黃澤,田福平,劉玉,張靜鴿,,苗海濤,,武高林,*
(1.西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,陜西 楊凌 712100;2.中國農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所,農(nóng)業(yè)部蘭州黃土高原生態(tài)環(huán)境重點(diǎn)野外科學(xué)觀測試驗(yàn)站,甘肅 蘭州 730050;3.西北農(nóng)林科技大學(xué)林學(xué)院,陜西 楊凌 712100)
黃土高原不同草地類型對(duì)水穩(wěn)性團(tuán)聚體粒徑分布及穩(wěn)定性的影響
黃澤1,2,3,田福平2,劉玉1,張靜鴿1,2,苗海濤1,2,武高林1,2*
(1.西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,陜西 楊凌 712100;2.中國農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所,農(nóng)業(yè)部蘭州黃土高原生態(tài)環(huán)境重點(diǎn)野外科學(xué)觀測試驗(yàn)站,甘肅 蘭州 730050;3.西北農(nóng)林科技大學(xué)林學(xué)院,陜西 楊凌 712100)
本研究在甘肅蘭州選擇了4種不同類型的人工草地與天然草地為研究對(duì)象,分別為苜蓿草地、冰草草地、檸條灌木草地及針茅草地,其中針茅草地為天然草地。分析了4種草地類型0~40 cm土層的土壤水穩(wěn)性團(tuán)聚體粒徑分布特征、平均重量直徑(mean weight diameter, MWD)以及它們之間的差異性和相關(guān)性。結(jié)果表明,gt;2 mm和lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體為優(yōu)勢粒徑;在土壤表層0~20 cm,針茅草地gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體顯著高于其他草地類型(Plt;0.05),而在20~40 cm土層,苜蓿草地最高,說明在表層針茅草地對(duì)土壤結(jié)構(gòu)的改良最優(yōu),隨土層加深苜蓿草地對(duì)土壤結(jié)構(gòu)的改良效果突出;苜蓿草地MWD值由表層0~10 cm的1.04 mm降低到30~40 cm的0.72 mm,下降了31%,而其他草地類型下降了50%~80%,說明苜蓿草地對(duì)不同層次土壤結(jié)構(gòu)改良效果的差異性最小。MWD值與gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量和有機(jī)質(zhì)呈極顯著的正相關(guān)關(guān)系,與土壤容重呈極顯著的負(fù)相關(guān)關(guān)系,表明水穩(wěn)性大團(tuán)聚體和有機(jī)質(zhì)含量的增加可有效促進(jìn)土壤結(jié)構(gòu)的改良,加強(qiáng)土壤結(jié)構(gòu)的穩(wěn)定性,提高土壤的抗侵蝕能力。
草地類型;土壤結(jié)構(gòu);平均重量直徑;有機(jī)質(zhì)
黃土高原生態(tài)環(huán)境脆弱,植被退化嚴(yán)重,土壤侵蝕劇烈,1950年實(shí)施退耕還林還草工程以來,區(qū)域生態(tài)環(huán)境得以恢復(fù),土壤侵蝕得到控制[1]。土壤侵蝕與土壤結(jié)構(gòu)的改變有著密切聯(lián)系,土壤團(tuán)聚體是土壤結(jié)構(gòu)的基本單位,其組成和穩(wěn)定性是土壤結(jié)構(gòu)變化的重要指示因子,對(duì)水土流失和入滲能力有重要影響[2-3]。各粒徑水穩(wěn)性團(tuán)聚體的比例可以反映土壤團(tuán)聚體的質(zhì)量[4],因此土壤水穩(wěn)性團(tuán)聚體的數(shù)量和特征可以反映土壤結(jié)構(gòu)的穩(wěn)定性和抗侵蝕能力[5-6]。gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體可以作為評(píng)價(jià)土壤結(jié)構(gòu)的指標(biāo),其含量越高,說明土壤結(jié)構(gòu)越穩(wěn)定,土壤抗侵蝕能力越強(qiáng)[7-8]。植被恢復(fù)有利于促進(jìn)土壤大團(tuán)聚體的形成[5]。不同的植物群落對(duì)團(tuán)聚體穩(wěn)定性影響不同[9]。黃土高原受水分條件限制,植被恢復(fù)方式多以種草為主,草本植物根系能固持土壤,改良土壤結(jié)構(gòu),促進(jìn)水穩(wěn)性團(tuán)粒的形成,降低土壤侵蝕[10]。
土壤團(tuán)聚體的大小和穩(wěn)定性,是反應(yīng)土壤物理性質(zhì)的重要指標(biāo),因此可作為監(jiān)測和評(píng)估草地恢復(fù)或退化的指示因子,很少有人研究自然植被恢復(fù)和人工植被恢復(fù)土壤團(tuán)聚體粒徑分布和穩(wěn)定性的差異,因此本研究選擇了4種不同植被類型的人工草地與天然草地,研究其水穩(wěn)性團(tuán)聚體粒徑分布以及平均重量直徑(mean weight diameter,MWD)之間的差異和相關(guān)性。通過量化分析水穩(wěn)性團(tuán)聚體在不同草地類型之間的差異,評(píng)價(jià)不同草地類型恢復(fù)方式下土壤結(jié)構(gòu)的穩(wěn)定性,進(jìn)而選擇合適的植被類型,有助于黃土高原干旱區(qū)草地的恢復(fù)與重建。
1.1研究區(qū)概況
研究區(qū)設(shè)在農(nóng)業(yè)部蘭州黃土高原生態(tài)環(huán)境重點(diǎn)野外科學(xué)觀測試驗(yàn)站,地處甘肅省蘭州市七里河區(qū)彭家坪鄉(xiāng)龔家灣村大洼山(103°45′ E, 36°01′ N),屬黃土高原半干旱丘陵溝壑區(qū),主要土壤類型為灰鈣土。海拔為1698~1823 m,年均氣溫9.3 ℃,多年平均降水量為324.5 mm,集中發(fā)生在7-9月,多年平均蒸發(fā)量為1450 mm。
1.2試驗(yàn)設(shè)計(jì)與方法
試驗(yàn)選取了天然草地和3種典型的人工草地為研究對(duì)象,其中天然草地的優(yōu)勢物種為針茅(Stipacapillata)。人工草地分別為2002年開始種植的苜蓿(Medicagosativa)、冰草(Agropyroncristatum)草地,以及檸條(Caraganakorshinskii)灌木草地。各試驗(yàn)地鄰近,地勢平坦,土壤水分的補(bǔ)給只有天然降水。
于2015年6月采集土壤樣品,采樣深度為0~40 cm,每10 cm取一層土樣,每個(gè)樣地3次重復(fù)。采樣前去除地表的植物及枯落物。采集原狀土裝在硬質(zhì)飯盒帶回實(shí)驗(yàn)室,避免碰撞擠壓。將風(fēng)干后的土樣沿土壤的自然結(jié)構(gòu)掰成小塊,大小約為1 cm,挑出石塊及根系。另外取的土樣風(fēng)干后,過0.25 mm的土篩,測定土壤有機(jī)質(zhì)。
1.3樣品測定
土壤水穩(wěn)性團(tuán)聚體使用DIK-2001土壤團(tuán)粒分析器測定。根據(jù)土壤水穩(wěn)性團(tuán)聚體粒徑的分布計(jì)算平均重量直徑(MWD)[8]。土壤容重采用環(huán)刀法測定[11],土壤有機(jī)質(zhì)采用重鉻酸鉀氧化外加熱法[12]測定。
1.4數(shù)據(jù)分析
采用Excel 2010和SPSS 18.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)與分析,Sigmaplot 12.5軟件進(jìn)行繪圖。
2.1土壤水穩(wěn)性團(tuán)聚體粒徑分布
結(jié)果表明,在0~40 cm土層,gt;2 mm和lt;0.25 mm兩個(gè)粒級(jí)水穩(wěn)性團(tuán)聚體含量最多;隨土壤深度增加,gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體含量逐漸減少,而lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量逐漸增加。在0~20 cm土層,針茅草地gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體含量顯著高于其他三類草地(Plt;0.05);各草地類型間2.0~1.0、1.0~0.5、0.5~0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量無顯著性差異(Pgt;0.05)。在20~30 cm土層,苜蓿草地gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體含量顯著高于冰草草地和檸條灌木草地(Plt;0.05);在20~40 cm土層,苜蓿與針茅草地2.0~1.0、1.0~0.5、0.5~0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量高于冰草草地與檸條灌木草地。在30~40 cm土層,苜蓿草地gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體含量顯著高于其他草地類型(Plt;0.05),檸條灌木草地lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量最高(圖1)。
圖1 不同草地類型0~40 cm土壤水穩(wěn)性團(tuán)聚體粒徑分布Fig.1 Composition of water-stable aggregate of 0-40 cm soil depth under different grassland types 同一粒徑不同小寫字母表示差異顯著(Plt;0.05),下同。Different lowercase letters within the same partical size show significant difference (Plt;0.05). The same below.
通過分析各草地類型間gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量可知,在0~10 cm土層,針茅草地gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量是最高的[(80.84±13.40)%],顯著高于其他草地類型(Plt;0.05),其次是冰草草地[(62.25±5.60)%]gt;苜蓿草地[(61.46±2.43)%]gt;檸條灌木草地[(51.55±11.34)%]。在10~20 cm土層,針茅草地gt;檸條灌木草地gt;苜蓿草地gt;冰草草地;在20~30 cm和30~40 cm土層,苜蓿草地gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量顯著高于其他草地(Pgt;0.05),針茅草地次之,而檸條灌木草地含量最少(圖2)。
圖2 不同草地類型0~40 cm土層gt;0.25 mm粒徑水穩(wěn)性團(tuán)聚體含量Fig.2 Water-stable aggregate content of gt;0.25 mm particle size of 0-40 cm soil depth under different grassland types
2.2土壤水穩(wěn)性團(tuán)聚體平均重量直徑分布特征
表層0~10 cm各草地的MWD值是最大的,隨土壤深度增加,MWD值逐漸降低,苜蓿草地MWD值下降了31%,冰草、針茅、檸條草地分別下降了58%,77%和65%。在0~10 cm土層,針茅草地的MWD值比苜蓿、冰草草地及檸條灌木草地分別高40%,27%和58%。在20~30 cm土層,苜蓿草地的MWD值最高,比冰草草地和檸條灌木草地高60%,比針茅草地高45%(圖3a)。MWD與gt;0.25 mm土壤水穩(wěn)性團(tuán)聚體含量呈極顯著正相關(guān)關(guān)系(R2=0.9674),MWD值越大,gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量越高,土壤大粒徑的水穩(wěn)性團(tuán)聚體含量越多(圖3b)。
圖3 不同草地類型0~40 cm土壤平均重量直徑變化(a)及與gt;0.25 mm土壤水穩(wěn)性團(tuán)聚體含量關(guān)系(b)Fig.3 Mean weight diameter variation (a) and the relation (b) with gt;0.25 mm particle size of water-stable aggregate of 0-40 cm soil depth under different grassland types
項(xiàng)目ItemMWDgt;2.0mm2.0~1.0mm1.0~0.5mm0.5~0.25mmlt;0.25mm容重Bulkdensitygt;2.0mm0.997**2.0~1.0mm0.452**0.389**1.0~0.5mm0.2250.1670.675**0.5~0.25mm0.1630.1080.664**0.679**lt;0.25mm-0.984**-0.969**-0.581**-0.377**-0.322*容重Bulkdensity-0.386**-0.380**-0.228-0.138-0.1470.393**有機(jī)質(zhì)Soilorganicmatter0.587**0.567**0.497**0.344*0.294*-0.623**-0.186
注:** 表示在0.01水平上顯著相關(guān) ;* 表示在0.05水平上顯著相關(guān)。
Notes: ** indicate statistical significant correlation atPlt;0.01; * indicate statistical significant correlation atPlt;0.05.
2.3相關(guān)性分析
MWD與gt;2.0 mm和2.0~1.0 mm粒徑的水穩(wěn)性團(tuán)聚體含量呈極顯著正相關(guān)關(guān)系,與lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體呈極顯著的負(fù)相關(guān)關(guān)系(表1)。土壤容重與MWD及gt;2.0 mm粒徑的水穩(wěn)性團(tuán)聚體呈極顯著負(fù)相關(guān)關(guān)系。土壤有機(jī)質(zhì)與MWD及gt;2.0 mm和2.0~1.0 mm粒徑的水穩(wěn)性團(tuán)聚體含量呈極顯著的正相關(guān)關(guān)系(Plt;0.01)。
土壤團(tuán)聚體與土壤的理化性質(zhì)直接相關(guān),其含量與粒徑分布與土壤抗蝕性密切相關(guān),水穩(wěn)性團(tuán)聚體能準(zhǔn)確地反映不同草地類型對(duì)土壤結(jié)構(gòu)的影響[8]。水穩(wěn)性團(tuán)聚體含量及粒徑分布直接影響土壤抗侵蝕能力[13]。隨土壤深度增加,gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體逐漸減少,而lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量逐漸增加。有研究表明,表層大團(tuán)聚體含量較高,越下層大團(tuán)聚體含量越少,微團(tuán)聚體含量增加[14],說明上層土壤的團(tuán)聚體穩(wěn)定性要高于下層土壤。gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量越高,說明土壤結(jié)構(gòu)越穩(wěn)定[7]。在0~10 cm土層, gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量表現(xiàn)為針茅草地gt;冰草草地gt;苜蓿草地gt;檸條灌木草地,說明天然草地相對(duì)于人工草地能更有效提高表層土壤團(tuán)聚體穩(wěn)定性;在20~40 cm土層,苜蓿草地的水穩(wěn)性團(tuán)聚體含量最高,其次是針茅草地,而檸條草地含量最低,說明苜蓿草地對(duì)深層土壤結(jié)構(gòu)的改良效果優(yōu)于其他草地類型。針茅草地和苜蓿草地對(duì)土壤結(jié)構(gòu)改善的效果相對(duì)明顯。MWD值越大,團(tuán)聚體的平均粒徑團(tuán)聚度越高,穩(wěn)定性越強(qiáng),土壤結(jié)構(gòu)性越好[8]。在0~20 cm土層針茅草地土壤結(jié)構(gòu)性最優(yōu),而在20~40 cm土層,苜蓿草地的土壤結(jié)構(gòu)性最優(yōu)。MWD與gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量呈極顯著的正相關(guān)關(guān)系,說明gt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體,尤其是較大粒徑的水穩(wěn)性團(tuán)聚體含量越多,MWD值越大,土壤團(tuán)聚體穩(wěn)定性越強(qiáng),土壤的抗侵蝕能力也越強(qiáng)。
土壤容重與gt;2 mm粒徑的水穩(wěn)性團(tuán)聚體含量及MWD值呈極顯著的負(fù)相關(guān)關(guān)系(Plt;0.01),與lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量呈極顯著的正相關(guān)關(guān)系(Plt;0.01)。容重越大,土壤的抗侵蝕能力弱。而土壤水穩(wěn)性大團(tuán)聚體含量越高,土壤容重越小,進(jìn)而增加土壤通透性和穩(wěn)定性,提高土壤的抗侵蝕能力。Plante等[15]研究發(fā)現(xiàn),土壤團(tuán)聚體因土壤有機(jī)質(zhì)的變化而變化。土壤有機(jī)質(zhì)在土壤團(tuán)聚體形成中起膠結(jié)作用,并且影響團(tuán)聚體的穩(wěn)定性[8,16]。本研究中,gt;2 mm及2~1 mm粒徑的水穩(wěn)性團(tuán)聚體含量及MWD值與有機(jī)質(zhì)呈極顯著的正相關(guān)關(guān)系(Plt;0.01),與lt;0.25 mm粒徑的水穩(wěn)性團(tuán)聚體含量呈極顯著的負(fù)相關(guān)關(guān)系(Plt;0.01),說明在黃土高原地區(qū)有機(jī)質(zhì)對(duì)土壤團(tuán)聚體穩(wěn)定性具有重要的影響,增加土壤中有機(jī)質(zhì)含量,可以促進(jìn)水穩(wěn)性團(tuán)聚體的形成,提高土壤結(jié)構(gòu)的穩(wěn)定性,增強(qiáng)土壤的抗侵蝕能力。
MWD值越大說明大粒徑團(tuán)聚體數(shù)量越多,土壤結(jié)構(gòu)性越好。在土壤表層針茅草地的土壤結(jié)構(gòu)性最優(yōu),隨土壤深度增加,苜蓿草地對(duì)土壤結(jié)構(gòu)的改良效果優(yōu)于針茅草地,檸條灌木草地的土壤結(jié)構(gòu)性最差。苜蓿與針茅的混種對(duì)土壤團(tuán)聚體的形成有更好的促進(jìn)作用。容重越大,土壤水穩(wěn)性團(tuán)聚體含量越低,土壤結(jié)構(gòu)性越差。增加有機(jī)質(zhì)可以促進(jìn)團(tuán)聚體穩(wěn)定性,防止土壤侵蝕。
References:
[1] Chen H S, Shao M A, Li Y Y. The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. Journal of Hydrology, 2008, 360(1/4): 242-251.
[2] Bird S B, Herrick J E, Wander M M,etal. Multi-scale variability in soil aggregate stability: Implications for understanding and predicting semi-arid grassland degradation. Geoderma, 2007, 140(1/2): 106-118.
[3] Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models. Chinese Journal of Applied Ecology, 2002, 13(11): 1495-1498.
史奕, 陳欣, 沈善敏. 有機(jī)膠結(jié)形成土壤團(tuán)聚體的機(jī)理及理論模型. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(11): 1495-1498.
[4] Li Y B, Xie D T. Features of water-stable soil aggregate structure under different land use in Karst mountains. Journal of Soil Water Conservation, 2001, 15(4): 122-125.
李陽兵, 謝德體. 不同土地利用方式對(duì)巖溶山地土壤團(tuán)粒結(jié)構(gòu)的影響. 水土保持學(xué)報(bào), 2001, 15(4): 122-125.
[5] Yu H Q, Li Y, Jin F H,etal. The role of increasing soil water-stable aggregates with diameter gt;0.25 mm by vegetation restoration in enhancement of soil organic carbon in the Loess Plateau. Plant Nutrition and Fertilizer Science, 2012, 18(4): 877-884.
于寒青, 李勇, 金發(fā)會(huì), 等. 黃土高原植被恢復(fù)提高大于0.25 mm粒級(jí)水穩(wěn)性團(tuán)聚體在土壤增碳中的作用. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(4): 877-884.
[6] Zeng Q C, Li Y Y, Liu L,etal. Study on soil aggregate stability and soil erodibility in the grassland vegetation of the Loess Plateau region. Acta Agrestia Sinica, 2014, 22(4): 743-749.
曾全超, 李婭蕓, 劉雷, 等. 黃土高原草地植被土壤團(tuán)聚體特征與可蝕性分析. 草地學(xué)報(bào), 2014, 22(4): 743-749.
[7] Zhao S W, Su J, Yang Y H,etal. Influence of the soil structure in Loess Hilly region of southern Ningxia under different man-made vegetation. Research of Soil and Water Conservation, 2005, 12(3): 27-28.
趙世偉, 蘇靜, 楊永輝, 等. 寧南黃土丘陵區(qū)植被恢復(fù)對(duì)土壤團(tuán)聚體穩(wěn)定性的影響. 水土保持研究, 2005, 12(3): 27-28.
[8] Luo Z Z, Li L L, Niu Y N,etal. Response of soil aggregate stability and soil organic carbon fractions to different growth years of alfalfa. Acta Prataculturae Sinica, 2016, 25(10): 40-47.
羅珠珠, 李玲玲, 牛伊寧, 等. 土壤團(tuán)聚體穩(wěn)定性及有機(jī)碳組分對(duì)苜蓿種植年限的響應(yīng). 草業(yè)學(xué)報(bào), 2016, 25(10): 40-47.
[9] Shao M A, Mentler A, Mayer H,etal. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81(3): 226-233.
[10] Gao W S, Wang Y M. Review on the study of soil anti-erosibility. Bulletin of Soil and Water Conservation, 1992, 12(5): 59-63.
高維森, 王佑民. 土壤抗蝕抗沖性研究綜述. 水土保持通報(bào), 1992, 12(5): 59-63.
[11] Wu G L, Liu Z H, Zhang L,etal. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant amp; Soil, 2010, 332(1/2): 331-337.
[12] Walkley A J, Black I A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 1934, 37(1): 29-38.
[13] Liu G B. Vegetation restoration and improvement process of soil anti-scourability in Loess Plateau-Ⅲ. Effect of vegetation restoration on soil humus and aggregations. Research of Soil and Water Conservation, 1997, (S1): 122-128.
劉國彬. 黃土高原草地植被恢復(fù)與土壤抗沖性形成過程──Ⅲ.植被恢復(fù)對(duì)土壤腐殖質(zhì)物質(zhì)及水穩(wěn)性團(tuán)聚體的影響. 水土保持研究, 1997, (S1): 122-128.
[14] Huo L, Wu T Y, Lin H M,etal. Effects of long-term fertilization on water-stable aggregates in calcic kastanozem of Loess Plateau. Chinese Journal of Applied Ecology, 2008, 19(3): 545-550.
霍琳, 武天云, 藺海明, 等. 長期施肥對(duì)黃土高原旱地黑壚土水穩(wěn)性團(tuán)聚體的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(3): 545-550.
[15] Plante A F, Mcgill W B. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil and Tillage Research, 2002, 66(1): 79-92.
[16] Dong L L. Characteristics of soil water stable aggregates under different land-use types. Scientia Silvae Sinicae, 2011, 47(4): 95-100.
董莉麗. 不同土地利用類型下土壤水穩(wěn)性團(tuán)聚體的特征. 林業(yè)科學(xué), 2011, 47(4): 95-100.
EffectsofdifferentgrasslandtypesonparticlesizedistributionandstabilityofwaterstableaggregateontheLoessPlateau
HUANG Ze1,2,3, TIAN Fu-Ping2, LIU Yu1, ZHANG Jing-Ge1,2, MIAO Hai-Tao1,2, WU Gao-Lin1,2*
1.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A amp; F University, Yangling 712100, China; 2.Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, The Lanzhou Scientific Observation and Experiment Field Station of Ministry of Agriculture for Ecological System in the Loess Plateau, Lanzhou 730050, China; 3.College of Forestry, Northwest A amp; F University, Yangling 712100, China
Vegetation restoration can promote the formation of soil aggregates. The stability of soil structure is related to the water-stable aggregate content. The higher the content of water-stable aggregates, the more is the improvement in the soil erosion-resistance. Different plants have different effects on the water-stable aggregate component of soils. To evaluate the stability of soil structure under different grasslands, we studied different artificial grasslands and natural grasslands, includingMedicagosativa,Agropyroncristatum,CaraganakorshinskiiandStipacapillatain Lanzhou city, Gansu province. A soil aggregate analyzer was used to measure the size distribution of water-stable aggregates. The aggregate size differences and correlation of particle size distribution and mean weight diameter (MWD) of water-stable aggregate of the four different grasslands were analysed for the 0-40 cm soil depth. The results showed that the most abundant particle size of water-stable aggregates was gt;2 mm or lt;0.25 mm. For the 0-20 cm depth the proportion of water-stable aggregates of gt;0.25 mm particle size inS.capillatagrassland was significantly higher than other grasslands (Plt;0.05). For the 20-40 cm depth, the proportion of water-stable aggregates of gt;0.25 mm particle size was highest inM.sativagrassland. Hence,S.capillatagrassland had the most improved soil structure for the 0-20 cm depth, while theM.sativagrassland had a better effect on soil structure at greater depth in the soil profiles. The MWD value for soil samples fromM.sativagrassland decreased 31% from 1.04 mm in the 0-10 cm depth to 0.72 mm in 30-40 cm soil depth. These results indicate that inM.sativagrassland, soil structure improvement does not greatly differ between soil depths. There were extremely significant correlations between the MWD value, the proportion of water-stable aggregate in gt;0.25 mm particle size category and soil organic matter content. Generally, the MWD value and soil bulk density were significantly and negatively correlated. The results demonstrate that increase in the proportion of soil water-stable macro-aggregate and soil organic matter are effective ways to promote soil structure improvement, and enhance soil structure stability and resistance to erosion.
grassland types; soil structure; mean weight diameter; soil organic matter
10.11686/cyxb2017053http//cyxb.lzu.edu.cn
黃澤, 田福平, 劉玉, 張靜鴿, 苗海濤, 武高林. 黃土高原不同草地類型對(duì)水穩(wěn)性團(tuán)聚體粒徑分布及穩(wěn)定性的影響. 草業(yè)學(xué)報(bào), 2017, 26(11): 216-221.
HUANG Ze, TIAN Fu-Ping, LIU Yu, ZHANG Jing-Ge, MIAO Hai-Tao, WU Gao-Lin. Effects of different grassland types on particle size distribution and stability of water stable aggregate on the Loess Plateau. Acta Prataculturae Sinica, 2017, 26(11): 216-221.
2017-02-17;改回日期:2017-05-04
國家自然科學(xué)基金項(xiàng)目(41525003, 31372368),中國科學(xué)院“西部之光”項(xiàng)目(XAB2015A04), 中國科學(xué)院青年創(chuàng)新促進(jìn)會(huì)(2011288)和中國農(nóng)業(yè)科學(xué)院創(chuàng)新工程專項(xiàng)資金項(xiàng)目(CAAS-ASTIP-2014-LIHPS-08)資助。
黃澤(1991-),女,寧夏銀川人,在讀碩士。E-mail: huangzee130@163.com
*通信作者Corresponding author. E-mail: gaolinwu@gmail.com