• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NMR Relaxation Response of CO2 Hydrate Formation and Dissociation in Sand

    2017-12-18 06:56:16CHENHeLongWEIChangFuTIANHuiHuiWEIHouZhen
    物理化學(xué)學(xué)報(bào) 2017年8期
    關(guān)鍵詞:液態(tài)水水合水合物

    CHEN He-Long WEI Chang-Fu* TIAN Hui-Hui WEI Hou-Zhen

    ?

    NMR Relaxation Response of CO2Hydrate Formation and Dissociation in Sand

    CHEN He-Long1,2WEI Chang-Fu1,* TIAN Hui-Hui1WEI Hou-Zhen1

    (1;2)

    Quantification and characterization of hydrate formation and dissociation in sediments are highly important in the study of the physical properties of hydrate-bearing sediments. In this paper, the behavior of CO2hydrate formation and dissociation in sand is studied using the nuclear magnetic resonance (NMR) technique. The components of the pore space, including gas, liquid water, and hydrate, were quantified using a convenient method by which the hydration number was determined. No abrupt change in the relaxation behavior of the sample was found during hydrate formation and dissociation. In addition, the value of mean-log2appeared to be proportional to the liquid water content of the sample with or without the pore hydrate. A straightforward explanation is that the liquid water in the pore space remains in contact with grain surfaces, and relaxation occurs mainly at the grain surface. The results suggest that, rather than coating the grains, the hydrate is pore-filling or cementing.

    Nuclear magnetic resonance; Hydrate saturation; Hydration number;Hydrate distribution; Relaxation behavior

    1 Introduction

    Gas hydrates are crystalline solids composed of water and small molecular-weight gases. The gas molecules are trapped in water cavities that are composed of hydrogen-bonded water molecules1. Natural gas hydrates occur widely in continental margins and arctic areas, where the conditions are suitable for hydrate formation (temperature and pressure as well as the availability of gas and water). Besides being considered as a potential unconventional energy resource2, gas hydrate is also a driver for global climate change3or a contributing factor in large submarine slide4,5.

    To map hydrate occurrences and estimate the hydrate saturation, acoustic remote sensing technique is extensively used. This technique is based on the fact that hydrate stiffens the host sediment, thus increasing theandwave velocities. The stiffening effect, however, depends not only on hydrate saturation but also on the hydrate occurrence habit. Namely, pore-filling hydrate does not affect the shear stiffness unless hydrate saturates over 25%-40% of pore space to become load-bearing, while cementing hydrate stiffens the host sediment dramatically even at low hydrate saturation6. This increases the ambiguity when try to infer hydrate saturation from measured velocities7,8. Therefore, intensive efforts are directed to pore-scale measurement for hydrate formation. Modern imaging techniques, including X-ray computed tomography (CT)9,10, micro CT11-13and magnetic resonance imaging (MRI)14,15, have been widely used in the study of hydrate distribution in porous media.

    The NMR relaxation technique is also capable of shedding insight into the pore-structure of hydrate-bearing sediments16. Compared to other imaging techniques, which can detail discrete pores within small samples, the NMR technique allows us to obtain static pore structure information which can be more readily used in physical modeling17.

    In contrast to the common application in saturated porous media, the application of NMR in unsaturated soils, especially as complex as hydrate-bearing sediments, is scarce. In this study, the CO2hydrate was formed and dissociated in mono-disperse sands. The NMR relaxation measurements were performed. The evolution of hydrate saturation and hydration number was determined, and the NMR relaxation data were analyzed, from which the pore structure and the hydrate habit were characterized.

    2 NMR relaxation in porous media

    Here the principle of nuclear magnetic resonance is only briefly introduced, and a more comprehensive introduction of the technique can be found in Kleinberg17. In a static magnetic field, magnetic nuclei, such as hydrogen, are directionally aligned, and precess about the field with the Lamor frequency, resulting in additional macroscopic magnetization along the direction of the magnetic field. In NMR measurement, the magnetization is reoriented by irradiating the magnetic nuclei with the Larmor frequency pulses. After the pulse is stopped, the magnetization relaxes back to its equilibrium state.

    Decaying of the magnetization component perpendicular to the static magnetic field is called the spin-spin relaxation or transverse relaxation, and in porous media it is generally described by a multi-exponential function, i.e.,

    (1)

    The relaxation rate,2i, is given by

    (2)

    where2Bi,2Si,2Diare bulk relaxation time, surface relaxation time and diffusion relaxation time, respectively.2Biis usually larger than2Siby one order. Inside the pore space, diffusion relaxation is caused by the naturally inhomogeneous magnetic field due to the susceptibility contrast between the solid phase and the fluid in the pores and thus it is negligible at low field. Further, in a surface-limited region, the relaxation time is given by

    (3)

    where2is the relaxivity, accounting for the effect of the solid on the relaxation of pore fluid, and is specific for a certain combination of solid and fluid. (/)is theth pore surface-to-volume ratio. Eq.(3) can only be applied to saturated porous media.

    For partially water-saturated porous media, the relaxation time can be described with the dependence on the water saturation through18

    (4)

    whereS2mLandU2mLare the mean-log values of the2distribution of saturated and unsaturated samples, respectively.NMRis the degree of saturation of pore water determined from the NMR signal amplitude.is a fitting parameter.

    3 Equipment and methods

    In this study, an experiment is sequentially performed in three phases: host sand sample preparation, hydrate formation and dissociation, and NMR relaxation measurement.

    3.1 Host sample preparation

    Silica sands were retrieved from Wuhan section of the Yangtze River, and sieved into particles having diameters in the range 0.25?0.5 mm. The sand was step-wise wetted with distilled, deionized water to a desired water content (11.9%), and mixed until water distributed visually homogeneous. 25.42 g of moistened sand was tampered gently into a cylindrical bottle to a porosity of 43.3% and water saturation of 0.42. The sample bottle, having the volume of 15 cm3, is made of Polytetrafluoroethylene (PTEE) that imposes no interference in magnetic field and has no NMR signals.

    3.2 Hydrate formation and dissociation

    A pressure cell was manufactured with polyetheretherketone (PEEK), a high-strength material, which can withstand the high pressure of hydrate reaction and has no NMR signals and imposes no interference to the magnetic field. The bottle containing moistened sands was put into the pressure cell. The cell was evacuated for about 5 min to remove the air in the cell and sample, then it was weighted again and the water loss induced by evacuation was subtracted from the sample. About 3.8 MPa CO2gas (purity >99.9%) (produced by Wuhan Xiangyun Gas Co.) was injected into the cell in a smooth way such that the disturbance to the sample can be minimized. In the cell, the ratio of the mole of CO2gas to the mole of water is nearly 0.55, meaning that the gas in the cell is sufficient to convert all the water content into hydrate (ideally, the guest-gas-to-water ration in hydrate is 1 : 5.75). The cell was then immersed in a cool bath (product ID: THD 2020, by Ningbo Tianheng Instrument Factory), and kept at 283.15 K for about 2 h. The bath temperature was reduced to 279.15 K and kept for nearly 12 h. Although the pressure and temperature was kept within the stable zone of hydrate, no hydrate formation was detected during this period. The bath temperature was further reduced to 274.15 K to induce hydrate formation.

    The variations of the gas pressure in the cell and bath temperature were recorded once per minute. It was observed that when the temperature difference between the interior of the cell and the bath was about 5 K, it took about 15 min for the cell to reach the same temperature as the bath. Considering the fact that hydrate formation is time-consuming (tens of hours), it is reasonable to regard the temperature of bath as the temperature of the sample inside the cell throughout the test.

    An indicator of hydrate formation is observed from the measured pressure data (Fig.1). From the temporal variation curve of the cell pressure, a steep drop can be clearly identified. Such a drop in pressure resulted from hydrate formation that consumed CO2gas from the gas phase. After hydrate formed at 274.15 K for about 24 h, the temperature was increased stepwise to allow the hydrate to dissociate. At each temperature step the system was maintained for about 4 or 12 h. During application of temperature step, additional rise of gas pressure resulting from hydrate dissociation was observed. It can be seen that hydrate started to dissociate when the temperature rose from 279.15 to 280.15 K.

    Fig.1 Temporal variations of gas pressure and temperature during the experiment.

    The circle denotes the start point of the steep pressure drop due to hydrate formation.

    3.3 NMR relaxation measurement

    NMR relaxation measurements were performed using a 23 MHz MiniMR system developed jointly by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, and Niumag Corporation. Combined with a cool-dry air supply unit, the NMR analysis system is applicable to hydrate-bearing or frozen samples. The dead time of NMR system is 70 μs, which is much longer than the relaxation time of proton in hydrate. Thus it is reasonable to assume that all the signals detected by the NMR system come from the liquid water.

    The transverse relaxation measurements were conducted throughout the test, using the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence withE= 240 μs and 10000 echoes. Before putting the whole cell into the sample cube in NMR system, the cube was blown with cool dry air to keep at such a low temperature that minimize interference of environment temperature to the sample in the cell. An iterative regularization method based on the Trust-Region Algorithm was used for the inversion of2distribution. The time when relaxation measurement were performed and the signal amplitudes are listed in Table 1, for brevity. Also listed are the gas pressure and temperature of the sample during the relaxation measurements. The end of gas injection is set to the time zero of the test.

    Table 1 Series of NMR relaxation measurements.

    * In the brackets the number is the time when the NMR relaxation measurement was conducted with the end of gas injection set as the time zero. ** The column lists the temperature and gas pressure in the sample.

    3.4 Quantification of CO2 and water contained in hydrate

    As noted above, the NMR signals from hydrate are absent and thus all the signals are solely due to the liquid water. Since the liquid water in the sample is proportional to the NMR signal magnitude, the amount of water molecules in hydrate is readily determined through the difference between the current and initial signal values.

    No hydrate was formed in the system at the start of test, thus the initial amount of CO2was the sum of gaseous and dissolved one. The solubility of CO2in water and the molar volume of gaseous CO2were calculated using a routine offered by Diamond and Akinfiev19When the hydrate formed, the total amount of CO2was equal to the sum of CO2in the phases of hydrate and non-hydrate. Here, the non-hydrate phase is referred to the combination of the gas phase and the liquid phase. Another routine proposed by Sun and Duan20was used to compute the solubility of CO2in liquid water in the presence of hydrate. In this test, the total amount of CO2in the system was unchanged. Eventually subtracting from the total the amount of non-hydrated CO2, which included gaseous and dissolved CO2, the amount of CO2contained in hydrate was determined. The ratio of the amount of water molecules to guest molecules in hydrate, which is called hydration number, can also be calculated.

    Assuming reasonably a constant hydrate molar volume for the narrow range of temperature and pressure in the test, hydrate saturation is determined:

    (5)

    Fig.2 NMR measurements series.

    The number in brackets is the hydrate saturation (%). Lw-H-V equilibria data are referred to Sloan and Koh1: Lw-liquid water, H-hydrate, and V-gas.

    The temporal variations of hydration number and hydrate saturation during hydrate formation process are plotted in Fig.3. The time axis is shifted with zero corresponding to the start point of the steep pressure drop that was regarded as the beginning of hydrate formation. As the reaction progressed, the rate of hydrate formation decreased. In contrast, the decreasing hydration number suggested that the empty cages, emerged at the early stage of hydrate formation, were gradually filled by CO2molecules. This phenomenon was also discussed by Geng22. If the hydration number was fitted with an exponential function, a value 19.6 of hydration number was obtained at= 0. This value is close to the ratio of the number of water molecules to guest molecules in the metastable solution on the verge of hydrate nucleation obtained by Guo and Rodger.23, showing consistency with previous results.

    Fig.3 Temporal variations of hydrate saturation and hydration number.

    For clarity, some but not all of the2spectrums during hydrate formation and dissociation are shown in Fig.4. The2spectrums obtained during hydrate dissociation are indicated with dashed line (M14 and M16), others by solid lines. It is clear that each2spectrum has two peaks, showing the occurrence of water that resides in pores of two distinct sizes17. As hydrate formed, both peak amplitudes decreased, indicating that liquid water in the large and small pores had been converted into hydrate simultaneously. This is because that the freezing point depression in coarse sand is negligible. In addition, the sample is over-cooled for about 6 K, thus thermodynamic control of pore size is not the dominant factor16.

    Fig.4 T2 distribution evolution during hydrate formation and dissociation.

    It can be also seen that as the hydrate grows, the2distribution moves to the regime of shorter relaxation times, and as the hydrate dissociates the2distribution moves back. The appearance or disappearance does not result in abrupt shift of the two peaks of2distribution. Such a relaxation response makes it possible to identify the growth habit of hydrate in the sample. Before doing this, we shall emphasize a subtle but important point. As noted in Section 2, the relaxation time is controlled by surface relaxation which is specific for liquid-solid combination. At the water-grain interface, the relaxation mainly occurs at paramagnetic centers at grain surface17. At the water-hydrate interface, the proton spin is relaxed dominantly by intra-dipole-dipole interaction which is a totally different mechanism24.

    Four possible hydrate growth habits in rich-gas condition is shown in Fig.5. If hydrate formed as coating grains (Fig.5(a)), hydrate formation would have created a water-hydate interface instead of the water-grain interface, and different relaxation response would have occurred. If hydrate formed as layers over liquid water (Fig.5(b)), additional fast relaxation at water-hydrate interface24would have made the relaxation time much shorter. Clearly, the relaxation data in this study are inconsistent with the above two hydrate habits. The other two hydrate habits, pore filling (Fig.5(c)) and cementing (Fig.5(d)), do not alter the pore environment of water, and thus do not cause an abrupt change of relaxation time, which is consistent with the relaxation response observed in our experiments.

    Fig.5 Illustration for hydrate habits.

    (a) hydrate coats the grain, (b) a layer of water coats the grain, and hydrate forms at the surface of water, (c) hydrate forms at certain location on the grain surface, and grows into pore space, and (d) hydrate forms at the contact of grains, cementing the grains together.

    The mean-log relaxation time is plotted against water content in Fig.6. Data collected with the same sand sample of different water contents in absence of hydrate is also shown in the figure. As clearly seen, the data points can be reasonably well fitted by a straight line. According to Eq.(4), it is also clear that the relaxivities in sands with or without hydrate are the same, and= 1; this further verifies that hydrate formation did not significantly change the pore environment of liquid water. Similarly, possible hydrate habit is directed to pore filling or cementing. Compared to pore-filling hydrate, cementing hydrate isolates pores from each other since it forms at the throats of pore space, dramatically reducing water diffusion. Therefore, although these two hydrate habits cannot be distinguished through the relaxation measurements, it is possible to identify which one is the true hydrate habit by the diffusion measurements.

    Fig.6 Relationship between mean-log T2 and water volume.

    The squares denote data collected during hydrate formation and dissociation test, and circles denote data collected with the partially water-saturated sand in the absence of hydrate. The dashed line is a linear fitting for all data.

    5 Conclusions

    This study presents a set of NMR relaxation measurements of sand within which CO2hydrate formed and dissociated. It is shown that in coarse sand, rather than the pore sizes, the thermal condition was the dominant factor in the hydrate formation and dissociation. A convenient and accurate method has been proposed to quantify various components in the hydrate-bearing sand. Based on this quantitative method, a reasonable value of the ratio of the number of water molecules to guest molecules in the metastable solution prior to hydrate nucleation was obtained. A comprehensive analysis for the relaxation behavior of the pore water during the hydrate formation and dissociation is presented, which can shed new light into the hydrate occurrence habit in sediments. It is suggested that combined with the NMR diffusion measurement, the NMR technique could provide further evidence to identify whether hydrate forms at grain surface or at grain contact.

    (1) Sloan, E.D.; Koh, C. A., 3rd ed.; CRC Press: New York, 2008.

    (2) Makogon, Y. F.; Holditch, S. A.; Makogon, T. Y..2007,, 14. doi: 10.1016/j.petrol.2005.10.009

    (3) Kvenvolden, K. A.. 1993,, 173. doi: 10.1029/93RG00268.

    (4) Mienert, J.; Posewang, J.; Baumann, M. Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margins instabilities and possible release of methane. In; Henriet, J. P., Mienert, J. Eds.; Geological Society: London, 1998; Vol. 134, pp 275-291 (Special Publication). doi: 10.1144/GSL.SP.1998.137.01.22

    (5) Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.2004,, 379. doi: 10.1016/j.margeo.2004.10.015.

    (6) Waite, W. F.; Santamarina, J. C.; Cortes, D. D.; Dugan, B.; Espinoza, D. N.; Germaine, J.; Jang, J.; Jung, J. W.; Kneafsey, T. J.; Shine, H.; Soga, K.; Winters, W. J.; Yun, T. S.2009,, RG4003. doi: 10.1029/2008RG000279

    (7) Helgerud, M. B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. S.1999,, 2021. doi: 10.1029/1999GL900421

    (8) Priest, J. A.; Rees, E. V. L.; Clayton, C. R. I..2009,, B11205. doi: 10.1029/2009JB006284

    (9) Ersland, G.; J. Husebo, A.; Graue, B. A.; Howard, B. J.; Stevens, J.2010,, 25. doi: 10.1016/j.cej.2008.12.028.

    (10) Kneafsey, T. J.; Tomutsa, L.; Moridis, G. J.; Seol, Y.; Freifeld, B. M.; Taylor, C. E.; Gupta, A.2007,, 108. doi: 10.1016/j.petrol.2006.02.002

    (11) Zhao, J.; Yang, L.; Xue, K.; Lam, W.; Li, Y.; Song, Y.2014,, 124. doi: 10.1016/j.cplett.2014.07.066

    (12) Rees, E. V.L.; Priest, J. A.; Clayton, C. R. I.2011,, 1283. doi: 10.1016/j.marpetgeo.2011.03.015

    (13) Kerkar, P. B.; Horvat, K.; Jones, K. W.; Mahajan, D.. 2014,, 4759. doi: 10.1002/2014GC005373.

    (14) Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W. F.2015,, 1711. doi: 10.1002/2015GC005811.

    (15) Bagherzadeh, S. A.; Moudrakovski, I. L.; Ripmeester, J. A.; Englezos, P.2015,, 3083. doi: 10.1021/ef200399a.

    (16) Kleinberg, R. L.; Flaum, C.; Griffin, D. D.; Brewer, P. G.; Malby, G. E.; Peltzer, E. T.; Yesinowski, J. P. J.2003,, 2508. doi: 10.1029/2003JB002389.

    (17) Kleinberg, R. L. Nuclear Magnetic Resonance, In; Wong, P. Z. Eds.; Academic Press: San Diego, USA, 1999; pp 337–385. doi: 10.1016/S0076-695X(08)60420-2

    (18) Costabel, S.; Yaramanci, U.2011,(2), 155. doi: 10.3997/1873-0604.2010055

    (19) Diamond, L. W.; Akinfiev, N. N.2003,, 265. doi: 10.1016/S0378-3812(03)00041-4

    (20) Sun, R.; Duan, Z.2005,(18), 4411. doi: 10.1016/j.gca.2005.05.012

    (21) Yan, R.T.; Wei, H. Z.; Wu, E. L.; Wang, S. Y.; Wei, C. F.2011,, 295. [顏榮濤, 魏厚振, 吳二林, 王淑云, 韋昌富. 物理化學(xué)學(xué)報(bào), 2011,,295.] doi: 10.3866/PKU.WHXB20110204

    (22) Geng, C. Y.; Ding, L. Y.; Han, Q. Z.; Wen, H.2008,, 595. [耿春宇, 丁麗穎, 韓清珍, 溫 浩. 物理化學(xué)學(xué)報(bào), 2008,,595.] doi: 10.3866/PKU.WHXB20080409

    (23) Guo, G.; Rodger, P. M.2013,, 6498. doi: 10.1021/jp3117215

    (24) Gao, S.; Chapman, W. G.; House, W.. 2009,, 208. doi: 10.1016/j.jmr.2008.12.022

    CO2水合物在砂中生成和分解的核磁共振弛豫響應(yīng)

    陳合龍1,2韋昌富1,*田慧會(huì)1魏厚振1

    (1中國(guó)科學(xué)院武漢巖土力學(xué)研究所,巖土力學(xué)與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430071;2中國(guó)科學(xué)院大學(xué),北京 100049)

    水合物在沉積物中生成和分解的定量和表征對(duì)于含水合物沉積物的物理性質(zhì)的研究有重要意義?;诤舜殴舱?NMR)技術(shù)研究了水合物在砂中的形成和分解行為,以一種簡(jiǎn)便的方式計(jì)量了孔隙空間中各組分的含量,包括氣體、液態(tài)水和水合物,并確定了水合數(shù)。在水合物形成和分解過(guò)程中試樣的弛豫行為并沒(méi)有發(fā)生突變,此外,對(duì)于含或不含水合物的試樣,平均對(duì)數(shù)2時(shí)間都與含水量成比例關(guān)系,直接的解釋是液態(tài)水始終保持與顆粒表面的接觸,弛豫主要發(fā)生在顆粒表面,表明水合物以孔隙填充或膠結(jié)的形式而不是顆粒涂層的方式存在。

    核磁共振;水合物飽和度;水合數(shù);水合物分布;弛豫行為

    O642

    10.3866/PKU.WHXB201704194

    March 13, 2017;

    April 6, 2017;

    April 19, 2017.

    Corresponding author. Email: cfwei@email.com; Tel: +86-27-87197153.

    The project was supported by the National Natural Science Foundation of China (51239010, 41572295, 41502301) and Youth Innovation Promotion Association ofChinese Academy of Sciences (2015272).

    國(guó)家自然科學(xué)基金項(xiàng)目(51239010, 41572295, 41502301)和中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(2015272)資助

    猜你喜歡
    液態(tài)水水合水合物
    基于微波輻射計(jì)的張掖地區(qū)水汽、液態(tài)水變化特征分析
    Ka/Ku雙波段毫米波雷達(dá)功率譜數(shù)據(jù)反演液態(tài)水含量方法研究
    氣井用水合物自生熱解堵劑解堵效果數(shù)值模擬
    熱水吞吐開(kāi)采水合物藏?cái)?shù)值模擬研究
    零下溫度的液態(tài)水
    天然氣水合物保壓轉(zhuǎn)移的壓力特性
    PEMFC氣體擴(kuò)散層中液態(tài)水傳輸實(shí)驗(yàn)研究綜述
    我國(guó)海域天然氣水合物試采成功
    紅球菌菌株腈水合酶提取方法優(yōu)化
    花生蛋白水合性質(zhì)的研究進(jìn)展
    亚洲在久久综合| 欧美精品一区二区免费开放| 中文字幕色久视频| 亚洲av电影在线观看一区二区三区| 9191精品国产免费久久| 妹子高潮喷水视频| 精品人妻在线不人妻| 最近中文字幕2019免费版| 国产黄频视频在线观看| 国产精品免费大片| www日本在线高清视频| 国产成人欧美| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 国产成人免费观看mmmm| 亚洲欧洲国产日韩| 如日韩欧美国产精品一区二区三区| 麻豆av在线久日| 2022亚洲国产成人精品| 大香蕉久久成人网| 青草久久国产| 少妇被粗大猛烈的视频| 日韩不卡一区二区三区视频在线| 精品一区二区免费观看| 成人国产av品久久久| 中文字幕制服av| 久久亚洲国产成人精品v| 欧美精品一区二区大全| 国产男女内射视频| 亚洲欧美精品综合一区二区三区 | 亚洲av欧美aⅴ国产| 免费观看a级毛片全部| 这个男人来自地球电影免费观看 | 亚洲国产成人一精品久久久| 极品少妇高潮喷水抽搐| 国产精品国产三级国产专区5o| 亚洲欧美日韩另类电影网站| 亚洲成人一二三区av| 狠狠精品人妻久久久久久综合| 亚洲精品久久成人aⅴ小说| 成年女人在线观看亚洲视频| 黄色配什么色好看| 国产成人精品福利久久| 欧美人与善性xxx| 考比视频在线观看| 欧美+日韩+精品| 久久久久久久久久久免费av| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 男女下面插进去视频免费观看| 欧美日韩视频精品一区| 视频区图区小说| 夫妻午夜视频| 最近2019中文字幕mv第一页| 国产精品国产av在线观看| 亚洲精品aⅴ在线观看| 久久这里只有精品19| av在线播放精品| 亚洲成人一二三区av| 国产不卡av网站在线观看| 精品福利永久在线观看| 日韩av免费高清视频| 一二三四中文在线观看免费高清| 亚洲av在线观看美女高潮| 国产欧美亚洲国产| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频| 狠狠精品人妻久久久久久综合| 日韩,欧美,国产一区二区三区| 1024视频免费在线观看| 两个人看的免费小视频| 飞空精品影院首页| 免费观看a级毛片全部| 777米奇影视久久| 汤姆久久久久久久影院中文字幕| 精品国产一区二区三区久久久樱花| 两个人免费观看高清视频| 欧美av亚洲av综合av国产av | 亚洲欧美精品综合一区二区三区 | 美女中出高潮动态图| 免费在线观看完整版高清| 日韩,欧美,国产一区二区三区| 国产精品av久久久久免费| 电影成人av| 午夜日本视频在线| 国产国语露脸激情在线看| 在线观看三级黄色| 天堂8中文在线网| 婷婷色综合www| 欧美日韩av久久| 三上悠亚av全集在线观看| 美女午夜性视频免费| 人人妻人人爽人人添夜夜欢视频| 夫妻性生交免费视频一级片| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 亚洲综合色网址| 天美传媒精品一区二区| 9191精品国产免费久久| 国产精品国产三级国产专区5o| 成年av动漫网址| 久久精品aⅴ一区二区三区四区 | 久久精品国产自在天天线| 啦啦啦在线观看免费高清www| 少妇的丰满在线观看| 国产人伦9x9x在线观看 | 国产精品不卡视频一区二区| 国产精品.久久久| 久久免费观看电影| 91午夜精品亚洲一区二区三区| 日本色播在线视频| 少妇的丰满在线观看| 久久久久久久久免费视频了| 美国免费a级毛片| 下体分泌物呈黄色| 久久久久久久国产电影| 国产又爽黄色视频| 十八禁网站网址无遮挡| 亚洲精品aⅴ在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久影院| 久久久国产一区二区| 久久精品久久精品一区二区三区| 91精品伊人久久大香线蕉| 色哟哟·www| 天堂8中文在线网| 2021少妇久久久久久久久久久| 亚洲av综合色区一区| 少妇精品久久久久久久| av视频免费观看在线观看| 国产毛片在线视频| 你懂的网址亚洲精品在线观看| 亚洲色图 男人天堂 中文字幕| 国产97色在线日韩免费| 美女xxoo啪啪120秒动态图| 中国三级夫妇交换| 日韩av免费高清视频| 最近中文字幕高清免费大全6| a级毛片黄视频| 国产爽快片一区二区三区| 国产精品久久久av美女十八| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产免费视频播放在线视频| a级毛片黄视频| www.自偷自拍.com| 欧美变态另类bdsm刘玥| 午夜福利,免费看| av.在线天堂| 五月伊人婷婷丁香| 777米奇影视久久| 少妇猛男粗大的猛烈进出视频| 一级毛片我不卡| 一级黄片播放器| av在线老鸭窝| 亚洲国产日韩一区二区| 亚洲精品aⅴ在线观看| 亚洲伊人久久精品综合| 国产精品免费大片| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品综合一区二区三区 | 久久久久久久久久久免费av| 亚洲av中文av极速乱| 99热网站在线观看| 人人澡人人妻人| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 久久av网站| 日韩熟女老妇一区二区性免费视频| av网站免费在线观看视频| 久久这里只有精品19| 日本爱情动作片www.在线观看| 亚洲欧美中文字幕日韩二区| 韩国精品一区二区三区| 成年女人在线观看亚洲视频| 国产精品一区二区在线观看99| 国产精品偷伦视频观看了| 七月丁香在线播放| 啦啦啦中文免费视频观看日本| 日韩 亚洲 欧美在线| av在线老鸭窝| 午夜福利在线免费观看网站| 久久99精品国语久久久| 2018国产大陆天天弄谢| 99久久精品国产国产毛片| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 高清黄色对白视频在线免费看| 亚洲av男天堂| 亚洲国产欧美网| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 久久久欧美国产精品| 天天操日日干夜夜撸| 亚洲色图 男人天堂 中文字幕| 中文精品一卡2卡3卡4更新| 一二三四中文在线观看免费高清| 国产精品久久久久久精品古装| 欧美老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 久久热在线av| 美女视频免费永久观看网站| 人人妻人人爽人人添夜夜欢视频| 1024视频免费在线观看| √禁漫天堂资源中文www| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| 岛国毛片在线播放| 在线观看免费日韩欧美大片| 国产精品三级大全| 超碰成人久久| 亚洲精品一区蜜桃| 国产一区二区激情短视频 | 各种免费的搞黄视频| 午夜91福利影院| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 久久99精品国语久久久| 中文字幕最新亚洲高清| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美精品免费久久| 少妇被粗大的猛进出69影院| 五月伊人婷婷丁香| 亚洲五月色婷婷综合| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 免费黄频网站在线观看国产| 欧美日韩一级在线毛片| 人妻系列 视频| 日本免费在线观看一区| 国产成人免费无遮挡视频| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 香蕉丝袜av| 精品第一国产精品| 亚洲欧美色中文字幕在线| 两性夫妻黄色片| 2021少妇久久久久久久久久久| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 精品久久久久久电影网| 国产精品蜜桃在线观看| 亚洲精品视频女| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 亚洲精品国产一区二区精华液| 18禁观看日本| av在线观看视频网站免费| 日韩免费高清中文字幕av| 久久亚洲国产成人精品v| 精品国产一区二区久久| 麻豆乱淫一区二区| 中文天堂在线官网| 精品少妇内射三级| 欧美变态另类bdsm刘玥| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂| 97在线人人人人妻| 久久99一区二区三区| 亚洲国产精品一区三区| 国产一区有黄有色的免费视频| 久久99蜜桃精品久久| 婷婷色综合www| 捣出白浆h1v1| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 国产成人精品无人区| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 高清在线视频一区二区三区| 成人亚洲精品一区在线观看| 91午夜精品亚洲一区二区三区| 日韩中文字幕视频在线看片| 美国免费a级毛片| 国产xxxxx性猛交| 久久99一区二区三区| 欧美国产精品一级二级三级| 久久久久国产精品人妻一区二区| 亚洲国产看品久久| 老司机影院毛片| 人人妻人人澡人人看| 中文字幕av电影在线播放| 自线自在国产av| 午夜福利在线免费观看网站| 成人国语在线视频| 热99国产精品久久久久久7| 亚洲伊人色综图| 免费观看在线日韩| 9色porny在线观看| 国产免费又黄又爽又色| 日韩中字成人| 日韩中文字幕欧美一区二区 | 精品酒店卫生间| 欧美国产精品一级二级三级| 日本欧美视频一区| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 亚洲人成电影观看| 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 人妻 亚洲 视频| 一区二区av电影网| 如何舔出高潮| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 日韩电影二区| 人人妻人人澡人人看| 国产精品国产三级国产专区5o| 成年美女黄网站色视频大全免费| 91精品国产国语对白视频| 欧美激情 高清一区二区三区| 2018国产大陆天天弄谢| 91成人精品电影| 婷婷色综合大香蕉| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看| 亚洲国产欧美网| 在线精品无人区一区二区三| 成人18禁高潮啪啪吃奶动态图| 国产xxxxx性猛交| 久久久久精品久久久久真实原创| 三级国产精品片| 永久免费av网站大全| 一本久久精品| 国产成人精品在线电影| 卡戴珊不雅视频在线播放| 国产精品国产av在线观看| 成人国产av品久久久| 97在线人人人人妻| 国产黄频视频在线观看| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| av在线播放精品| 少妇的逼水好多| 在线观看三级黄色| videos熟女内射| 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 我要看黄色一级片免费的| 成人免费观看视频高清| 久久青草综合色| 18+在线观看网站| 一边亲一边摸免费视频| 国产精品久久久av美女十八| 亚洲一级一片aⅴ在线观看| 久久久久久人妻| 黄片无遮挡物在线观看| 一区二区三区激情视频| 2022亚洲国产成人精品| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全免费视频 | 免费观看性生交大片5| 亚洲第一青青草原| 国产视频首页在线观看| 日韩一区二区视频免费看| 国产成人91sexporn| 午夜精品国产一区二区电影| 日韩中字成人| 亚洲国产成人一精品久久久| 五月伊人婷婷丁香| 丰满饥渴人妻一区二区三| 男的添女的下面高潮视频| 美国免费a级毛片| 亚洲经典国产精华液单| av在线播放精品| 亚洲成av片中文字幕在线观看 | 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 三上悠亚av全集在线观看| 69精品国产乱码久久久| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 自线自在国产av| 久久精品国产自在天天线| 久热久热在线精品观看| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 99热国产这里只有精品6| 久久精品久久久久久久性| 婷婷色麻豆天堂久久| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| av女优亚洲男人天堂| 亚洲av日韩在线播放| av电影中文网址| 黑丝袜美女国产一区| 欧美日韩视频高清一区二区三区二| 高清视频免费观看一区二区| av国产精品久久久久影院| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 99国产综合亚洲精品| 一本久久精品| 熟女电影av网| 女性被躁到高潮视频| 在线天堂最新版资源| 国产xxxxx性猛交| 久久久国产一区二区| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 18+在线观看网站| 久久影院123| 日韩欧美一区视频在线观看| 2018国产大陆天天弄谢| 精品人妻在线不人妻| √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区 | 天天躁狠狠躁夜夜躁狠狠躁| 中国三级夫妇交换| 日韩电影二区| 精品一区在线观看国产| 亚洲精品美女久久av网站| 久久 成人 亚洲| 美女高潮到喷水免费观看| 看免费av毛片| 国产白丝娇喘喷水9色精品| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 黄色毛片三级朝国网站| 国产男女超爽视频在线观看| 春色校园在线视频观看| 九草在线视频观看| 国产1区2区3区精品| 国产精品.久久久| 亚洲国产欧美网| 看十八女毛片水多多多| 久久精品国产综合久久久| 亚洲成人av在线免费| 性色avwww在线观看| 欧美激情高清一区二区三区 | 一区二区三区乱码不卡18| 久久婷婷青草| 69精品国产乱码久久久| 嫩草影院入口| 久久这里有精品视频免费| 超色免费av| 又黄又粗又硬又大视频| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 另类精品久久| 欧美xxⅹ黑人| 久久久久久久精品精品| 999精品在线视频| 日韩av在线免费看完整版不卡| 亚洲婷婷狠狠爱综合网| 少妇的逼水好多| 久久久精品国产亚洲av高清涩受| 久久狼人影院| 成人午夜精彩视频在线观看| 日韩制服骚丝袜av| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 国产不卡av网站在线观看| 人人澡人人妻人| 久久这里有精品视频免费| 免费不卡的大黄色大毛片视频在线观看| 免费黄频网站在线观看国产| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 成年女人毛片免费观看观看9 | 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 久久精品夜色国产| 亚洲熟女精品中文字幕| 女人高潮潮喷娇喘18禁视频| 国产精品免费大片| 1024香蕉在线观看| 在线观看免费高清a一片| 国产av码专区亚洲av| 日本欧美国产在线视频| 免费高清在线观看视频在线观看| 久久精品国产亚洲av天美| 国产一区亚洲一区在线观看| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 免费高清在线观看日韩| 一本大道久久a久久精品| 精品人妻偷拍中文字幕| 久久精品夜色国产| 街头女战士在线观看网站| 国产乱人偷精品视频| 欧美日韩亚洲国产一区二区在线观看 | 久久ye,这里只有精品| 成人午夜精彩视频在线观看| 国产精品女同一区二区软件| 岛国毛片在线播放| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 男人爽女人下面视频在线观看| 黄色配什么色好看| 欧美人与性动交α欧美软件| 亚洲精品自拍成人| 国产一级毛片在线| 桃花免费在线播放| 18禁国产床啪视频网站| 人人澡人人妻人| 久久鲁丝午夜福利片| 欧美日韩国产mv在线观看视频| 久久久久精品人妻al黑| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 下体分泌物呈黄色| 日本午夜av视频| 巨乳人妻的诱惑在线观看| 久久久久人妻精品一区果冻| 人人妻人人澡人人爽人人夜夜| 99久国产av精品国产电影| 18在线观看网站| 自线自在国产av| 中文精品一卡2卡3卡4更新| 亚洲第一青青草原| 9191精品国产免费久久| 国产成人精品久久二区二区91 | 女的被弄到高潮叫床怎么办| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 色哟哟·www| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 天堂中文最新版在线下载| a级毛片黄视频| 两性夫妻黄色片| 国产亚洲精品第一综合不卡| 亚洲精品国产色婷婷电影| 宅男免费午夜| 9191精品国产免费久久| 国产精品 国内视频| 美女视频免费永久观看网站| av免费在线看不卡| kizo精华| 天天躁日日躁夜夜躁夜夜| 麻豆av在线久日| 日韩 亚洲 欧美在线| 日本av免费视频播放| 天天影视国产精品| 免费观看性生交大片5| 国产女主播在线喷水免费视频网站| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 午夜免费观看性视频| 国产成人av激情在线播放| 国产熟女欧美一区二区| 免费黄色在线免费观看| av免费在线看不卡| 91精品三级在线观看| 女性被躁到高潮视频| 免费在线观看黄色视频的| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| 水蜜桃什么品种好| 色婷婷av一区二区三区视频| 尾随美女入室| 老司机亚洲免费影院| 久久精品国产自在天天线| 久久久精品免费免费高清| videossex国产| 久久精品亚洲av国产电影网| 亚洲第一av免费看| av在线播放精品| 天天躁夜夜躁狠狠久久av| 国产在线一区二区三区精| 亚洲国产精品一区三区| 寂寞人妻少妇视频99o| 国产精品久久久久久精品古装| 爱豆传媒免费全集在线观看| 不卡视频在线观看欧美| 人妻少妇偷人精品九色| 菩萨蛮人人尽说江南好唐韦庄| 黄片小视频在线播放| 热99国产精品久久久久久7| 亚洲精品,欧美精品| 日本欧美视频一区| 午夜福利视频精品| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 中文字幕av电影在线播放| 视频在线观看一区二区三区| 精品亚洲成a人片在线观看| 黄色怎么调成土黄色| 伊人亚洲综合成人网| 精品人妻一区二区三区麻豆| 校园人妻丝袜中文字幕| 美女大奶头黄色视频| 十八禁高潮呻吟视频| 久久久久久久精品精品| 精品人妻偷拍中文字幕| 国产野战对白在线观看| 91在线精品国自产拍蜜月| 91午夜精品亚洲一区二区三区| 免费黄频网站在线观看国产| 日日爽夜夜爽网站| 丝袜人妻中文字幕| 波多野结衣av一区二区av| 日日爽夜夜爽网站| 精品福利永久在线观看| 十八禁高潮呻吟视频| 校园人妻丝袜中文字幕| 日韩一本色道免费dvd| 丝袜喷水一区| 黄色怎么调成土黄色| 日韩av不卡免费在线播放| 精品99又大又爽又粗少妇毛片| 日韩一卡2卡3卡4卡2021年| 99热全是精品| 国产精品一区二区在线观看99|