91| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲 | 91精品国产国语对白视频| 在线天堂中文资源库| avwww免费| 亚洲国产欧美日韩在线播放| 日韩欧美在线二视频 | 国产97色在线日韩免费| cao死你这个sao货| 成人亚洲精品一区在线观看| 亚洲精品国产区一区二| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 国产精品偷伦视频观看了| 变态另类成人亚洲欧美熟女 | 成人18禁在线播放| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 如日韩欧美国产精品一区二区三区| 色精品久久人妻99蜜桃| 一区二区三区精品91| 亚洲免费av在线视频| 91精品三级在线观看| 欧美精品av麻豆av| 精品人妻熟女毛片av久久网站| 亚洲 欧美一区二区三区| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 老司机影院毛片| 久久国产精品大桥未久av| 日本a在线网址| 久久精品成人免费网站| 国产欧美日韩一区二区精品| 免费在线观看亚洲国产| 亚洲av熟女| 一边摸一边做爽爽视频免费| 久久久国产成人免费| av线在线观看网站| 大码成人一级视频| 少妇被粗大的猛进出69影院| 一级毛片女人18水好多| 天天添夜夜摸| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 身体一侧抽搐| aaaaa片日本免费| 亚洲国产看品久久| 久久国产精品人妻蜜桃| 女人久久www免费人成看片| 亚洲一区二区三区不卡视频| 成在线人永久免费视频| 美女国产高潮福利片在线看| 国产成人影院久久av| xxxhd国产人妻xxx| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 日韩欧美三级三区| 欧美激情 高清一区二区三区| 人人妻人人澡人人爽人人夜夜| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av在线 | 丰满饥渴人妻一区二区三| 日韩一卡2卡3卡4卡2021年| 久久99一区二区三区| 成年人黄色毛片网站| 日韩一卡2卡3卡4卡2021年| 国产亚洲欧美精品永久| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 日韩欧美免费精品| 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 在线观看一区二区三区激情| 最近最新中文字幕大全电影3 | 欧美最黄视频在线播放免费 | 国产精品免费视频内射| 视频区图区小说| 精品一品国产午夜福利视频| 欧美最黄视频在线播放免费 | 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 丰满的人妻完整版| 在线免费观看的www视频| 丰满的人妻完整版| 亚洲七黄色美女视频| 超色免费av| 国产野战对白在线观看| 国产高清videossex| 天天添夜夜摸| 老汉色∧v一级毛片| 免费久久久久久久精品成人欧美视频| 亚洲av美国av| 热99国产精品久久久久久7| 男人舔女人的私密视频| 两人在一起打扑克的视频| 亚洲精品一二三| 精品高清国产在线一区| 麻豆av在线久日| 精品亚洲成a人片在线观看| 久久国产精品人妻蜜桃| 欧美日韩视频精品一区| 99久久国产精品久久久| 精品国产乱子伦一区二区三区| 国产精品 欧美亚洲| 日韩大码丰满熟妇| 最近最新中文字幕大全免费视频| 国产成人精品在线电影| 黑人巨大精品欧美一区二区蜜桃| 欧美最黄视频在线播放免费 | 每晚都被弄得嗷嗷叫到高潮| 夫妻午夜视频| 91av网站免费观看| 午夜免费成人在线视频| 午夜免费鲁丝| 一区二区三区精品91| 精品人妻在线不人妻| 91字幕亚洲| 日本欧美视频一区| 纯流量卡能插随身wifi吗| 亚洲欧美日韩另类电影网站| 亚洲在线自拍视频| 国产日韩一区二区三区精品不卡| 亚洲精品国产色婷婷电影| 91国产中文字幕| 免费少妇av软件| 午夜免费鲁丝| 91麻豆av在线| 精品高清国产在线一区| 亚洲精品国产区一区二| 久久精品国产a三级三级三级| 亚洲精品久久午夜乱码| 中文亚洲av片在线观看爽 | 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看 | 美女高潮喷水抽搐中文字幕| 老司机影院毛片| 日韩有码中文字幕| 午夜成年电影在线免费观看| 久热爱精品视频在线9| 国产又爽黄色视频| 久久精品国产亚洲av高清一级| 婷婷丁香在线五月| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区| 人妻 亚洲 视频| 精品免费久久久久久久清纯 | videos熟女内射| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 欧美另类亚洲清纯唯美| 欧美国产精品va在线观看不卡| 色在线成人网| 免费高清在线观看日韩| 视频区图区小说| 日日爽夜夜爽网站| 亚洲熟女毛片儿| 欧美av亚洲av综合av国产av| 日韩成人在线观看一区二区三区| 国产亚洲精品久久久久5区| 99在线人妻在线中文字幕 | 国产深夜福利视频在线观看| 捣出白浆h1v1| 如日韩欧美国产精品一区二区三区| 欧美午夜高清在线| 亚洲成av片中文字幕在线观看| 18禁观看日本| 亚洲精品一二三| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9 | 三上悠亚av全集在线观看| 亚洲人成77777在线视频| 制服诱惑二区| 高潮久久久久久久久久久不卡| 欧美乱色亚洲激情| av线在线观看网站| 一个人免费在线观看的高清视频| 亚洲人成伊人成综合网2020| 国产欧美日韩精品亚洲av| 久久人人97超碰香蕉20202| 亚洲国产欧美网| 国产单亲对白刺激| 99国产精品一区二区蜜桃av | bbb黄色大片| 老司机影院毛片| 日韩 欧美 亚洲 中文字幕| 久久香蕉精品热| 久久 成人 亚洲| 欧美日韩乱码在线| 很黄的视频免费| 女人爽到高潮嗷嗷叫在线视频| 成年女人毛片免费观看观看9 | 69精品国产乱码久久久| 久久国产精品大桥未久av| 国产又色又爽无遮挡免费看| 久久国产精品影院| 日日爽夜夜爽网站| 18禁裸乳无遮挡动漫免费视频| 亚洲av第一区精品v没综合| 欧美黑人精品巨大| 黄网站色视频无遮挡免费观看| 午夜免费鲁丝| 国产97色在线日韩免费| 最近最新免费中文字幕在线| 在线天堂中文资源库| 欧美av亚洲av综合av国产av| 久热爱精品视频在线9| 欧美最黄视频在线播放免费 | 在线观看免费视频网站a站| 国产亚洲精品久久久久久毛片 | 国产av精品麻豆| 久久精品成人免费网站| 国产色视频综合| 精品国产一区二区久久| 精品久久久久久久久久免费视频 | 国产片内射在线| 一区在线观看完整版| 亚洲性夜色夜夜综合| 精品国产一区二区三区四区第35| 黄网站色视频无遮挡免费观看| 99国产精品99久久久久| 91麻豆av在线| 后天国语完整版免费观看| 成人亚洲精品一区在线观看| avwww免费| 国产欧美日韩一区二区三区在线| 成人永久免费在线观看视频| 国产日韩一区二区三区精品不卡| 日韩一卡2卡3卡4卡2021年| 亚洲精品自拍成人| 午夜福利在线免费观看网站| 久久精品国产亚洲av香蕉五月 | 亚洲精品av麻豆狂野| 身体一侧抽搐| 日韩视频一区二区在线观看| 亚洲免费av在线视频| 如日韩欧美国产精品一区二区三区| 欧美日韩乱码在线| www.999成人在线观看| 午夜福利欧美成人| 亚洲欧美激情在线| 免费在线观看视频国产中文字幕亚洲| 久久久久精品国产欧美久久久| 国产成人av教育| 中亚洲国语对白在线视频| 天天添夜夜摸| 国产精品二区激情视频| 国产一区在线观看成人免费| 999久久久精品免费观看国产| 一本综合久久免费| 欧美大码av| 婷婷丁香在线五月| 美女 人体艺术 gogo| 大香蕉久久成人网| 丝袜美腿诱惑在线| 捣出白浆h1v1| 黄色女人牲交| 丁香欧美五月| 老熟女久久久| 动漫黄色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一级毛片精品| 国产精品欧美亚洲77777| 又大又爽又粗| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 激情视频va一区二区三区| 91成年电影在线观看| 欧美成人免费av一区二区三区 | 9色porny在线观看| 欧美丝袜亚洲另类 | 在线观看免费日韩欧美大片| 999精品在线视频| 一本大道久久a久久精品| 亚洲欧美日韩高清在线视频| 99久久综合精品五月天人人| 免费观看精品视频网站| 亚洲熟女毛片儿| 露出奶头的视频| 国产成人精品无人区| cao死你这个sao货| 男人的好看免费观看在线视频 | 十八禁人妻一区二区| 久久久久久久精品吃奶| 一a级毛片在线观看| 午夜影院日韩av| 男人舔女人的私密视频| 激情视频va一区二区三区| 成年版毛片免费区| 王馨瑶露胸无遮挡在线观看| 亚洲成国产人片在线观看| 免费在线观看黄色视频的| 男人操女人黄网站| 男女免费视频国产| 两性夫妻黄色片| 两个人看的免费小视频| netflix在线观看网站| 午夜福利乱码中文字幕| 亚洲国产欧美一区二区综合| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 麻豆av在线久日| 国产1区2区3区精品| 亚洲午夜理论影院| 99久久人妻综合| 亚洲国产精品一区二区三区在线| av天堂久久9| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 国产单亲对白刺激| 9191精品国产免费久久| 亚洲av成人不卡在线观看播放网| 亚洲国产精品一区二区三区在线| 久久影院123| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 男人的好看免费观看在线视频 | 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 欧美激情高清一区二区三区| 麻豆国产av国片精品| 男男h啪啪无遮挡| 人妻 亚洲 视频| 国产成人av教育| 老司机在亚洲福利影院| 人人妻人人爽人人添夜夜欢视频| 女警被强在线播放| 岛国在线观看网站| 少妇被粗大的猛进出69影院| 香蕉国产在线看| 免费在线观看亚洲国产| 精品久久久精品久久久| 1024香蕉在线观看| 在线观看日韩欧美| 超碰成人久久| videosex国产| 男女午夜视频在线观看| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| 人妻一区二区av| 狂野欧美激情性xxxx| www.自偷自拍.com| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 99国产精品免费福利视频| 精品久久蜜臀av无| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜一区二区| 免费在线观看亚洲国产| 麻豆成人av在线观看| 国产av精品麻豆| 国产99久久九九免费精品| 18禁国产床啪视频网站| www.精华液| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 欧美激情久久久久久爽电影 | 国产精品久久久久久精品古装| 国产av精品麻豆| 亚洲综合色网址| 亚洲 国产 在线| а√天堂www在线а√下载 | 国产不卡一卡二| 亚洲熟女精品中文字幕| 国产精品免费视频内射| 性色av乱码一区二区三区2| 真人做人爱边吃奶动态| 99re6热这里在线精品视频| 夫妻午夜视频| 国产一区在线观看成人免费| 热99re8久久精品国产| 久久人妻av系列| 啦啦啦免费观看视频1| 操美女的视频在线观看| 动漫黄色视频在线观看| 丝袜美腿诱惑在线| 国产精品永久免费网站| 黄色 视频免费看| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 精品亚洲成国产av| 午夜亚洲福利在线播放| 国产1区2区3区精品| 少妇被粗大的猛进出69影院| 国产亚洲欧美精品永久| 日韩制服丝袜自拍偷拍| 中国美女看黄片| 黄色丝袜av网址大全| 亚洲全国av大片| 欧美亚洲 丝袜 人妻 在线| 在线观看舔阴道视频| avwww免费| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区mp4| 少妇裸体淫交视频免费看高清 | 妹子高潮喷水视频| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 国产av一区二区精品久久| 99热网站在线观看| 身体一侧抽搐| 一级,二级,三级黄色视频| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产 | 午夜久久久在线观看| 无遮挡黄片免费观看| 日本wwww免费看| 亚洲专区国产一区二区| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 99re在线观看精品视频| 一进一出抽搐动态| 国产乱人伦免费视频| 国产午夜精品久久久久久| 两个人看的免费小视频| 另类亚洲欧美激情| svipshipincom国产片| 自线自在国产av| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 老汉色∧v一级毛片| 麻豆av在线久日| 老司机在亚洲福利影院| 精品国产一区二区三区久久久樱花| 国产人伦9x9x在线观看| 久久狼人影院| 中出人妻视频一区二区| 成人国产一区最新在线观看| 99riav亚洲国产免费| 欧美日韩av久久| 亚洲中文av在线| 久久久久国产一级毛片高清牌| videos熟女内射| 免费在线观看黄色视频的| 超碰97精品在线观看| 桃红色精品国产亚洲av| 成年人午夜在线观看视频| 啦啦啦 在线观看视频| 国产片内射在线| 国产又爽黄色视频| 最新在线观看一区二区三区| 人妻久久中文字幕网| 一边摸一边做爽爽视频免费| 久久精品91无色码中文字幕| 色老头精品视频在线观看| 免费观看人在逋| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 9色porny在线观看| 天堂动漫精品| 亚洲情色 制服丝袜| 午夜福利,免费看| 久久人妻av系列| 99热只有精品国产| 99re6热这里在线精品视频| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区| 身体一侧抽搐| 久久午夜亚洲精品久久| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 亚洲第一青青草原| 久久久久国产一级毛片高清牌| 亚洲全国av大片| 三级毛片av免费| ponron亚洲| 天堂中文最新版在线下载| 一级毛片高清免费大全| 大香蕉久久网| 国产精品一区二区免费欧美| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 一进一出抽搐gif免费好疼 | 国产精品影院久久| 日本wwww免费看| 丝瓜视频免费看黄片| 人人妻人人澡人人看| 久久久久久久国产电影| 日韩有码中文字幕| 亚洲专区中文字幕在线| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 18禁美女被吸乳视频| av不卡在线播放| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 超色免费av| 超碰97精品在线观看| 久久人妻福利社区极品人妻图片| 一级毛片精品| 视频区欧美日本亚洲| av国产精品久久久久影院| 亚洲,欧美精品.| 国产高清国产精品国产三级| 精品一区二区三卡| 国产精品久久电影中文字幕 | 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 欧美日韩成人在线一区二区| 国产无遮挡羞羞视频在线观看| 在线天堂中文资源库| 王馨瑶露胸无遮挡在线观看| 老司机影院毛片| 99精品在免费线老司机午夜| 色94色欧美一区二区| 男男h啪啪无遮挡| 国产av精品麻豆| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 欧美激情高清一区二区三区| 国产免费男女视频| 亚洲av日韩在线播放| 多毛熟女@视频| avwww免费| 男女高潮啪啪啪动态图| 久久中文看片网| 丰满迷人的少妇在线观看| 免费看a级黄色片| 91麻豆av在线| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 亚洲 国产 在线| 操美女的视频在线观看| 精品久久久久久,| 国产熟女午夜一区二区三区| 国产精品综合久久久久久久免费 | 在线观看www视频免费| 亚洲熟女精品中文字幕| 三上悠亚av全集在线观看| 国产麻豆69| 天天躁狠狠躁夜夜躁狠狠躁| 午夜老司机福利片| 亚洲少妇的诱惑av| 婷婷丁香在线五月| 久久久精品免费免费高清| 人人澡人人妻人| 午夜免费观看网址| 最近最新中文字幕大全电影3 | 日本黄色日本黄色录像| 一区二区三区精品91| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 欧美成狂野欧美在线观看| 极品少妇高潮喷水抽搐| 国产精品免费大片| a级片在线免费高清观看视频| 亚洲精品久久午夜乱码| 亚洲av成人av| 国产精品久久久久成人av| 国产黄色免费在线视频| 精品一区二区三区视频在线观看免费 | 欧美最黄视频在线播放免费 | 久久精品人人爽人人爽视色| 欧美激情久久久久久爽电影 | 亚洲av美国av| 天天躁日日躁夜夜躁夜夜| 叶爱在线成人免费视频播放| 欧美精品亚洲一区二区| 久久久国产成人免费| 国产成人系列免费观看| 最新美女视频免费是黄的| 国产精品一区二区在线观看99| 激情在线观看视频在线高清 | 国产深夜福利视频在线观看| 久久久国产一区二区| 日韩三级视频一区二区三区| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 亚洲国产精品sss在线观看 | 亚洲综合色网址| 99re6热这里在线精品视频| 99久久99久久久精品蜜桃| 色精品久久人妻99蜜桃| 18禁观看日本| 久久久国产一区二区| 日本精品一区二区三区蜜桃| 国产片内射在线| 丰满的人妻完整版| 亚洲成人手机| 叶爱在线成人免费视频播放| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 精品人妻1区二区| 一级片'在线观看视频| 亚洲精品美女久久av网站| 在线十欧美十亚洲十日本专区| 青草久久国产| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久电影中文字幕 | 夜夜夜夜夜久久久久| 久久天堂一区二区三区四区| 99久久99久久久精品蜜桃| 夜夜爽天天搞| 麻豆乱淫一区二区|