杜 俊,許靜怡
(同濟大學(xué) 環(huán)境科學(xué)與工程學(xué)院,上海 200092)
基于ANAMMOX的復(fù)合工藝處理晚期垃圾滲濾液的研究進(jìn)展
杜 俊*,許靜怡
(同濟大學(xué) 環(huán)境科學(xué)與工程學(xué)院,上海 200092)
較之傳統(tǒng)的硝化反硝化工藝,ANAMMOX(Anaerobic Ammonium Oxidation)工藝憑借其高效脫氮、低能耗、產(chǎn)泥少等優(yōu)點近年來在晚期垃圾滲濾液處理領(lǐng)域得到關(guān)注。本文分別從基于ANAMMOX的復(fù)合工藝、晚期垃圾滲濾液中對該復(fù)合工藝的影響因素、脫氮菌群結(jié)構(gòu)三個方面對該復(fù)合工藝處理晚期垃圾滲濾液進(jìn)行可行性分析,指出其亟待解決的幾大難點,并對其發(fā)展前景進(jìn)行展望。
ANAMMOX;晚期垃圾滲濾液;微生物群落結(jié)構(gòu)
垃圾滲濾液根據(jù)填埋場齡的不同,可分為早期(小于5年),中期(5~10年)和晚期(大于10年)垃圾滲濾液。場齡越長,滲濾液的pH越低,可生化性越差,氨氮含量越高,C/N比越低。晚期滲濾液的pH已接近中性(7~8),重金屬離子的濃度也大大降低[3]。
1.1 PN+ANAMMOX復(fù)合工藝
1.2 SHARON+ANAMMOX復(fù)合工藝
1.3 SNAD工藝
SNAD(simultaneous partial nitrification, anammox and denitrification)工藝能夠在單個處理器內(nèi)同時進(jìn)行部分硝化、厭氧氨氧化和反硝化反應(yīng)脫氮,但控制條件較為苛刻,對于操作者的要求較高。近年來的一些研究[14-16]對實際垃圾滲濾液廠處理裝置中的菌落進(jìn)行分子生物學(xué)分析,在氮轉(zhuǎn)化過程中主要是ANAMMOX菌、氨氧化古生菌(ammonia-oxidizing archaea,AOA)三類菌在發(fā)揮作用,存在SNAD反應(yīng)。
1.4 其他基于ANAMMOX的工藝
研究者們?yōu)榱烁纳仆砥诶鴿B濾液最終的出水水質(zhì),在ANAMMOX復(fù)合工藝這類生化處理之外,通常會在生化處理前加上混凝、吸附、過濾等物化預(yù)處理環(huán)節(jié),同時在生化處理后增加高級氧化、MBR、超濾、納濾這類深度處理環(huán)節(jié)。
Anfruns等人[18]將高級氧化處理單元作為深度處理環(huán)節(jié)來進(jìn)一步降低出水中的難降解有機物含量;Suneethi等人[19]將ANAMMOX復(fù)合工藝處理后的出水通過MBR裝置過濾,來進(jìn)一步除去廢水中的有機物;Liang等人[20]在ANAMMOX復(fù)合工藝單元后,增加了兩個土壤滲濾單元來繼續(xù)降低出水中的總氮和COD含量。德國某座垃圾滲濾液處理廠已應(yīng)用活性污泥+ANAMMOX+超濾聯(lián)合工藝超過12年,較之傳統(tǒng)活性污泥法,該聯(lián)合工藝可減少87.5%的能耗、91%的甲醇用量和96%的剩余污泥產(chǎn)生,總氮去除率達(dá)到94%[21]。
2.2 COD
2.3 亞硝態(tài)氮累積速率NLR
在處理對象為晚期垃圾滲濾液的ANAMMOX復(fù)合工藝中,ANAMMOX段的NLR大多在0.17 ~ 0.96 kg N/(m3d) 。在Li等人[29]的研究中,若要使工藝長期穩(wěn)定運行(總氮去除率達(dá)到85%),NLR需小于1 kg N/(m3d)。而Phan等人[30]利用IC反應(yīng)器培養(yǎng)ANAMMOX菌來處理晚期垃圾滲濾液,Candidatus Kueneniastuttgartiensis豐度達(dá)到37.45%,可在NLR高達(dá)10.0 ± 0.04 kg N/(m3d) 時穩(wěn)定運行。
2.4 鹽度
高鹽度,是晚期垃圾滲濾液的一項重要特性。鹽度過高,會導(dǎo)致菌體細(xì)胞膜失水,酶類活性也會受到抑制,因此鹽度也是影響ANAMMOX復(fù)合工藝處理效果的重要因素[31-32]。
Azari等人[21]在實際運行的垃圾滲濾液ANAMMOX復(fù)合工藝中首次發(fā)現(xiàn)了嗜鹽ANAMMOX菌種Ca. Scalindua,它的最適生長溫度為10 ~ 25 ℃,最適pH值是6 ~ 8,可以適應(yīng)1.5 ~ 4 mmol的高鹽度條件,該嗜鹽菌能更好地適應(yīng)晚期垃圾滲濾液,有利于減小ANAMMOX工藝在該領(lǐng)域的應(yīng)用限制。Scaglione等人[33]發(fā)現(xiàn)鹽度所導(dǎo)致的電導(dǎo)率差異,是真正影響ANAMMOX反應(yīng)的主要因素, ANAMMOX菌IC50閾值(50% inhibitory concentration)在文獻(xiàn)所用的實際垃圾消解液電導(dǎo)率為6.1 mS/cm時達(dá)到。
晚期垃圾滲濾液中不同污染物混合共存,磷酸鹽、重金屬離子、硫酸鹽、硫化物等對該復(fù)合工藝的處理效果的影響不同,但目前在這些方面的研究還不系統(tǒng),如脫氮性能最佳的ANAMMOX顆粒污泥Fe元素含量最高;1 mmol重金屬離子Hg2+會使ANAMMOX菌完全失活,但此類重金屬離子的文獻(xiàn)報告仍不多見;一些有機物如甲醇、乙醇、抗生素等均被發(fā)現(xiàn)會對ANAMMOX菌產(chǎn)生抑制,但各個研究得到的閾值相差較大,對抑制機理研究尚不完備[22,30]。
基于ANAMMOX的復(fù)合工藝中參與脫氮過程的主要菌種有:厭氧氨氧化菌(ANAMMOX bacteria)、氨氧化菌(AOB)、氨氧化古生菌(AOA)、亞硝酸鹽氧化菌(NOB)和反硝化菌(denitrifying bacteria,Den)(主要是異養(yǎng)反硝化菌HDen)[16,34]。其中,ANAMMOX菌、AOB、NOB、AOA均是好氧型的化能自養(yǎng)菌,Den多為異養(yǎng)、厭氧型細(xì)菌。
3.1 菌群脫氮反應(yīng)機理
圖1 菌群脫氮的反應(yīng)機理圖Fig.1 Reaction mechanism of denitrifying bacteria
(AOB: 氨氧化菌;AOA:氨氧化古生菌;NOB:亞硝酸鹽氧化菌;ANX:厭氧氨氧化菌;Den:反硝化菌)
(AOB:Ammonia Oxidizing Bacteria; AOA: Ammonia Oxidizing Archaea; NOB: Nitrite Oxidizing Bacteria; ANX: Anaerobic Ammonia Oxidizing Bacteria;Den:Denitrifying Bacteria)
3.2 菌群結(jié)構(gòu)研究
隨著垃圾滲濾液處理的形勢愈加嚴(yán)峻,基于ANAMMOX的復(fù)合工藝將得到更多的研究和應(yīng)用。為了探究工藝可行性,國內(nèi)外研究者采用不同的反應(yīng)裝置、探究了不同的反應(yīng)條件的影響、并嘗試分析各類垃圾滲濾液中的組分該工藝的影響,多年的研究已取得了一定進(jìn)展,但仍有很多難點需要解決,如(1)如何縮短該復(fù)合工藝的啟動時間;(2)晚期垃圾滲濾液中的微量重金屬離子對于ANAMMOX菌的作用機理; (3)ANAMMOX菌在長期運行條件下的性能演變及耐受性;(4)如何使ANAMMOX菌適應(yīng)來源不同的晚期垃圾滲濾液等。未來更多的深入研究必將推動這一新興工藝進(jìn)一步發(fā)展和成熟。
[1] 何洋洋. 以AO4微氧曝氣工藝為核心的垃圾滲濾液處理技術(shù)研究[D].杭州:浙江大學(xué), 2016.
[2] 張永森. 臭氧/活性炭深度處理垃圾滲濾液及微波紫外再生活性炭[D].哈爾濱:哈爾濱工業(yè)大學(xué), 2016.
[3] Akgul D, Aktan C K, Yapsakli K, et al. Treatment of landfill leachate using UASB-MBR-SHARON-Anammox configuration[J]. Biodegradation, 2013, 24(3): 399-412.
[4] Wu L, Zhang L, Shi X, et al. Analysis of the impact of reflux ratio on coupled partial nitrification-anammox for co-treatment of mature landfill leachate and domestic wastewater[J]. Bioresource Technology, 2015, 198: 207-214.
[5] Strous M, Kuenen J G, Jetten M S M. Key Physiology of Anaerobic Ammonium Oxidation [J]. Journal of Neurosurgery, 1999, 65(7): 3248-3250.
[6] Kuenen J G. Anammox bacteria: from discovery to application [J]. Nature Reviews Microbiology, 2008, 6(6): 320-326.
[7] Kartal B, Almeida N M D, Maalcke W J, et al. How to make a living from anaerobic ammonium oxidation [J]. FEMS Microbiology Reviews, 2013, 37(3): 428-461.
[8] Zhang F, Peng Y, Miao L, et al. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate [J]. Chemical Engineering Journal, 2017, 313: 619-628.
[9] Nhat P T, Biec H N, Mai N T T, et al. Application of a partial nitritation and anammox system for the old landfill leachate treatment [J]. International Biodeterioration amp; Biodegradation, 2014, 95: 144-150.
[10] Liu J, Zuo J e, Yang Y, et al. An autotrophic nitrogen removal process: Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate [J]. Journal of Environmental Sciences, 2010, 22(5): 777-783.
[11] Miao L, Wang S, Cao T, et al. Advanced nitrogen removal from landfill leachate via Anammox system based on Sequencing Biofilm Batch Reactor (SBBR): Effective protection of biofilm [J]. Bioresource Technology, 2016, 220: 8-16.
[12] Sri S S, Joseph K. Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process [J]. Waste Managementement, 2012, 32(12): 2385-2400.
[13] Shalini S S, Joseph K. Start-up of the SHARON and ANAMMOX process in landfill bioreactors using aerobic and anaerobic ammonium oxidising biomass [J]. Bioresource Technology, 2013, 149: 474-485.
[14] Wang C, Zhao Y, Xie B, et al. Nitrogen removal pathway of anaerobic ammonium oxidation in on-site aged refuse bioreactor [J]. Bioresource Technology, 2014, 159: 266-271.
[15] 彭 青. 陳垃圾反應(yīng)器處理滲濾液脫氮功能微生物研究[D].上海: 華東師范大學(xué), 2013.
[16] Yapsakli K, Aliyazicioglu C, Mertoglu B. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant [J]. Journal of Environmental Management, 2011, 92(3): 714-723.
[17] Wang C C, Lee P H, Kumar M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant [J]. Journal of Hazardous Materials, 2010, 175(1-3): 622-628.
[18] Anfruns A, Gabarró J, Gonzalezolmos R, et al. Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment [J]. Journal of Hazardous Materials, 2013, 258-259(1): 27-34.
[19] Suneethi S, Joseph K. Autotrophic ammonia removal from landfill leachate in anaerobic membrane bioreactor [J]. Environmental technology, 2013, 34(21-24): 3161-3167.
[20] Liang Z, Liu J. Landfill leachate treatment with a novel process: anaerobic ammonium oxidation (Anammox) combined with soil infiltration system [J]. Journal of Hazardous Materials, 2008, 151(1): 202-212.
[21] Azari M, Walter U, Rekers V, et al. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm [J]. Chemosphere, 2017, 174: 117-126.
[22] Jin R-C, Yang G-F, Yu J-J, et al. The inhibition of the Anammox process: A review [J]. Chemical Engineering Journal, 2012, 197: 67-79.
[23] Aktan C K, Yapsakli K, Mertoglu B. Inhibitory effects of free ammonia on Anammox bacteria [J]. Biodegradation, 2012, 23(5): 751.
[24] Lotti T, van der Star W R, Kleerebezem R, et al. The effect of nitrite inhibition on the anammox process [J]. Water Research, 2012, 46(8): 2559-2569.
[25] Ruscalleda M, Puig S, Mora X, et al. The effect of urban landfill leachate characteristics on the coexistence of anammox bacteria and heterotrophic denitrifiers [J]. Water Science amp; Technology 2010, 61(4): 1065-1071.
[26] Ibrahim M, Yusof N, Yusoff M Z M, et al. Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review [J]. Desalination amp; Water Treatment, 2015, 57(30): 1-21.
[27] Wang Z, Peng Y, Lei M, et al. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate [J]. Bioresource Technology, 2016, 214: 514-519.
[28] Zhu W, Zhang P, Dong H, et al. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process [J]. Journal of Bioscience and Bioengineering, 2017, 123(4): 497-504.
[29] Li H, Zhou S, Ma W, et al. Long-term performance and microbial ecology of a two-stage PN-ANAMMOX process treating mature landfill leachate [J]. Bioresource Technology, 2014, 159(5): 404.
[30] Phan T N, Van Truong T T, Ha N B, et al. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment [J]. Bioresource Technology, 2017, 234: 281-288.
[31] Jiang X, Hou L, Zheng Y, et al. Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2017, 97: 46-53.
[32] Yi Y, Yong H, HuiPing D. Effect of Salt on Anammox Process [J]. Procedia Environmental Sciences, 2011, 10: 2036-2041.
[33] Scaglione D, Lotti T, Ficara E, et al. Inhibition on anammox bacteria upon exposure to digestates from biogas plants treating the organic fraction of municipal solid waste and the role of conductivity [J]. Waste Management, 2017, 61: 213-219.
[34] Xie B, Lv Z, Hu C, et al. Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate [J]. Applied Microbiology and Biotechnology, 2013, 97(20): 9225-9234.
[35] Castro-Barros C M, Jia M, van Loosdrecht M C, et al. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment [J]. Bioresource Technology, 2017, 233: 363-372.
[36] Shu D, He Y, Yue H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process [J]. Bioresource Technology, 2015, 196: 621-633.
[37] Xu Z Y, Zeng G M, Yang Z H, et al. Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification [J]. Bioresource Technology, 2010, 101(1): 79-86.
[38] Mozumder M S I, Picioreanu C, van Loosdrecht M C M, et al. Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor [J]. Environmental technology, 2013, 35(8): 1027-1037.
[39] Du R, Peng Y, Cao S, et al. Advanced nitrogen removal from wastewater by combining anammox with partial denitrification [J]. Bioresource Technology, 2015, 179: 497-504.
[40] Kraft B, Tegetmeyer H E, Sharma R, et al. Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration [J]. Science, 2014, 345(6197): 676-679.
[41] Liang Z, Liu J X, Li J. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process [J]. Chemosphere, 2009, 74(10): 1315-1320.
[42] Nhat P T, Biec H N, Tuyet Mai N T, et al. Application of a partial nitritation and anammox system for the old landfill leachate treatment [J]. International Biodeterioration amp; Biodegradation, 2014, 95: 144-150.
(本文文獻(xiàn)格式:杜俊,許靜怡.基于ANAMMOX的復(fù)合工藝處理晚期垃圾滲濾液的研究進(jìn)展[J].山東化工,2017,46(20):42-45.)
ANAMMOX-basedCompositeProcessforMatureLandfillLeachateTreatment:AReview
DuJun*,XuJingyi
(College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)
Compared to conventional nitrification-denitrification,cation process, ANAMMOX(Anaerobic Ammonium Oxidation) process has attracted much attention in the field of mature landfill leachate treatment for its high nitrogen removal efficiency, lower operational costs and less sludge production. This paper presents an overview of the recent progress in ANAMMOX-based composite process treating mature landfill leachate, the main factors affecting the combined technology and nitrogen-converting microbial community structure. The challenges and future development are also proposed.
ANAMMOX; mature landfill leachate; nitrogen-converting microbial community structure
2017-08-16
國家重點研發(fā)計劃(2017YFC0403400)
杜 俊(1993—),安徽馬鞍山人,同濟大學(xué)環(huán)境科學(xué)與工程學(xué)院在讀碩士研究生,主要研究方向為水污染控制理論與技術(shù)。
X703
A
1008-021X(2017)20-0042-04