• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization and Molecular Docking of Inclusion Complex of Quercetin with Modif i ed Cyclodextrins

    2017-12-11 09:17:15LIYunZOUWeiSUNWeiCAIHongyanZHUZhenzhouCHENXuanLIFangDINGWenpingSHENWangyang
    食品科學(xué) 2017年23期
    關(guān)鍵詞:包合物環(huán)糊精熱穩(wěn)定性

    LI Yun, ZOU Wei, SUN Wei, CAI Hongyan, ZHU Zhenzhou, CHEN Xuan,LI Fang,, DING Wenping,, SHEN Wangyang,,*

    (1. School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;2. Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430023, China)

    Characterization and Molecular Docking of Inclusion Complex of Quercetin with Modif i ed Cyclodextrins

    LI Yun1, ZOU Wei2, SUN Wei1, CAI Hongyan1, ZHU Zhenzhou1, CHEN Xuan1,LI Fang1,2, DING Wenping1,2, SHEN Wangyang1,2,*

    (1. School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;2. Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430023, China)

    Quercetin is of high interest in pharmaceutical industry due to its antioxidant activity and potential therapeutic effects on airway inflammation and cardiovascular diseases. However, the application of quercetin is limited due to its low water solubility and poor stability. Cyclodextrins (CDs) are macrocyclic molecules able to form inclusion complex with guest molecules, effectively enhancing their solubility, stability and bioavailability. In order to overcome the defect of quercetin, we prepared inclusion complexes of quercetin with three different cyclodextrins such as β-CD, G-β-CD and G2-β-CD. The phase solubility study showed that there was a linear relationship between the solubility of quercetin and the molality of CDs, and G-β-CD performed the best among three cyclodextrins in terms of increasing the solubility of quercetin.In order to confirm the formation of inclusion complex, some analytical techniques were applied, such as ultravioletvisible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric-differential scanning calorimetry. The results revealed that the inclusion complex was formed as expected and the thermal stability of the guest molecule was improved. Furthermore, molecular docking showed that the ring C of quercetin was inserted into the hydrophobic cavity of G-β-CD during the inclusion process.

    quercetin; modif i ed cyclodextrins; inclusion complex; characterisation; molecular docking

    Quercetin, one of best-known flavonoids, is a class of polyphenolic compounds generally distributing in fruits,vegetables, red wine and black tea[1-2]. Many flavonoids present antioxidant activity and several bioactivities such as anti-inf l ammatory, anti-cancer, immunopotentiating,antithrombotic, antiallergic, hepatoprotective, vasodilatory,anti-ischemic and anti-diabetic[3-9]. In recent years, quercetin has become of high interest for pharmaceuticals owing to its antioxidant and anti-inf l ammatory activity[10-11]. It has been reported that quercetin exerts therapeutic effects on airway inflammation and cardiovascular diseases[12-16]. In addition, quercetin is benef i cial on preventing mitochondrial dysfunctions, neurodegenerative diseases, fluoride-induced hepatotoxicity and cholestatic liver injury[17-20]. However,the application of quercetin in pharmaceutical fi eld has been limited due to its low water-solubility and poor stability.

    Cyclodextrins (CDs), produced by the enzymatic degradation of starch, are a family of macrocyclic compounds constituted by sugar molecules[21-22]. Because CDs have a hydrophobic internal cavity and a hydrophilic external surface, they are able to increase water-solubility and stability of drugs via forming complexes with guest molecules. CDs have been applied widely in pharmaceutical, biotechnology,agro and food industry[23-24]. Native CDs mainly include α-,β- and γ-CD, of which β-CD is the most frequently used host molecule to prepare inclusion complex[25]. However, the low water-solubility (1.5 g/mL, 25 ℃) and toxicity to cell have hindered β-CD from being widely used to form inclusion complex[25-26]. Thereby several derivatives of β-CD which exhibit higher water-solubility and lower toxicity have been produced, such as hydroxypropyl-β-CD, methyl-β-CD,6-O-α-D-maltosyl-β-CD, glucosyl-β-CD and so on.

    In this paper, the inclusion efficiency of different β-CD derivatives with quercetin has been explored. The physicochemical properties of samples were investigated by ultraviolet (UV) spectroscopy, Fourier transform infrared(FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric-diffraction scanning calorimetry (TG-DSC). Furthermore, molecular mocking was used to clarify the supramolecular structure of the complex.

    1 Materials and Methods

    1.1 Materials and reagents

    Quercetin (purity≥98%); β-CD, 6-O-α-D-maltosylβ-CD Sigma Chemicals Co. (USA); glucosyl-β-CD Seebio Biotech Inc. (Shanghai, China); all other chemicals and solvents belong to analytical grade.

    1.2 Instruments and equipments

    Multifuge X1R high-speed refrigerated centrifuge Thermo Scientific (USA); 1260 high performance liquid chromatography Agilent (USA); TU-1810PC spectrophotometer Beijing Purkinje General Instrument Co. Ltd. (China); NEXUS670 infrared spectrophotometer Thermo Nicolet Corporation (USA); S-300N SEM Hitachi Ltd. (Japan); 7000 XRD Shimadzu Corporation(Japan); STA449F3 TG/DSC system Netstal Instrument Co.Ltd. (Germany).

    1.3 Methods

    1.3.1 Phase-solubility measurements

    Phase-solubility measurements were performed based on the method of Higuchi et al.[27]. Prior to shaking at 30 ℃,excess amounts of quercetin were added to 5 mL of aqueous solution of β-CD, G-β-CD and G2-β-CD, whose concentrations were 0, 2, 4, 6, 8, 10 mmol/L. The suspensions were filtered through 0.45 μm membrane filters to remove undissolved quercetin after shaking for 72 h, and then measured with high performance liquid chromatograph. The apparent stability constants (K) of the inclusion complexes were calculated from phase-solubility diagrams according to the following equation:

    where S0was the solubility of quercetin at 30 ℃ in the absence of cyclodextrins/(mmol/L); slope was the corresponding slope of the phase solubility diagrams.

    1.3.2 Preparation of the inclusion complex of quercetin and G-β-CD

    Quercetin (0.151 1 g, 0.5 mmol/L) and G-β-CD(3.242 9 g, 2.5 mmol/L) were mixed in 40 mL of 30% methyl alcohol solution. The solution obtained was stirred at 30 ℃for 72 h and then centrifuged at 30 ℃ for 15 min with a rate of 3 000 r/min to obtain the supernatant. The supernatant was freeze-dried and collected.

    1.3.3 Preparation of the physical mixture of quercetin and G-β-CD

    Quercetin (0.151 1 g, 0.5 mmol/L) and G-β-CD (3.242 9 g,2.5 mmol/L) were mixed and stirred in a mortar until quercetin and G-β-CD was homogenized. The mixture produced was the physical mixture of quercetin and G-β-CD.

    1.3.4 UV analysis

    The UV spectra of quercetin, G-β-CD, their physical mixture and inclusion complex were collected at a range of 220-400 nm. Prior to measurement, each sample was dissolved respectively in methyl alcohol with a proper concentration.

    1.3.5 FT-IR analysis

    The FT-IR studies of quercetin, G-β-CD, their physical mixture and inclusion complex were conducted at a range between 4 000-400 cm-1. Each sample was measured with a blank potassium bromide (KBr) disk as control.

    1.3.6 SEM analysis

    The surface morphologies of quercetin, G-β-CD, their physical mixture and inclusion complex were observed using SEM. Samples evenly dispersed into silicon wafer attached on aluminium circular disks vis double adhesive tapes. In addition, prior to testing, each sample was gold-plated to improve electrical conductivity.

    1.3.7 XRD analysis

    The XRD patterns of quercetin, G-β-CD, their physical mixture and inclusion complex were obtained from XRD. The samples were measured at the angle 2θ between 10° and 60°.

    1.3.8 TG-DSC analysis

    The TG-DSC analysis of quercetin, G-β-CD and their complex were conducted on TG-DSC system as the following conditions: keeping dynamic atmosphere of nitrogen at 20 mL/min of nitrogen and heating from 40 to 500 ℃ at a rate of 10 ℃/min.

    1.3.9 Molecular docking

    The 3D structure of quercetin, which was optimized using the method of molecular mechanics (MM+) and semiempirical quantum chemistry (AM1), was constructed in Hyperchem 8.0 software. The 3D structure of β-CD was obtained from crystallographic databases. The 3D structure of G-β-CD was formed by bringing in a glucosyl group in the narrow rim of β-CD[28]. The molecule docking between G-β-CD and quercetin was conducted via Lamarckian genetic algorithm (LGA) in Auto Dock 4.0 with autogrid box 60 ? ×60 ? × 60 ? and grid spacing 0.375 ?.

    2 Results and Analyses

    2.1 Phase-solubility analysis

    Fig. 1 Phase solubility diagrams of inclusion complexes formed between quercetin and CDs

    Table 1 Apparent stability constants of the inclusion complexes between quercetin and cyclodextrins

    The phase-solubility studies have been widely used to explain the complexation ability of cyclodextrins to guest molecules. The phase-solubility diagrams of quercetin with β-CD, G-β-CD and G2-β-CD all exhibited a typical AL type diagram (Fig. 1), indicating that the solubility of quercetin increased with increasing concentration of CDs and the complexes were formed with a 1:1 stoichiometry[27]. The apparent stability constants of complexes (K) shown in Table 1, were calculated through the slopes of phasesolubility diagrams. The result showed that the stability constant of G-β-CD (876 L/mmol) was higher compared to β-CD (536 L/mmol) and G2-β-CD (621 L/mmol). Therefore,G-β-CD was selected to produce inclusion complex with quercetin for the following studies.

    2.2 UV analysis

    Fig. 2 UV absorption spectra of G-β-CD (a), quercetin (b), their physical mixture (c) and inclusion complex (d)

    UV spectroscopy is a useful tool to confirm the formation of complex. The obtained UV spectra of quercetin,G-β-CD, their physical mixture and inclusion complex were showed in Fig. 2. Resulting from the absence of unsaturated bonds, there was no characteristic absorption peak in the UV spectrum of G-β-CD. Quercetin and physical mixture both displayed two characteristic absorption peaks at 256 and 373 nm. Interestingly, the second absorption peak of complex had a blue shift from 373 to 363 nm. It might be caused by the hindrance of G-β-CD to insertion of quercetin into its cavity, which resulted in a change of conjugative structure of quercetin, indicating the formation of complex[29].

    2.3 FT-IR analysis

    Fig. 3 FT-IR spectra of G-β-CD (a), quercetin (b), their physical mixture (c) and inclusion complex (d)

    FT-IR spectroscopy is an insightful technique analyzing the function groups related to the interaction between the host and guest[30]. FT-IR spectrum of quercetin, G-β-CD, their physical mixture and inclusion complex were shown in Fig. 3.The FT-IR spectra of quercetin showed several prominent absorption bands, such as hydroxyl group (3 409 cm-1),carbonyl group (1 662 cm-1) and C—H stretching vibration(1 262 cm-1). In the spectrogram of G-β-CD, prominent absorption bands consisted of O—H stretching vibration(3 399 cm-1), C—H stretching vibration (2 928 cm-1)and C—H and C—O stretching vibration (1 155, 1 084,1 033 cm-1). The FT-IR spectra of physical mixture, a combination of the spectrogram of quercetin and G-β-CD, had no difference from single compound. But the spectrogram of complex was similar to that of G-β-CD with the characteristic peaks of quercetin at 500-1 500 cm-1disappearing, suggesting the complexation of G-β-CD to quercetin.

    2.4 SEM analysis

    SEM is a visualization method to study the surface morphology of materials. The morphologies of quercetin,G-β-CD, their physical mixture and inclusion complex were illustrated in Fig. 4. The spherical shape of G-β-CD and needle-like crystals of quercetin were displayed. The morphologies of both molecules were present in the image of physical mixture without significant differences to their morphologies before they were mixed. However, there was an obvious change in the morphology of inclusion complex,which exhibited irregular amorphous pieces with disappearing morphologies of both raw materials, indicating the formation of complex[31].

    Fig. 4 SEM of G-β-CD (a), quercetin (b), their physical mixture (c) and inclusion complex (d)

    2.5 XRD analysis

    Fig. 5 XRD patterns of G-β-CD (a), quercetin (b), their physical mixture (c) and inclusion complex (d)

    XRD is a useful technique for analyzing the degree of crystallinity of samples. Normally, the crystallinity of guest molecule is decreased after forming inclusion complex with host molecule[32]. As shown in Fig. 5, the XRD patterns of quercetin crystals showed characteristic crystalline peaks in range of 25°-30° which are absent in that of G-β-CD.As a comparison, the X-ray patterns of physical mixture nearly overlapped the patterns of quercetin and G-β-CD,whereas in the X-ray patterns of inclusion complex, the characteristic crystalline peaks of quercetin disappeared,indicating decreased crystallinity of quercetin. This demonstrated that the inclusion complex of quercetin with G-β-CD was formed[33].

    2.6 TG-DSC analysis

    TG-DSC is a worthwhile method providing both qualitative and quantitative information on the thermal properties of given samples[34]. As shown in Fig. 6, G-β-CD exhibited a shallow endothermic peak starting from 88 ℃with a weight loss of 5%, indicating the evaporation of water. A broad endothermic peak beginning at about 315 ℃was also observed, which led to the degradration of G-β-CD.Quercetin expressed two shape endothermic peak: one beginning with the temperature of about 98 ℃, conf i rmed to the loss of water; the other starting at about 310 ℃ adjacent to the melting point of quercetin (314 ℃), was related to the degradration of quercetin. Yet ahead of 310 ℃, quercetin also presented other mass losses. Hence, quercetin had decomposed partly prior to fusion. As for inclusion complex,the characteristic endothermic peaks of quercetin disappeared and the decomposing onset temperature is shifted to 315 ℃,which is a powerful proof that the inclusion complex was formed and the thermal stability of quercetin was improved.

    Fig. 6 TG-DSC curves of G-β-CD (a), quercetin (b) and their inclusion complex (c)

    2.7 Molecular docking analysis

    Fig. 7 Schematic representation of inclusion complexation of G-β-CD with quercetin

    Molecular docking is a vivid tool to investigate the complexation of the host molecule with guest molecule[35].The structural formula of quercetin was showed in Fig. 7a.The most suitable 3D structure mode (Fig. 7b and c) of the inclusion complex of G-β-CD with quercetin was obtained via molecular simulation. G-β-CD and quercetin were regarded as receptor and ligand respectively. The results showed that the ring C of quercetin was inserted into the cavity of G-β-CD, while the ring A and B were orientated separately toward the narrow and wide rim of G-β-CD. In addition, a plurality of hydrogen bonds had been formed to maintain the supramolecular structure.

    3 Conclusions

    In this study, we generated inclusion complexs with 1:1 stoichiometry between quercetin and three cyclodextrins(β-CD, G-β-CD, G2-β-CD). Among selected cyclodextrins,our results showed G-β-CD performed the best in terms of increasing solubility of quercetin. UV, FT-IR, SEM and XRD analysis confirmed inclusion complex of G-β-CD and quercetin was formed. Furthermore, TG-DSC results suggested that the thermal stability of quercetin was improved. At last, molecular docking results displayed that the supramolecular complex was most likely formed with the ring C of quercetin inserted into the cavity of G-β-CD.This work successfully improved the solubility, stability and bioavailability of quercetin, broadening its potential application in pharmaceutical industry.

    [1] TOUMI M L, MERZOUG S, BAUDIN B, et al. Quercetin alleviates predator stress-induced anxiety-like and brain oxidative signs in pregnant rats and immune count disturbance in their offspring[J].Pharmacology, Biochemistry and Behavior, 2013, 107: 1-10.DOI:10.1016/j.pbb.2013.03.009.

    [2] DE PAZ E, MARTíNB A, EVERYA H, et al. Production of watersoluble quercetin formulations by antisolvent precipitation and supercritical drying[J]. The Journal of Supercritical Fluids, 2015, 104:281-290. DOI:10.1016/j.supf l u.2015.07.006.

    [3] HEGDE A H, PRASHANTH S N, SEETHARAMAPPA J.Interaction of antioxidant fl avonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63: 40-46.DOI:10.1016/j.jpba.2012.01.034.

    [4] PROCHáZKOVá D, BOU?OVá I, WILHELMOVá N. Antioxidant and prooxidant properties of flavonoids[J]. Fitoterapia, 2011, 82(4):513-523. DOI:10.1016/j.f i tote.2011.01.018.

    [5] GARCIA-LAFUENTE A, GUILLAMóN E, VILLARES A, et al.Flavonoids as anti-inf l ammatory agents: implications in cancer and cardiovascular disease[J]. Inf l ammation Research, 2009, 58(9): 537-552. DOI:10.1007/s00011-009-0037-3.

    [6] DMITRIENKO S G, APYARI V V, KUDRINSKAYA V A, et al.Preconcentration of fl avonoids on polyurethane foam and their direct determination by diffuse reflectance spectroscopy[J]. Talanta, 2012,102: 132-136. DOI:10.1016/j. Talanta. 2012.08.017.

    [7] DOS SANTOS M C D, GON?ALVES C F L, VAISMAN M, et al.Impact of flavonoids on thyroid function[J]. Food and Chemical Toxicology, 2011, 49(10): 2495-2502. DOI:10.1016/j.fct.2011.06.074.

    [8] CALDERONE V, CHERICONI S, MARTINELLI C, et al.Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels[J]. Naunyn-Schmiedebergs Archives of Pharmacology, 2004, 370(4): 290-298. DOI:10.1007/s00210-004-0964-z.

    [9] BABU P V A, LIU D M, GILBERT E R. Recent advances in understanding the anti-diabetic actions of dietary fl avonoids[J]. Journal of Nutritional Biochemistry, 2013, 24(11): 1777-1789. DOI:10.1016/j.jnutbio.2013.06.003.

    [10] ROEDIG-PENMAN A, GORDON M H. Antioxidant properties of myricetin and quercetin in oil and emulsions[J]. Journal of the American Oil Chemists’Society, 1998, 75(2): 169-180. DOI:10.1007/s11746-998-0029-4.

    [11] ROGERIO A P, KANASHIRO A, FONTANARI C, et al. Antiinf l ammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma[J]. Inf l ammation Research, 2007, 56(10): 402-408. DOI:10.1007/s00011-007-7005-6.

    [12] YANG T, LUO F, SHEN Y C, et al. Quercetin attenuates airway inf l ammation and mucus production induced by cigarette smoke in rats[J]. International Immunopharmacology, 2012, 13(1): 73-81.DOI:10.1016/j.intimp.2012.03.006.

    [13] LI N, LI Q, ZHOU X D, et al. The effect of quercetin on human neutrophil elastase-induced mucin5AC expression in human air way epithelial cells[J]. International Immunopharmacology, 2012, 14(2):195-201. DOI:10.1016/j.intimp.2012.07.008.

    [14] ZAAFAN M A, ZAKI H F, EL-BRAIRY A I, et al. Protective effects of atorvastatin and quercetin on isoprenaline-induced myocardial infarction in rats[J]. Bulletin of Faculty of Pharmacy, Cairo University,2012, 51(1): 35-41. DOI:10.1016/j.bfopcu.2013.03.001.

    [15] SHEN Y, WARD N C, HODGSON J M, et al. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1[J]. Free Radical Biology and Medicine, 2013, 65:908-915. DOI:10.1016/j.freeradbiomed.2013.08.185.

    [16] LIU H, GUO X L, CHU Y, et al. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats[J]. Gene, 2014, 545(1): 149-155.DOI:10.1016/j.gene.2014.04.043.

    [17] SANDHIR R, MEHROTRA A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease[J].Biochimica et Biophysica Acta, 2013, 1832(3): 421-430.DOI:10.1016/j.bbadis.2012.11.018.

    [18] CHOI G N, KIM J H, KWAK J H, et al. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure[J]. Food Chemistry, 2012, 132(2): 1019-1024. DOI:10.1016/j.foodchem.2011.11.089.

    [19] NABAVI S M, NABAVI S F, ESLAMI S, et al. In vivo protective effects of quercetin against sodium fl uoride-induced oxidative stress in the hepatic tissue[J]. Food Chemistry, 2012, 132(2): 931-935.DOI:10.1016/j.Foodchem.2011.11.070.

    [20] LIN S Y, WANG Y Y, CHEN W Y, et al. Benef i cial effect of quercetin on cholestatic liver injury[J]. Journal of Nutritional Biochemistry,2014, 25(11): 1183-1195. DOI:10.1016/j.jnutbio.2014.06.003.

    [21] GRANDELLI H E, HASSLER J C, WHITTINGTON A, et al.Melting point depression of Piroxicam in carbon dioxide + co-solvent mixtures and inclusion complex formation with β-cyclodextrin[J].The Journal of Supercritical Fluids, 2012, 71: 19-25. DOI:10.1016/j.supf l u.2012.07.001.

    [22] FLOARE C G, PIRNAU A, BOGDAN M.1H NMR spectroscopic characterization of inclusion complexes of tolfenamic and fl ufenamic acids with β-cyclodextrin[J]. Journal of Molecular Structure, 2013,1044: 72-78. DOI:10.1016/j.molstruc.2012.11.021.

    [23] SRINIVASAN K, STALIN T, SHANMUGAPRIYA A, et al.Spectroscopic and electrochemical studies on the interaction of an inclusion complex of β-cyclodextrin with 2,6-dinitrophenol in aqueous and solid phases[J]. Journal of Molecular Structure, 2013, 1036: 494-504. DOI:10.1016/j. molstruc.2012.10.018.

    [24] HO B T, JOYCE D C, BHANDARI B R. Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes[J]. Food Chemistry, 2011, 127(2): 572-580. DOI:10.1016/j.foodchem.2011.01.043.

    [25] BENGHODBANE S, KHATMI D. A theoretical study on the inclusion complexation of doxycycline with Crysmeb[J]. Comptes Rendus Chimie, 2012, 15(5): 371-377. DOI:10.1016/j.crci.2011.11.007.

    [26] BELLRINGER M E, SMITH T G, READ R, et al. β-Cyclodextrin:52-week toxicity studies in the rat and dog[J]. Food and Chemical Toxicology, 1995, 33(5): 367-376. DOI:10.1016/0278-6915(94)00149-I.

    [27] HIGUCHI T, CONNORS K A. Phase solubility techniques[J]. Advances in Analytical Chemistry and Instrumentation, 1965, 4: 117-212.

    [28] EID E E M, ABDUL A B, SULIMAN F E O, et al. Characterization of the inclusion complex of zerumbone with hydroxypropylβ-cyclodextrin[J]. Food Chemistry, 2011, 83(4): 1707-1714.DOI:10.1016/j. carbpol.2010.10.033.

    [29] ZHAO M M, WANG H Y, YANG B, et al. Identif i cation of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity[J]. Food Chemistry, 2010, 120(4): 1138-1142.DOI:10.1016/j.foodchem. 2009.11.044.

    [30] ZHANG J Q, LI K, CONG Y W, et al. Preparation, characterisation and bioactivity evaluation of the inclusion complex formed between picoplatin and γ-cyclodextrin[J]. Carbohydrate Research, 2014, 396:54-61. DOI:10.1016/j.carres.2014.07.015.

    [31] RAJAMOHAN R, KOTHAINAYAKI S, SWAMINATAN M.Spectrofluorimetric study on inclusion complexation of 2-amino-6-fluorobenzothiazole with β-Cyclodextrin[J]. Collection of Czechoslovak Chemical Communications, 2008, 73(2): 147-160.DOI:10.1135/cccc 20080147.

    [32] PRABU S, SWAMINATHAN M, SIVAKUMAR K, et al. Preparation,characterization and molecular modeling studies of the inclusion complex of caffeine with beta-cyclodextrin[J]. Journal of Molecular Structure, 2015, 1099: 616-624. DOI:10.1016/j.molstruc.2015.07.018.

    [33] WANG J, CAO Y P, SUN B G, et al. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin[J].Food Chemistry, 2011, 124(3): 1069-1075. DOI:10.1016/j.foodchem.2010.07.080.

    [34] PERIASAMY R, KOTHAINAYAKI S, SIVAKUMAR K.Preparation, physicochemical analysis and molecular modeling investigation of 2,2’-bipyridine: β-cyclodextrin inclusion complex in solution and solid state[J]. Journal of Molecular Structure, 2015, 1100:59-69. DOI:10.1016/j.molstruc.2015.07.026.

    [35] MISIUK W, JOZEFOWICZ M. Study on a host-guest interaction of hydroxypropyl-β-cyclodextrin with of l oxacin[J]. Journal of Molecular Liquids, 2015, 202: 101-106. DOI:10.1016/j.molliq.2014.12.029.

    槲皮素與環(huán)糊精衍生物包合物的理化性質(zhì)和分子對接研究

    李 赟1,鄒 偉2,孫 威1,蔡紅燕1,祝振洲1,陳 軒1,李 芳1,2,丁文平1,2,沈汪洋1,2,*
    (1.武漢輕工大學(xué)食品科學(xué)與工程學(xué)院,湖北 武漢 430023;2.大宗糧油精深加工省部共建教育部重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430023)

    槲皮素具有較強(qiáng)的抗氧化活性,對呼吸道炎癥和心血管疾病具有一定療效,在醫(yī)藥行業(yè)中受到廣泛關(guān)注。但是,槲皮素的水溶性和熱穩(wěn)定性較低,使其在醫(yī)藥行業(yè)的應(yīng)用受到限制。環(huán)糊精(cyclodextrins,CDs)是一種大環(huán)分子,能夠與客體分子包合形成包合物,從而有效提高客體分子的溶解性、穩(wěn)定性和生物利用率。本實(shí)驗(yàn)制備槲皮素與β-CD、G-β-CD及G2-β-CD的包合物,利用相溶解度法研究環(huán)糊精與槲皮素的包合效果,利用紫外光譜、傅里葉變換紅外光譜、掃描電子顯微鏡、X射線衍射、熱重及差示掃描量熱技術(shù)表征槲皮素與G-β-CD包合物,借助分子對接研究槲皮素與G-β-CD包合物的超分子結(jié)構(gòu)。結(jié)果顯示:槲皮素的溶解度與環(huán)糊精的濃度呈線性關(guān)系,G-β-CD與槲皮素的包合效果最好,且包合后槲皮素的熱穩(wěn)定性提高。分子對接結(jié)果表明槲皮素的C環(huán)嵌入G-β-CD的空腔中形成包合物。

    槲皮素;環(huán)糊精衍生物;包合物;理化性質(zhì);分子對接

    TS201.2

    A

    1002-6630(2017)23-0045-06

    2016-09-18

    國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31301415)

    李赟(1990—),女,碩士研究生,研究方向?yàn)槭称飞锘瘜W(xué)。E-mail:shuang7061234@163.com

    10.7506/spkx1002-6630-201723008

    LI Yun, ZOU Wei, SUN Wei, et al. Characterization and molecular docking of inclusion complex of quercetin with modif i ed cyclodextrins[J]. 食品科學(xué), 2017, 38(23): 45-50.

    10.7506/spkx1002-6630-201723008. http://www.spkx.net.cn

    *通信作者:沈汪洋(1978—),男,副教授,博士,研究方向?yàn)槭称飞锘瘜W(xué)。E-mail:whwangyangshen@126.com

    LI Yun, ZOU Wei, SUN Wei, et al. Characterization and molecular docking of inclusion complex of quercetin with modif i ed cyclodextrins[J]. Food Science, 2017, 38(23): 45-50. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201723008. http://www.spkx.net.cn

    猜你喜歡
    包合物環(huán)糊精熱穩(wěn)定性
    鴉膽子油β-環(huán)糊精包合物的制備
    中成藥(2018年8期)2018-08-29 01:28:08
    魚腥草揮發(fā)油HPCD包合物腸用溫敏凝膠的制備
    中成藥(2018年5期)2018-06-06 03:11:49
    β-環(huán)糊精對決明子的輔助提取作用
    中成藥(2018年4期)2018-04-26 07:12:43
    莪術(shù)油聚合環(huán)糊精包合物制備工藝的優(yōu)化
    中成藥(2017年12期)2018-01-19 02:06:56
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
    中國塑料(2016年7期)2016-04-16 05:25:52
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    可聚合松香衍生物的合成、表征和熱穩(wěn)定性?
    對羥基安息香醛苯甲酰腙的合成、表征及熱穩(wěn)定性
    β-環(huán)糊精對安賽蜜口感修飾的研究
    成年版毛片免费区| 熟女少妇亚洲综合色aaa.| 天堂动漫精品| 在线亚洲精品国产二区图片欧美| 国产精品久久久久成人av| 91老司机精品| 成人国产av品久久久| 色视频在线一区二区三区| a在线观看视频网站| 午夜福利乱码中文字幕| 久热爱精品视频在线9| 9热在线视频观看99| 麻豆乱淫一区二区| 黄色视频在线播放观看不卡| 国产av国产精品国产| 国产亚洲精品一区二区www | 曰老女人黄片| 999久久久精品免费观看国产| 狠狠精品人妻久久久久久综合| 12—13女人毛片做爰片一| 12—13女人毛片做爰片一| 欧美 日韩 精品 国产| 搡老岳熟女国产| 免费少妇av软件| 国产高清激情床上av| 他把我摸到了高潮在线观看 | 可以免费在线观看a视频的电影网站| 色婷婷av一区二区三区视频| 日韩大片免费观看网站| 色婷婷av一区二区三区视频| 人人妻人人澡人人看| 一本色道久久久久久精品综合| 国产精品亚洲av一区麻豆| 91老司机精品| 在线观看免费视频日本深夜| 国产又爽黄色视频| 80岁老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 19禁男女啪啪无遮挡网站| 纵有疾风起免费观看全集完整版| av超薄肉色丝袜交足视频| 国产国语露脸激情在线看| 成人黄色视频免费在线看| 欧美精品一区二区免费开放| 欧美乱妇无乱码| 一级片免费观看大全| 国产av又大| 免费不卡黄色视频| 一级毛片电影观看| 午夜久久久在线观看| 男女高潮啪啪啪动态图| 久久国产精品人妻蜜桃| 少妇猛男粗大的猛烈进出视频| 免费在线观看视频国产中文字幕亚洲| 777久久人妻少妇嫩草av网站| 精品一区二区三区视频在线观看免费 | netflix在线观看网站| 亚洲精品av麻豆狂野| 王馨瑶露胸无遮挡在线观看| 99国产精品一区二区三区| 欧美成人午夜精品| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 日韩视频在线欧美| 人人妻人人爽人人添夜夜欢视频| 18禁美女被吸乳视频| 丝袜人妻中文字幕| 国产黄频视频在线观看| 欧美亚洲 丝袜 人妻 在线| bbb黄色大片| 国产男女内射视频| 一本综合久久免费| 好男人电影高清在线观看| 久久久久精品人妻al黑| 黑丝袜美女国产一区| 精品久久久久久久毛片微露脸| 免费高清在线观看日韩| 国产精品自产拍在线观看55亚洲 | 国产精品免费一区二区三区在线 | 国产真人三级小视频在线观看| 国产亚洲欧美在线一区二区| 90打野战视频偷拍视频| 黄频高清免费视频| 1024视频免费在线观看| 超色免费av| 大香蕉久久成人网| 日本一区二区免费在线视频| √禁漫天堂资源中文www| 最新美女视频免费是黄的| 亚洲专区字幕在线| 成年版毛片免费区| av线在线观看网站| 一进一出好大好爽视频| 91av网站免费观看| bbb黄色大片| 久久99热这里只频精品6学生| 日日摸夜夜添夜夜添小说| 9热在线视频观看99| 建设人人有责人人尽责人人享有的| 国产精品麻豆人妻色哟哟久久| 国产主播在线观看一区二区| 日本精品一区二区三区蜜桃| 国产av精品麻豆| 亚洲熟女精品中文字幕| 久久精品国产99精品国产亚洲性色 | 两个人免费观看高清视频| 捣出白浆h1v1| 最近最新免费中文字幕在线| 国产色视频综合| 操出白浆在线播放| 久久久精品国产亚洲av高清涩受| 黄片播放在线免费| 不卡av一区二区三区| 岛国在线观看网站| 12—13女人毛片做爰片一| 国产日韩欧美亚洲二区| 国产精品二区激情视频| 国产av精品麻豆| 两性夫妻黄色片| 亚洲欧洲精品一区二区精品久久久| 亚洲情色 制服丝袜| 老汉色∧v一级毛片| 久久精品国产a三级三级三级| 国产一区二区三区综合在线观看| 一个人免费在线观看的高清视频| 又大又爽又粗| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看日本一区| 欧美国产精品va在线观看不卡| 欧美日韩黄片免| 1024香蕉在线观看| 日韩大码丰满熟妇| 日韩一卡2卡3卡4卡2021年| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 久久久久久久大尺度免费视频| 精品亚洲成a人片在线观看| 久久久欧美国产精品| 精品免费久久久久久久清纯 | 99精品久久久久人妻精品| 久久精品国产99精品国产亚洲性色 | 久久久水蜜桃国产精品网| 热99久久久久精品小说推荐| 国产欧美亚洲国产| 99国产综合亚洲精品| 国产av又大| 啦啦啦在线免费观看视频4| 午夜视频精品福利| 亚洲男人天堂网一区| 国产精品一区二区在线观看99| 国产精品成人在线| 一级毛片电影观看| 一边摸一边抽搐一进一出视频| 蜜桃国产av成人99| 日韩欧美一区视频在线观看| 亚洲中文av在线| 交换朋友夫妻互换小说| av片东京热男人的天堂| 国产aⅴ精品一区二区三区波| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区四区第35| 天天添夜夜摸| 欧美乱妇无乱码| 国产精品久久电影中文字幕 | 99久久国产精品久久久| 亚洲欧美日韩高清在线视频 | 欧美日本中文国产一区发布| 一级片免费观看大全| 亚洲人成电影免费在线| av网站在线播放免费| netflix在线观看网站| 少妇粗大呻吟视频| 在线观看人妻少妇| 他把我摸到了高潮在线观看 | 午夜91福利影院| 老司机靠b影院| 亚洲精品一二三| 亚洲精品中文字幕一二三四区 | 18禁观看日本| 久久av网站| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 成人影院久久| 国产精品久久久久久精品电影小说| 亚洲伊人色综图| 99在线人妻在线中文字幕 | 两性夫妻黄色片| 搡老熟女国产l中国老女人| 国产不卡一卡二| 波多野结衣一区麻豆| 91九色精品人成在线观看| 少妇被粗大的猛进出69影院| 国产一区二区在线观看av| 九色亚洲精品在线播放| 大陆偷拍与自拍| 国产人伦9x9x在线观看| 无遮挡黄片免费观看| 亚洲人成电影观看| 国产成+人综合+亚洲专区| 欧美黑人精品巨大| 亚洲免费av在线视频| 麻豆乱淫一区二区| 久久99一区二区三区| 国产99久久九九免费精品| tube8黄色片| 十八禁人妻一区二区| 精品少妇内射三级| kizo精华| 色婷婷av一区二区三区视频| 欧美亚洲日本最大视频资源| 欧美精品一区二区大全| 精品少妇内射三级| 国产欧美日韩精品亚洲av| 大码成人一级视频| 妹子高潮喷水视频| 男女边摸边吃奶| 黑人操中国人逼视频| 亚洲视频免费观看视频| 99热网站在线观看| 丰满饥渴人妻一区二区三| 久久中文字幕人妻熟女| 脱女人内裤的视频| 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 搡老乐熟女国产| 午夜福利视频在线观看免费| bbb黄色大片| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女 | 成人国产av品久久久| 超色免费av| 久久精品亚洲精品国产色婷小说| 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 丝瓜视频免费看黄片| 日韩人妻精品一区2区三区| 色播在线永久视频| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| 黄色视频不卡| 午夜久久久在线观看| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 新久久久久国产一级毛片| 国产av又大| 手机成人av网站| 精品久久久久久久毛片微露脸| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 99久久国产精品久久久| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 免费在线观看视频国产中文字幕亚洲| 免费高清在线观看日韩| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 一进一出抽搐动态| 在线观看66精品国产| 国产亚洲精品久久久久5区| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 婷婷丁香在线五月| tube8黄色片| 国产欧美日韩综合在线一区二区| 一二三四在线观看免费中文在| 久久中文字幕一级| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 夫妻午夜视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久电影网| 国产成人欧美| 日韩大码丰满熟妇| 美女国产高潮福利片在线看| 国产av精品麻豆| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 午夜福利欧美成人| 一本色道久久久久久精品综合| 动漫黄色视频在线观看| 十八禁人妻一区二区| 国产老妇伦熟女老妇高清| 露出奶头的视频| 9色porny在线观看| 国产精品免费一区二区三区在线 | 黄片播放在线免费| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 欧美日韩黄片免| 久久精品91无色码中文字幕| 手机成人av网站| 香蕉丝袜av| 美女福利国产在线| 国产一区二区激情短视频| 9色porny在线观看| 人妻一区二区av| 亚洲国产中文字幕在线视频| avwww免费| av片东京热男人的天堂| 日本五十路高清| 精品国产乱码久久久久久小说| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| 激情在线观看视频在线高清 | 国产成人欧美在线观看 | 成人免费观看视频高清| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 亚洲情色 制服丝袜| 国产精品国产av在线观看| 大码成人一级视频| 国产xxxxx性猛交| 菩萨蛮人人尽说江南好唐韦庄| 午夜视频精品福利| 日韩有码中文字幕| 欧美 日韩 精品 国产| 亚洲五月婷婷丁香| 动漫黄色视频在线观看| 国产精品成人在线| 另类精品久久| 精品一区二区三区av网在线观看 | 波多野结衣一区麻豆| 国产日韩欧美视频二区| 99riav亚洲国产免费| 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一本大道久久a久久精品| 日韩视频一区二区在线观看| 美女福利国产在线| 午夜福利免费观看在线| 午夜91福利影院| 成人亚洲精品一区在线观看| 天堂8中文在线网| 国产成人系列免费观看| 亚洲第一青青草原| 777久久人妻少妇嫩草av网站| 亚洲欧美激情在线| 黄色丝袜av网址大全| 亚洲综合色网址| 丰满迷人的少妇在线观看| 久久久精品国产亚洲av高清涩受| 香蕉丝袜av| 99精国产麻豆久久婷婷| 男女下面插进去视频免费观看| 国产成人影院久久av| 无人区码免费观看不卡 | 欧美精品人与动牲交sv欧美| 欧美黑人精品巨大| 纯流量卡能插随身wifi吗| 一级毛片女人18水好多| 人妻一区二区av| 多毛熟女@视频| 在线观看人妻少妇| av片东京热男人的天堂| 日韩制服丝袜自拍偷拍| 精品国产乱码久久久久久小说| 日韩中文字幕欧美一区二区| 欧美精品人与动牲交sv欧美| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 五月天丁香电影| 欧美日韩亚洲综合一区二区三区_| 丁香六月欧美| 成人亚洲精品一区在线观看| 国产日韩一区二区三区精品不卡| 国产在线观看jvid| 国产亚洲精品一区二区www | 免费不卡黄色视频| 人人澡人人妻人| 亚洲欧美一区二区三区久久| 黄片播放在线免费| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 日本黄色日本黄色录像| 日韩欧美一区二区三区在线观看 | 9色porny在线观看| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 亚洲五月婷婷丁香| 色尼玛亚洲综合影院| 手机成人av网站| 午夜福利乱码中文字幕| 母亲3免费完整高清在线观看| 精品国产一区二区久久| 亚洲成人手机| 黄色成人免费大全| 精品国产一区二区三区四区第35| 极品教师在线免费播放| 亚洲人成伊人成综合网2020| 国产精品 欧美亚洲| 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 国产精品.久久久| 国产成人免费观看mmmm| 亚洲国产欧美网| 色在线成人网| cao死你这个sao货| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| 国产成人系列免费观看| 黑丝袜美女国产一区| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频 | 欧美日韩视频精品一区| 精品少妇久久久久久888优播| 在线观看www视频免费| 国产精品国产av在线观看| 麻豆av在线久日| 在线av久久热| av不卡在线播放| tube8黄色片| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久男人| 两人在一起打扑克的视频| 丝瓜视频免费看黄片| 三级毛片av免费| av天堂在线播放| 三级毛片av免费| 精品人妻1区二区| 日韩一卡2卡3卡4卡2021年| 国产在线一区二区三区精| 国产一区二区在线观看av| 久久精品国产a三级三级三级| 日本wwww免费看| 老熟女久久久| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 亚洲精品国产一区二区精华液| av在线播放免费不卡| 一级毛片电影观看| 国产伦理片在线播放av一区| 免费在线观看日本一区| 国产免费现黄频在线看| 超碰成人久久| 一级片免费观看大全| 少妇 在线观看| 99riav亚洲国产免费| 亚洲中文字幕日韩| 日韩有码中文字幕| 日本五十路高清| 国产97色在线日韩免费| 欧美在线黄色| 黄色丝袜av网址大全| 人妻一区二区av| 国产成人免费观看mmmm| 亚洲av片天天在线观看| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 日韩中文字幕视频在线看片| 亚洲精品av麻豆狂野| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 一个人免费看片子| 在线观看免费午夜福利视频| 亚洲欧美激情在线| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 久久人妻福利社区极品人妻图片| 天天躁日日躁夜夜躁夜夜| 久久久国产精品麻豆| 脱女人内裤的视频| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| bbb黄色大片| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| 久久 成人 亚洲| 国产欧美日韩一区二区三| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 一区二区av电影网| 欧美亚洲日本最大视频资源| 一个人免费看片子| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 国产精品免费一区二区三区在线 | 飞空精品影院首页| 自线自在国产av| 老鸭窝网址在线观看| 久久久久网色| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 91精品三级在线观看| 国产人伦9x9x在线观看| 男女无遮挡免费网站观看| 亚洲国产欧美在线一区| 波多野结衣av一区二区av| aaaaa片日本免费| 少妇粗大呻吟视频| 成人永久免费在线观看视频 | 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 日韩有码中文字幕| 91字幕亚洲| 免费在线观看黄色视频的| 悠悠久久av| 操出白浆在线播放| 嫩草影视91久久| 99久久精品国产亚洲精品| 丝袜喷水一区| 首页视频小说图片口味搜索| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 亚洲黑人精品在线| 色老头精品视频在线观看| 国产精品一区二区在线观看99| 黄色怎么调成土黄色| 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕 | 一区二区三区激情视频| a在线观看视频网站| 国产亚洲一区二区精品| 成人黄色视频免费在线看| 飞空精品影院首页| bbb黄色大片| 成人av一区二区三区在线看| 午夜福利在线观看吧| 国产精品国产高清国产av | 成人手机av| 亚洲熟女毛片儿| 青草久久国产| 一区二区三区激情视频| 国产成人影院久久av| 久久国产精品影院| 人成视频在线观看免费观看| 在线 av 中文字幕| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| 成人手机av| 12—13女人毛片做爰片一| 免费观看a级毛片全部| 一级a爱视频在线免费观看| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 国产精品久久久久久精品电影小说| 纵有疾风起免费观看全集完整版| 9热在线视频观看99| 久久精品成人免费网站| 亚洲精品在线美女| 国产欧美日韩一区二区精品| www.自偷自拍.com| e午夜精品久久久久久久| 国产在线观看jvid| 欧美国产精品一级二级三级| 亚洲成人免费av在线播放| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 国产一区二区在线观看av| 男人舔女人的私密视频| 操出白浆在线播放| 亚洲 国产 在线| bbb黄色大片| 亚洲全国av大片| 国产麻豆69| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 久久精品国产a三级三级三级| 99久久国产精品久久久| 日韩一区二区三区影片| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 午夜福利在线观看吧| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 欧美成人午夜精品| 两性夫妻黄色片| 狠狠精品人妻久久久久久综合| 女警被强在线播放| 欧美日韩亚洲高清精品| 国产成人一区二区三区免费视频网站| 大型黄色视频在线免费观看| 女人精品久久久久毛片| 91成人精品电影| 免费在线观看黄色视频的| av一本久久久久| h视频一区二区三区| 欧美另类亚洲清纯唯美| 热99久久久久精品小说推荐| 9色porny在线观看| 十八禁网站网址无遮挡| 精品国产一区二区久久| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 日本五十路高清| 可以免费在线观看a视频的电影网站| 欧美精品高潮呻吟av久久| 制服诱惑二区| 嫩草影视91久久| 99热网站在线观看| 涩涩av久久男人的天堂| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区 | 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 精品福利观看| 久久久久久久久久久久大奶| 激情视频va一区二区三区| 无人区码免费观看不卡 | 日本撒尿小便嘘嘘汇集6| 丁香六月天网|