王銀,張富新,王畢妮,張哲源,高佳媛,馮翠嬌
(陜西師范大學(xué) 食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,陜西 西安,710119)
谷氨酰胺轉(zhuǎn)氨酶添加量對(duì)酸羊乳凝膠特性的影響
王銀,張富新*,王畢妮,張哲源,高佳媛,馮翠嬌
(陜西師范大學(xué) 食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,陜西 西安,710119)
采用不同添加量(1、2、3 u/g蛋白)谷氨酰胺轉(zhuǎn)氨酶(transglutaminase,TG)在40 ℃下處理羊乳2 h后制備酸羊乳,研究TG添加量對(duì)酸羊乳凝乳時(shí)間,凝乳時(shí)及后發(fā)酵24 h時(shí)的酸度、持水性、質(zhì)構(gòu)特性和微觀結(jié)構(gòu)的影響。結(jié)果表明,TG處理羊乳后制備的酸羊乳其凝乳時(shí)間隨著TG濃度的增大逐漸縮短,但TG濃度對(duì)酸羊乳凝乳時(shí)和后發(fā)酵24 h的酸度無(wú)明顯影響(pgt;0.05);TG處理可顯著提高酸羊乳的持水性(plt;0.05),尤其是TG濃度為2~3 u/g蛋白時(shí)效果更加明顯;質(zhì)構(gòu)分析表明,隨著TG濃度的增大,酸羊乳凝乳時(shí)和后發(fā)酵24 h的硬度和黏性顯著增加。TG處理酸羊乳凝乳時(shí)的內(nèi)聚性無(wú)明顯影響(pgt;0.05),但對(duì)后發(fā)酵24 h時(shí)的內(nèi)聚性影響顯著(plt;0.05)。然而TG處理對(duì)酸羊乳彈性影響不大(pgt;0.05);通過(guò)對(duì)酸羊乳的微觀結(jié)構(gòu)觀察發(fā)現(xiàn),用TG添加量為2~3 u/g蛋白處理羊乳制備的酸羊乳中蛋白質(zhì)形成更加致密的網(wǎng)絡(luò)結(jié)構(gòu),有利于酸乳凝膠的形成。
羊乳;酸乳;谷氨酰胺轉(zhuǎn)氨酶;凝膠特性
羊乳營(yíng)養(yǎng)價(jià)值很高,富含蛋白質(zhì)、脂肪、乳糖、礦物質(zhì)、維生素以及生物活性物質(zhì)[1],可用于生產(chǎn)乳粉、乳酪、酸乳等多種乳制品。用羊乳生產(chǎn)的酸乳,具有組織狀態(tài)光滑細(xì)膩,風(fēng)味獨(dú)特的優(yōu)點(diǎn),深受消費(fèi)者歡迎[2]。在酸乳發(fā)酵期間,乳蛋白通過(guò)靜電作用力、氫鍵、疏水鍵形成凝膠,使乳由液態(tài)轉(zhuǎn)變?yōu)槟z狀態(tài)[3],尤其是乳中的酪蛋白是形成乳凝膠的基礎(chǔ)。羊乳中蛋白質(zhì)組成與牛乳有較大的差別,羊乳中酪蛋白含量顯著低于牛乳,尤其是αs1-酪蛋白含量較低[4],導(dǎo)致羊乳在形成凝膠時(shí)凝乳時(shí)間較長(zhǎng),凝塊較軟,乳清易析出等缺陷。為了改善羊乳的凝膠特性,人們通常在羊乳中添加乳粉[5]、乳清粉[6]或超濾濃縮[7]等方法提高乳固形物濃度,以提高羊乳的凝乳特性。近年來(lái)隨著食品生物技術(shù)的發(fā)展,應(yīng)用谷氨酰胺轉(zhuǎn)氨酶(transglutaminase,TG)處理原料乳來(lái)提高酸乳的凝膠特性已成為研究熱點(diǎn)。TG是一種催化蛋白質(zhì)側(cè)鏈中谷氨酰胺殘基與賴氨酸之間發(fā)生交聯(lián)反應(yīng)形成共價(jià)鍵的蛋白酶,可改變蛋白質(zhì)水合能力、溶解度、持水性、黏度、彈性等凝膠性能[8-9],已在肉制品[10]、豆制品[11]、乳制品[12]等富含蛋白質(zhì)食品中廣泛應(yīng)用。研究發(fā)現(xiàn),乳中蛋白質(zhì)是TG良好的底物,可促使酪蛋白膠束內(nèi)發(fā)生交聯(lián),提高發(fā)酵乳的凝乳強(qiáng)度[13]。TG催化蛋白質(zhì)交聯(lián)反應(yīng)取決于酶添加量[14]、酶反應(yīng)時(shí)間[15]、pH[16]和蛋白質(zhì)濃度[17]等,其中TG添加量對(duì)乳的凝膠特性影響較大。本研究用不同添加量的TG處理羊乳后制備酸羊乳,研究其凝乳時(shí)和后發(fā)酵24 h時(shí)的凝膠特性,為提高酸羊乳品質(zhì)提供依據(jù)。
1.1材料與試劑
羊乳,西北農(nóng)林科技大學(xué)教學(xué)試驗(yàn)農(nóng)場(chǎng)的新鮮混合羊乳(乳蛋白含量為3%);酸奶發(fā)酵劑,丹尼斯克YO-MIX187(由嗜熱鏈球菌Streptococcusthermophilus和保加利亞乳桿菌種Lactobacillusbulgaricus組成);谷氨酰胺轉(zhuǎn)氨酶(TG-N,100 u/g),江蘇一鳴生物科技有限公司;戊二醛、乙酸異戊酯、乙醛、無(wú)水乙醇均為分析純。
1.2儀器與設(shè)備
S-3400N掃描電子顯微鏡,日本日立公司;TA.XT.Plus質(zhì)構(gòu)儀,英國(guó)stable micro stystem;Z 206A離心機(jī),德國(guó)Hermle公司;GSP-9080MBE隔水式恒溫培養(yǎng)箱,上海博訊實(shí)業(yè)有限公司醫(yī)療設(shè)備廠;PHSJ-4A型pH計(jì),上海儀電科學(xué)儀器股份有限公司。
1.3方法
1.3.1 TG處理羊乳
將新鮮羊乳在90 ℃下殺菌5 min后,迅速冷卻到40 ℃,然后按乳蛋白含量添加TG,使羊乳中TG濃度分別達(dá)到1、2、3 u/g蛋白,在40 ℃下處理2 h后,80 ℃滅酶5 min,冷卻到42 ℃,用于酸羊乳的制備。
1.3.2 酸羊乳的制備
在TG處理的羊乳中加入質(zhì)量分?jǐn)?shù)為0.02%的YO-MIX 187酸奶發(fā)酵劑,混合均勻后分裝于200 mL的玻璃瓶中,42 ℃下發(fā)酵至凝乳,然后在5 ℃下后發(fā)酵24 h。測(cè)定凝乳時(shí)和后發(fā)酵24 h時(shí)的凝膠特性,并以未經(jīng)TG處理的酸羊乳為對(duì)照。
1.3.3 酸度的測(cè)定
按照GB 5009.239—2016[31]方法測(cè)定酸羊乳的酸度,結(jié)果表示為°T。
1.3.4 質(zhì)構(gòu)特性的測(cè)定
采用TA.XTplus質(zhì)構(gòu)儀測(cè)定酸羊乳凝膠的質(zhì)構(gòu)特性。采用TPA操作模式:探頭用P/36R柱形探頭,直徑為35 mm,測(cè)量時(shí)探頭移動(dòng)的速度為1 mm/s,下降深度為15 mm,感應(yīng)力Auto-5 g。數(shù)據(jù)攫取速度為200 PPS。分析軟件為 Stable Micro Systems,2006,version 3.0。
1.3.5 持水性的測(cè)定
采用ERCILI[18]的方法。取10 g酸羊乳于50 mL離心管中,在3 500 g下離心10 min,稱取上清液的質(zhì)量(m),按公式(1)計(jì)算樣品的持水性:
(1)
1.3.6 微觀結(jié)構(gòu)的測(cè)定
1.3.7 數(shù)據(jù)處理
采用 SPSS Statistics 22.0 統(tǒng)計(jì)分析軟件的ANOVA方法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行差異顯著性檢驗(yàn)分析,以plt;0.05為差異顯著。
2.1TG添加量對(duì)酸羊乳凝乳時(shí)間及酸度的影響
不同TG添加量處理羊乳后制備酸羊乳,其凝乳時(shí)間及凝乳時(shí)和后發(fā)酵24 h時(shí)的酸度見(jiàn)表1。
表1 TG添加量對(duì)酸羊乳凝乳時(shí)間及酸度的影響
注:同列不同字母表示差異顯著plt;0.05。
由表1可見(jiàn),羊乳經(jīng)TG處理后制備的酸羊乳,與未經(jīng)處理的對(duì)照組相比,其凝乳時(shí)間明顯縮短(plt;0.05),且隨著TG處理量的提高,凝乳時(shí)間也逐漸縮短。然而酸羊乳在凝乳時(shí)及后發(fā)酵24 h時(shí)的酸度變化不大(pgt;0.05),并不受TG處理量的影響。酸乳的凝乳時(shí)間與乳中蛋白質(zhì)組成密切相關(guān),與牛乳相比,羊乳中酪蛋白含量較低,尤其是羊乳中αS1-酪蛋白含量更低[4],導(dǎo)致羊乳凝乳較軟,凝乳時(shí)間較長(zhǎng),但羊乳經(jīng)TG處理后,由于TG可促使羊乳中酪蛋白發(fā)生交聯(lián)反應(yīng),使乳蛋白更易形成網(wǎng)絡(luò)結(jié)構(gòu),加快凝乳過(guò)程,使凝乳時(shí)間縮短。TG處理能夠縮短乳的凝乳時(shí)間已有報(bào)道,NAGWA[20]用濃度為1.3 u/g蛋白的TG處理牛乳,發(fā)現(xiàn)凝乳時(shí)間縮短了10%,且隨著TG添加量的提高,凝乳時(shí)間也隨之縮短;MARIA[21]也報(bào)道,用TG在40℃處理牛乳3 h,當(dāng)TG添加量為2.2 u/g蛋白時(shí)的凝乳時(shí)間縮短了9%,且隨TG添加量增大,凝乳時(shí)間縮短。酸乳的酸度主要是乳發(fā)酵過(guò)程中乳酸菌分解乳糖后產(chǎn)生乳酸形成的,而TG主要作用于乳中的酪蛋白[1],對(duì)乳的產(chǎn)酸能力影響不大。
2.2TG添加量對(duì)酸羊乳的凝膠持水性的影響
不同TG添加量處理羊乳后制備的酸羊乳在凝乳時(shí)和后發(fā)酵24 h時(shí)的凝膠持水性見(jiàn)圖1。
圖1 TG添加量對(duì)酸羊乳凝膠持水性的影響Fig.1 Effect of TG concentration on the water holding capacity of goat yougurt注:大小寫(xiě)不同字母代表差異顯著plt;0.05。
由圖1可以看出,羊乳經(jīng)TG處理后制備的酸羊乳不論是凝乳時(shí)還是后發(fā)酵24 h時(shí),其持水性隨TG添加量的增加有逐漸提高的趨勢(shì)。與對(duì)照組(未經(jīng)TG處理)相比,酸羊乳的持水性顯著提高(plt;0.05),當(dāng)TG添加量達(dá)到2 u/g蛋白時(shí),凝乳時(shí)酸乳的持水性比對(duì)照組提高了35%,后發(fā)酵24 h時(shí)酸羊乳的持水性比對(duì)照組提高了30%。然而,TG添加量為2 u/g蛋白和3 u/g蛋白時(shí),凝乳時(shí)和后發(fā)酵24 h時(shí)的持水性無(wú)顯著差異(pgt;0.05)。酸乳的持水性表示酸乳中液相與凝膠的分離程度[18],持水性越低,酸乳凝膠中水分易析出。通過(guò)TG處理提高酸乳持水性報(bào)道較多,F(xiàn)AERGEMAND[22]用TG處理牛乳,隨著TG添加量的提高,酸乳凝膠的持水性顯著增大;ARDELEAN[15]等人用TG在40 ℃處理羊奶2 h,當(dāng)TG添加量達(dá)到1.8 u/g蛋白時(shí),酸羊乳持水性顯著提高;FARNSWORTH[23]等人也報(bào)道,與對(duì)照組(未經(jīng)TG處理)相比,用TG在40℃下處理牛乳2 h時(shí),TG添加量為2 u/g蛋白時(shí)的持水率提高了40%。這說(shuō)明用TG處理牛羊乳時(shí),其含量在2 u/g蛋白時(shí),可有效提高酸乳的持水性,防止乳清析出。TG處理能夠提高酸乳持水性可能與TG交聯(lián)作用引入了穩(wěn)定的共價(jià)鍵導(dǎo)致了酸乳凝膠孔徑的縮小有關(guān)[24]。
2.3TG濃度對(duì)酸羊乳質(zhì)構(gòu)特性的影響
酸乳的質(zhì)構(gòu)特性直接影響酸乳的品質(zhì)和人們對(duì)酸乳的接受程度。通過(guò)TPA(texture profile analysis)模式對(duì)TG處理制備酸羊乳的硬度、內(nèi)聚性、彈性及黏性的測(cè)定結(jié)果如圖2所示。
圖2 TG對(duì)酸羊乳凝乳時(shí)及后發(fā)酵24 h質(zhì)構(gòu)特性的影響Fig.2 Effect of TG concentration on the texture properties of goat yogurt
由圖2可知,TG處理對(duì)酸羊乳質(zhì)構(gòu)特性有較大的影響,與未經(jīng)TG處理的對(duì)照組相比,通過(guò)TG處理后制備的酸羊乳在凝乳時(shí)和后發(fā)酵24 h的硬度和黏性有較大的提高,且隨著TG添加量提高硬度和黏性增加顯著(plt;0.05);酸乳的內(nèi)聚性在凝乳時(shí)變化不大(pgt;0.05),在后發(fā)酵24 h時(shí),TG添加量組顯著高于對(duì)照組(pgt;0.05),但不同TG濃度處理間無(wú)明顯差異(pgt;0.05);然而TG處理對(duì)酸乳的彈性無(wú)明顯影響,不同TG添加量處理組與未經(jīng)TG處理的對(duì)照組間無(wú)明顯差異(pgt;0.05)。大量研究表明,TG處理可顯著提高酸凝乳的硬度,ARDELEAN[15]用1.8 u/g蛋白的TG對(duì)羊乳在40 ℃下處理2 h時(shí),凝乳時(shí)酸羊乳的硬度提高了33%;DOMAGAA[25]也報(bào)道,用2 u/g蛋白TG處理羊乳,在40 ℃下保溫2 h,羊乳的酸凝膠的硬度提高了43%。本研究中,當(dāng)TG處理使用2 u/g蛋白時(shí),凝乳時(shí)和后發(fā)酵24 h時(shí),酸乳的硬度比未經(jīng)TG處理的對(duì)照組分別提高54%和93%,表明TG處理對(duì)提高酸凝乳效果明顯。酸乳的黏性反映其對(duì)物體的附著力,通常黏性越大,酸乳的稠度越高,雖然TG處理對(duì)酸羊乳黏性影響未見(jiàn)報(bào)道,但TG處理提高酸牦牛乳和酸牛乳的黏度已有報(bào)道,ZHANG[26]研究了不同TG濃度處理顯著提高牦牛乳及牛乳酸乳凝膠的黏度,在TG添加量為1 u/g蛋白時(shí),酸牦牛乳和酸牛乳黏度分別提高了226%和79%。酸乳的內(nèi)聚性反映酸乳的口感的爽滑性和細(xì)膩度[27],TG處理對(duì)酸羊乳凝乳時(shí)內(nèi)聚性影響不大,但對(duì)后發(fā)酵24 h時(shí)有顯著性影響,尤其是在TG添加量為2~3 u/g蛋白時(shí),提高酸羊乳的感官特性??傊?,TG濃度為2~3 u/g蛋白處理羊乳時(shí),酸羊乳的硬度、內(nèi)聚性及黏性有所改善,有利于提高酸羊乳的品質(zhì)。
2.4TG對(duì)酸羊乳微觀結(jié)構(gòu)的影響
不同TG添加量處理羊乳制備的酸羊乳及對(duì)照組凝乳時(shí)的掃描電子顯微圖見(jiàn)圖3。
注:a為對(duì)照組(未經(jīng)TG處理),b、c、d分別為T(mén)G濃度為1、2、3 u/g蛋白酸羊乳的掃描電子顯微鏡圖圖3 酸羊乳掃描電子顯微圖(×4 000)Fig.3 Scanning electron micrographs of goat yogurt
由圖3可見(jiàn),未經(jīng)TG處理的對(duì)照組酸羊奶(a)中蛋白質(zhì)具有較分散的凝膠結(jié)構(gòu),蛋白質(zhì)之間的連接具有較大的孔徑。經(jīng)過(guò)TG處理的酸羊乳(b、c、d)蛋白質(zhì)凝膠結(jié)構(gòu)較為致密,且隨著TG處理添加量的提高,蛋白質(zhì)交聯(lián)越致密。在酸乳發(fā)酵期間,由于乳酸的產(chǎn)生,使乳中的pH下降,乳中的蛋白質(zhì)聚集成網(wǎng)絡(luò)結(jié)構(gòu)使乳凝固,TG可使乳中蛋白質(zhì)發(fā)生交聯(lián)形成較大的蛋白質(zhì)聚集體,加速了蛋白質(zhì)網(wǎng)絡(luò)的交聯(lián),促進(jìn)乳的凝固[28-29]。馬薇[30]報(bào)道,用TG處理牛乳時(shí),隨著TG添加量的增加,酸牛乳凝膠的微觀結(jié)構(gòu)更加密實(shí);DOMAGAA[14]也報(bào)道,TG處理可使乳中酪蛋白膠束變小,從而形成較為緊實(shí)的空間,有利于封鎖水分,防止乳清析出。本研究中TG處理的酸羊乳在TG濃度為2~3 u/g蛋白時(shí),蛋白質(zhì)連接具有較高的致密度及較小的孔隙,也證實(shí)了TG處理羊乳可有效提高酸羊乳的持水性和硬度,提高酸乳的凝乳特性。
通過(guò)不同添加量TG處理羊乳后制備酸羊乳,研究其在凝乳時(shí)和后發(fā)酵24 h的凝乳特性。結(jié)果表明,酸羊乳的凝乳時(shí)間隨TG添加量的增大逐漸縮短,但TG添加量對(duì)酸乳凝乳時(shí)和后發(fā)酵24 h時(shí)酸度無(wú)明顯影響。質(zhì)構(gòu)分析表明,TG添加量對(duì)酸羊乳在凝乳時(shí)和后發(fā)酵24 h的硬度和黏性有顯著影響,且隨TG添加量增加酸乳的硬度和黏性逐漸增大,這有利于酸乳凝膠的形成。通過(guò)TG處理羊乳后制備酸羊乳的微觀結(jié)構(gòu)觀察發(fā)現(xiàn),TG添加量在2~3 u/g蛋白時(shí),酸乳中的蛋白質(zhì)形成的網(wǎng)絡(luò)結(jié)構(gòu)更加致密,有利于酸凝膠的形成。
[1] DELGADO K,DA SILVA FRASAO B,DA COSTA M,et al.Different alternatives to improve rheological and textural characteristics of fermented goat products—A review[J].Rheol:Open Access,2017,1(106):2.
[2] SILVA F A,DE OLIVEIRA M E G,DE FIGUEIRDO R M F,et al.The effect of Isabel grape addition on the physicochemical,microbiological and sensory characteristics of probiotic goat yogurt[J].Food amp; Function,2017,8(6):2 121-2 132.
[3] 王鵬杰,甘伯中,楊敏,等.酸凝乳凝膠形成機(jī)理的研究進(jìn)展[J].食品工業(yè)科技,2012,33(13):420-423.
[4] 劉欣欣,李發(fā)弟,樂(lè)祥鵬,等.羊奶成分和奶中主要蛋白的研究進(jìn)展[J].中國(guó)畜牧雜志,2016,52(9):87-91.
[5] COSTA R G,FILHO E M B,SOUSA S D,et al.Physicochemical and sensory characteristics of yogurts made from goat and cow milk[J].Animal Science Journal,2016,87(5):703.
[6] CHENG J,XIE S,YIN Y,et al.Physiochemical,texture properties,and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents[J].Journal of the Science of Food and Agriculture,2017,97(9).DOI:10.1002/JSFA.8110.
[7] MOINEAU-JEAN A,GUéVREMONT E,CHAMPAGNE C P,et al.Fate ofEscherichiacoliandKluyveromycesmarxianuscontaminants during storage of Greek-style yogurt produced by centrifugation or ultrafiltration[J].International Dairy Journal,2017,72:36-43.
[8] JAROS D,PARTSCHEFELD C,HENLE T,et al.Transglutaminase in dairy products:chemistry,physics, applications[J].Journal of Texture Studies,2010,37(2):113-155.
[9] MOTOKI M,NIO N,TAKINAMI K.Functional properties of food proteins polymerized by transglutaminase[J].Agricultural amp; Biological Chemistry,1984,48(5):561-566.
[10] 聶曉開(kāi),鄧紹林,周光宏,等.復(fù)合磷酸鹽、谷氨酰胺轉(zhuǎn)氨酶、大豆分離蛋白對(duì)新型鴨肉火腿保水特性和感官品質(zhì)的影響[J].食品科學(xué),2016,37(1):50-55.
[11] 汪亞強(qiáng),羅水忠,鐘昔陽(yáng),等.谷氨酰胺轉(zhuǎn)氨酶對(duì)大豆與小麥混合蛋白凝膠性質(zhì)的影響[J].食品科學(xué),2016,37(21):48-52.
[12] ABOU-SOLIMAN N H,SAKR S S,AWAD S.Physico-chemical,microstructural and rheological properties of camel-milk yogurt as enhanced by microbial transglutaminase[J].Journal of Food Science and Technology,2017:54(6):1 616.
[13] ZHANG L,ZHANG L,YI H,et al.Enzymatic characterization of transglutaminase fromStreptomycesmobaraensisDSM 40587 in high salt and effect of enzymatic cross-linking of yak milk proteins on functional properties of stirred yogurt[J].Journal of Dairy Science,2012,95(7):3 559-3 568.
[14] DOMAGAA J,WSZOEK M,TAMIME A Y,et al.The effect of transglutaminase concentration on the texture, syneresis and microstructure of set-type goat's milk yogurt during the storage period[J].Small Ruminant Research,2013,112(1-3):154-161.
[15] ARDELEAN A I,OTTO C,JAROS D,et al.Transglutaminase treatment to improve physical properties of acid gels from enriched goat milk. [J].Small Ruminant Research,2012,106(1):47-53.
[16] DOMAGAA J,SADY M,GREGA T,et al.Changes in texture of yogurt from goats milk modified by transglutaminase depending on pH of the milk[J]. Biotechnol Anim Husb,2007,23:171-178.
[17] IBRAHEM S A,ZUBEIR I E M E.Processing, composition and sensory characteristic of yogurt made from camel milk and camel-sheep milk mixtures[J].Small Ruminant Research,2016,136:109-112.
[18] ERCILI-CURA D,LILLE M,LEGLAND D,et al.Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase[J].Food Hydrocolloids,2013,30(1):419-427.
[19] DOMAGAA J,WSZOEK M,TAMIME A,et al.The effect of transglutaminase concentration on the texture, syneresis and microstructure of set-type goat's milk yogurt during the storage period[J].Small Ruminant Research,2013,112(1):154-161.
[20] ABOU-SOLIMAN N H,SAKR S S,AWAD S.Physico-chemical,microstructural and rheological properties of camel-milk yogurt as enhanced by microbial transglutaminase[J].Journal of Food Science and Technology,2017,6(54):1 616-1 627.
[21] TSEVDOU M S,ELEFTHERIOU E G,TAOUKIS P S.Transglutaminase treatment of thermally and high pressure processed milk:Effects on the properties and storage stability of set yogurt[J].Innovative Food Science amp; Emerging Technologies,2013,17:144-152.
[22] F?RGEMAND M,S?RENSEN M V,J?RGENSEN U,et al.Transglutaminase: Effect on instrumental and sensory texture of set style yogurt[J].Milchwissenschaft-milk Science International,1999,54(10):563-566.
[23] FARNSWORTH J P,LI J,HENDRICKS G M,et al.Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat yogurt[J].Small Ruminant Research,2006,65(1):113-121.
[24] LORENZEN P C.Effects of varying time temperature-conditions of pre-heating and enzymatic cross-linking on techno-functional properties of reconstituted dairy ingredients[J].Food Research International,2007,40(6):700-708.
[25] DOMAGAA J,SADY M,GREGA T,et al.Changes in texture of yogurt from goat’s milk modified by transglu-taminase depending on pH of the milk[J].Biotechnology in Animal Husbandry,2007,23(5-6-2):171-178.
[26] ZHANG L,YI H,DU M,et al.Enzymatic characterization of transglutaminase fromStreptomycesmobaraensisDSM 40587 in high salt and effect of enzymatic cross-linking of yak milk proteins on functional properties of stirred yogurt[J].Journal of Dairy Science,2012,95(7):3 559-3 568.
[27] SHI J,LI D,ZHAO X H.Quality attributes of the set-style skimmed yogurt containing enzymatic cross-linked or thermal polymerized whey protein isolate[J].CyTA-Journal of Food,2017,15(1):1-7.
[28] SCHORSCH C,CARRIE H, NORTON I T.Cross-linking casein micelles by a microbial transglutaminase:influence of cross-links in acid-induced gelation[J].International Dairy Journal,2000,10(8):529-539.
[29] FARNSWORTH J,LI J,HENDRICKS G,et al.Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat yogurt[J].Small Ruminant Research,2006,65(1):113-121.
[30] 馬微,楊會(huì)琴,王海波,等.谷氨酰胺轉(zhuǎn)胺酶作用的酸奶超微結(jié)構(gòu)電鏡觀察[J].食品科學(xué),2006,27(2):104-107.
[31] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì) GB 5009.239—2016 食品酸度的測(cè)定 食品安全國(guó)家標(biāo)準(zhǔn)[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2016.
Effectoftransglutaminaseconcentrationonthegelpropertiesofgoatyogurt
WANG Yin, ZHANG Fu-xin*, WANG Bi-ni, ZHANG Zhe-yuan, GAO Jia-yuan, FENG Cui-jiao
(College of Food Engineering and Nutritional Science,Shaanxi Normal University,Xian 710119,China)
In this research, yogurt was fermented using the goat milk treated with different concentrations of transglutaminase (TG; 1, 2, 3 u/g protein) at 40 ℃ for 2 h to investigate the effects of TG concentration on yogurt coagulation time, and the acidity, water holding capacity, texture characteristics and microstructure at the end of fermentation and 24 hours after fermentation. The results showed that the coagulation time of the goat milk treated by TG gradually decreased with the increase of TG concentration, but the acidity in curd and fermentation of 24 h had no significant change (pgt;0.05) when added different concentrations of TG. The water holding capacity of goat yogurt could be improved significantly(plt;0.05) with TG treatment, especially when the concentration of TG was 2 to 3 u/g protein. The texture analysis showed that hardness and viscosity at the end of fermentation and post-fermentation of 24 h of goat yogurt increased significantly with the increase of TG concentration(pgt;0.05). TG processing had no significant effect on cohesiveness of goat milk at the end of fermentation (pgt;0.05), while it had significant influence on cohesiveness after fermentation of 24 h (plt;0.05). However, TG treatment had little effect on goat yogurt elasticity (pgt;0.05). By observing the microstructure of acid goat milk, it was found that the protein in goat's milk treated with TG concentration of 2-3 u/g protein was easier to form denser network structure, which facilitated the formation of goat yogurt gels. Overall, the gel properties of goat milk could be improved with the TG treatment in concentration of 2-3 u/g protein.
goat milk; yogurt; transglutaminase; gel properties
10.13995/j.cnki.11-1802/ts.015149
碩士(張富新教授為通訊作者,E-mail:fuxinzh@snnu.edu.cn)。
陜西省科技成果轉(zhuǎn)化專項(xiàng)資金(2016KTCG01-12);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(GK201603097,GK201703063);陜西省科技計(jì)劃項(xiàng)目
2017-07-03,改回日期:2017-08-02