沈興來, 楊 智
(1. 國網(wǎng)江蘇省電力公司徐州供電公司,江蘇 徐州 221003 ; 2. 中國礦業(yè)大學(xué)電動(dòng)學(xué)院,江蘇 徐州 221116)
基于故障全信息的自適應(yīng)模糊融合選線技術(shù)
沈興來1, 楊 智2
(1. 國網(wǎng)江蘇省電力公司徐州供電公司,江蘇 徐州 221003 ; 2. 中國礦業(yè)大學(xué)電動(dòng)學(xué)院,江蘇 徐州 221116)
小電流接地系統(tǒng)發(fā)生單相接地故障時(shí),由于故障信號(hào)微弱、運(yùn)行方式變化、故障類型復(fù)雜等因素的影響,小電流接地系統(tǒng)故障選線一直是困擾現(xiàn)場的一個(gè)技術(shù)難題。綜合運(yùn)用故障后零序電壓電流的全信息,基于信息融合技術(shù),利用群體比幅比相法、五次諧波比相法、小波分析法進(jìn)行故障后的穩(wěn)態(tài)及暫態(tài)信息進(jìn)行綜合分析,采用模糊理論構(gòu)造出了各方法判據(jù)的隸屬度函數(shù)以及權(quán)系數(shù)的隸屬度函數(shù),提高選線方法的自適應(yīng)能力,提高選線的成功率。在PSCAD/EMTDC中搭建了單端輻射狀配電網(wǎng)模型,仿真計(jì)算結(jié)果驗(yàn)證了該方法的高可靠性以及適用性。
配電網(wǎng);單相接地故障選線;穩(wěn)態(tài)信息;暫態(tài)信息;模糊理論;隸屬度函數(shù)
智能配電網(wǎng)是智能電網(wǎng)的核心部分之一,其中故障選線技術(shù)作為保證配電網(wǎng)安全可靠穩(wěn)定運(yùn)行的基礎(chǔ)性工作,具有重要的現(xiàn)實(shí)意義[1]。目前,國內(nèi)外學(xué)者提出了許多針對(duì)單相接地故障的選線方法[2],主要分為3類:穩(wěn)態(tài)信號(hào)的選線方法、暫態(tài)信號(hào)的選線方法以及信息融合的選線方法。穩(wěn)態(tài)信號(hào)的選線方法主要有零序電流比幅法[3]、零序電流有功分量法[4]、零序?qū)Ъ{法[5,6]等。其選線原理簡單,易于實(shí)現(xiàn),但不能充分利用故障發(fā)生時(shí)產(chǎn)生的全信息,選線受干擾因素影響較大,準(zhǔn)確率較低。暫態(tài)信號(hào)選線方法主要有首半波法[7,8]、小波分析法[9,10]、暫態(tài)能量法[11]等,其選線原理適用范圍較廣,但是其信號(hào)持續(xù)時(shí)間短,對(duì)裝置硬件的敏感度要求較高,不易實(shí)現(xiàn)。信息融合的選線方法有很多,包括:人工神經(jīng)網(wǎng)絡(luò)[12-14]、粗糙集理論[15]、D-S證據(jù)理論[16]、模糊理論[17,18]、蟻群算法[19]等。
據(jù)統(tǒng)計(jì),自動(dòng)選線裝置在90年代末期退出率達(dá)到90%以上[20],基于單一故障判據(jù)的選線方法難以可靠地運(yùn)用于現(xiàn)場選線[21]。因此,為了提高選線方法廣泛的適用性,通過采集故障后零序電壓電流全信息,計(jì)算不同方法、不同線路的隸屬度函數(shù)。對(duì)于各種選線方法,利用特征向量的相對(duì)大小來分配權(quán)值,將處理后得到的數(shù)據(jù)進(jìn)行信息融合,判斷出選線結(jié)果。由于模糊理論應(yīng)用廣泛,易于實(shí)現(xiàn),而其它融合方法尚有不成熟的地方,所以文中選擇模糊理論來進(jìn)行信息融合。
故障后零序電壓電流全信息融合過程如圖1所示。
圖1 故障信息融合過程Fig.1 The process of fault information fusion
利用模糊理論進(jìn)行信息融合遇到2個(gè)具有模糊性問題,一是故障后某一線路在某一判據(jù)下具有故障特征的明顯程度;二是在多種選線方法時(shí),某一選線判據(jù)的可信程度。針對(duì)這2個(gè)模糊性問題,對(duì)群體比幅比相法、零序電流5次諧波比相法、小波分析法分別建立故障測度隸屬函數(shù)和判據(jù)權(quán)系數(shù)隸屬函數(shù)。
(1)
(2)
(3) 小波分析法。由小波變換檢測信號(hào)奇異性的原理,故障暫態(tài)零序電流小波系數(shù)的模極大值能夠反映暫態(tài)零序電流信號(hào)的突變點(diǎn)和幅值,因此可通過比較各線路小波變換的模極大值來選出故障線路,模值最大的即為故障線路,且其符號(hào)與其他線路相反。作出如下的隸屬度函數(shù):
(3)
式(3)中:|Mk|為各線路零序電流小波變換系數(shù)的模極大值;|M|sum為各線路零序電流小波變換系數(shù)的模極大值之和。
(4)
(5)
(6)
為了驗(yàn)證文中方法的有效性和可靠性,利用PSCAD搭建一個(gè)單端輻射型配網(wǎng)模型,如圖2所示。所建立的模型為10 kV配電網(wǎng),一條母線帶有5條出線,可通過投切消弧線圈來改變中性點(diǎn)運(yùn)行方式??紤]如下因素對(duì)該方法的影響:故障距離、故障類型、故障電阻、故障初相角等。針對(duì)不同故障情況,計(jì)算相應(yīng)的特征量。
圖2 10 kV單端輻射型配電網(wǎng)示意圖Fig.2 Schematic diagram of 10 kV single-terminal radial distribution network
當(dāng)接地電阻分別為0.01 Ω,50 Ω,1000 Ω時(shí),各線路零序電流變化情況如圖3—5所示;母線接地時(shí)電流變化情況如圖6所示。
不同故障電壓初相角時(shí)的仿真結(jié)果如圖7、圖8所示。其中圖7為電壓過0時(shí)發(fā)生故障,圖8為電壓最大時(shí)發(fā)生故障。
其次,不同的故障電阻和接地方式下該方法的選線結(jié)果如表1、表2所示(假設(shè)故障相為A相)。
在中性點(diǎn)不接地方式下,故障發(fā)生時(shí)電壓處于峰值,金屬性接地與過渡電阻為1000 Ω時(shí),仿真數(shù)據(jù)、選線判據(jù)分析結(jié)果分別見表1和表2,且由表1、表2可得,選線結(jié)果皆為線路2。
在中性點(diǎn)經(jīng)消弧線圈接地系統(tǒng)中,故障發(fā)生在電壓過零點(diǎn),金屬性接地與過渡電阻為1000 Ω時(shí),仿真數(shù)據(jù)、選線判據(jù)分析結(jié)果分別見表3和表4,且由表3、表4可得,選線結(jié)果皆為線路2。
圖3 不同中性點(diǎn)接地方式下金屬性接地故障時(shí)各線路首端零序電流Fig.3 The zero sequence currents at the initial ends of each line when metallic grounding fault occurs in distri-bution systems with different neutral grounding modes
圖5 不同中性點(diǎn)接地方式下當(dāng)故障電阻為1000 Ω時(shí)各線路首端零序電流波形Fig.5 The zero sequence currents at the initial ends of each line when fault resistance is 1000Ω in distribu- tion systems with different neutral grounding modes
圖4 不同中性點(diǎn)接地方式下當(dāng)故障電阻為50 Ω時(shí)各線路首端零序電流Fig.4 The zero sequence currentsat the initial ends of each line when fault resistance is 50 Ω in distribution systems with different neutral grounding modes
圖6 不同中性點(diǎn)接地方式下當(dāng)母線故障時(shí)各線路首端零序電流波形Fig.6 The zero sequence currents at initial ends of each line when bus fault occurs in distribution systems with different neutral grounding modes
圖7 中性點(diǎn)不接地系統(tǒng)不同故障初相角時(shí)各線路首端零序電流波形Fig.7 The zero sequence currents at initial ends of each line when the faults with different inception angles occur in ungrounded distribution system
圖8 消弧線圈接地系統(tǒng)不同故障初相角時(shí)各線路首端零序電流波形Fig.8 The zero sequence currentsat initial ends of each line when the faults with different inception angles occur in arc-suppression coil grounded system
線路編號(hào)故障測度隸屬函數(shù)值判據(jù)權(quán)系數(shù)函數(shù)值群體比幅比相法五次諧波比相法小波分析法群體比幅比相法五次諧波比相法小波分析法選線判據(jù)分析結(jié)果線路10.48300.00000.00000.50000.00000.50000.2415線路21.00000.99150.96920.25110.24890.50000.9825線路30.32450.00000.00000.50000.00000.50000.1623線路40.76470.00000.00000.50000.00000.50000.3824線路50.54280.00000.00000.50000.00000.50000.2714
表2 中性點(diǎn)不接地系統(tǒng)當(dāng)故障電阻為1000 Ω時(shí)的選線結(jié)果Table 2 The fault line selection results when fault resistance is 1000 Ω in ungrounded system
表3 中性點(diǎn)經(jīng)消弧線圈接地系統(tǒng)當(dāng)故障電阻為0.01 Ω時(shí)的選線結(jié)果Table 3 The fault line selection results when fault resistance is 0.01 Ω in arc-suppressioncoil grounded system
表4 中性點(diǎn)經(jīng)消弧線圈接地系統(tǒng)當(dāng)故障電阻為1000 Ω時(shí)的選線結(jié)果Table 4 The fault line selection results when fault resistance is 1000 Ω in arc-suppression coil grounded system
以前所用的選線裝置不能正確地選出故障線路,究其緣由,是因?yàn)橹暗倪x線裝置大多是根據(jù)單一的選線原理設(shè)計(jì)的,而單一選線判據(jù)很容易在外界干擾下造成誤判,從而不能選出故障線路。文中提出利用故障后零序電壓電流的全信息,計(jì)算不同方法、不同線路的隸屬度函數(shù)。由所選方法特征向量的相對(duì)大小來分配權(quán)值,將處理后得到的數(shù)據(jù)用模糊融合的選線技術(shù)進(jìn)行融合,利用融合后的數(shù)據(jù)進(jìn)行判斷。由PSCAD/EMTDC仿真驗(yàn)證可以得出,對(duì)于不同接地方式、不同故障電阻情況下,可以正確地進(jìn)行故障選線,具有廣泛的適用性。
[1] 張心潔,葛少云,劉 洪,等. 智能配電網(wǎng)綜合評(píng)估體系與方法[J]. 電網(wǎng)技術(shù),2014,38(1):40-46.
ZHANG Xinjie,GE Shaoyun,LIU Hong,et al. Comprehensive evaluation system and method of intelligent distribution network[J]. Power Grid Technolngy,2014,38(1):40-46.
[2] 王清亮. 單相接地故障分析與選線技術(shù)[M]. 北京: 中國電力出版社,2013.
WANG Qingliang. Single phase grounding fault analysis and line selection technology[M]. BeiJing: China Electric Power Press,2013.
[3] 張小桃,喬小梅,王愛軍,等. 小電流接地系統(tǒng)故障選線分析[J]. 華北水利水電學(xué)院學(xué)報(bào),2010,31(6):89-93.
ZHANG Xiaotao,QIAO Xiaomei,WANG Aijun, et al. Fault line selection of small current grounding system[J]. Journal of North China Institute of water conservancy and hydropower,2010,31(6): 89-93.
[4] 莊 偉,牟龍華. 基于零序電流有功分量的配電網(wǎng)接地故障定位[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(3):468-473.
ZHUANG Wei,MOU Longhua. Grounding fault location of distribution network based on active component of zero sequence current[J]. Journal of Tongji University(Natural Science Edition),2014,42(3):468-473.
[5] 曾祥君,尹項(xiàng)根,張 哲,等. 零序?qū)Ъ{法饋線接地保護(hù)的研究[J]. 中國電機(jī)工程學(xué)報(bào),2001,21(4):5-10.
ZENG Xiangjun,YIN Xianggen,ZHANG Zhe,et al. Research on feeder grounding protection based on zero sequence admittance method[J]. Chinese Journal of Electrical Engineering,2001,21(4):5-10.
[6] LI Bo. Technology of fault line selection for single-phase-to-earth fault in small current grounding system[J]. Nonlinear Dynamics,2012,67(3):2111-2122.
[7] 郗來迎,王崇林,布朋生,等. 基于首半波與有功分量的綜合選線裝置[J]. 煤礦機(jī)械,2008,29(8):114-116.
XI Laiying,WANG Chonglin,BU Pengsheng,et al. Integrated line selection device based on first half wave and active component[J]. Coal Mine Machinery,2008,29(8):114-116.
[8] 胡 佐,李欣然,石吉銀. 基于殘流與首半波綜合的接地選線方法研究[J]. 繼電器,2006,34(7):70-73.
HU Zuo,LI Xinran,SHI Jiyin. Research on grounding line selection method based on residual and first half wave synthesis[J]. Electric Relay,2006,34(7):70-73.
[9] 賈智彬,顧佩穎. 行波小波分析法對(duì)單相接地故障選線方法的研究[J]. 電氣開關(guān),2013,51(6):19-22,27.
JIA Zhibin,GU Peiying. Study on fault line selection of single phase to ground fault based on traveling wave wavelet analysis[J]. Electrical Switching,2013,51(6):19-22,27.
[10] 周陳斌. 基于提升小波的電力系統(tǒng)單端行波測距仿真[J]. 江蘇電機(jī)工程,2007(5):28-31.
ZHOU Chenbin. Simulation of single terminal traveling wave fault location based on lifting wavelet[J]. Jiangsu Electrical Engineering,2007(5):28-31.
[11] 朱 丹,賈雅君,蔡 旭,等. 暫態(tài)能量法原理選線[J]. 電力自動(dòng)化設(shè)備,2004,24(3):75-78.
ZHU Dan,JIA Yajun,CAI Xu,et al. Transient energy method[J]. Electric Power Automation Equipment,2004,24(3):75-78.
[12] 曹運(yùn)剛,陳 平,楊茂亭,等. 基于人工神經(jīng)網(wǎng)絡(luò)的小電流接地故障選線方法研究[J]. 國網(wǎng)技術(shù)學(xué)院學(xué)報(bào),2015,18(1):21-25,29.
CAO Yungang,CHEN Ping,YANG Maoting,et al. Research on fault line selection method for small current grounding fault based on artificial neural network[J]. Journal of China National Technical College,2015,18(1):21-25,29.
[13] 包立公,張瑞祥. 人工神經(jīng)網(wǎng)絡(luò)技術(shù)在電力系統(tǒng)中的應(yīng)用[J]. 江蘇電機(jī)工程,2010,29(5):52-55.
BAO Ligong,ZHANG Ruixiang. Application of Ethernet in MSTP System[J]. Jiangsu Electrical Engineering,2010,29(5):52-55.
[14] 劉子俊,孫 ?。?基于遺傳算法和神經(jīng)網(wǎng)絡(luò)的分時(shí)段風(fēng)速預(yù)測方法[J]. 江蘇電機(jī)工程,2015,34(1):6-8.
LIU Zijun,SUN Jian. The wind speed prediction based on genetic algorithm and neural network with different periods[J]. Jiangsu Electrical Engineering,2015,34(1):6-8.
[15] 張 凱,袁兆強(qiáng),范李平,等. 基于改進(jìn)算法的粗糙集理論故障選線裝置研究[J]. 電力系統(tǒng)保護(hù)與控制,2010,38(4):15-20.
ZHANG Kai,YUAN Zhaoqiang,F(xiàn)AN Linping,et al. Research on fault line selection based on improved algorithm of rough set theory[J]. Power System Protection and Control,2010,38(4):15-20.
[16] 戴武昌,嚴(yán)干貴,孫秋鵬,等. DS證據(jù)理論在小電流接地系統(tǒng)的故障選線中的應(yīng)用[J]. 東北電力大學(xué)學(xué)報(bào),2007,27(6):19-23.
DAI Wuchang,YAN Gangui,SUN Qiupeng,et al. Application of DS evidence theory in fault line selection of small current grounding system[J]. Journal of Northeast Dianli University,2007,27 (6):19-23.
[17] 陳照業(yè),張均偉,馬星河,等. 基于模糊理論的煤礦高漏選線算法的研究[J]. 煤礦機(jī)電,2012(6):1-4,8.
CHEN Zhaoye,ZHANG Junwei,MA Xinghe,et al. Research on the algorithm of high leakage line selection based on Fuzzy Theory[J]. Coal Mine Mechanical and Electrical,2012(6):1-4,8.
[18] 崔高穎,周 玉,鄭愛霞,等. 基于熵權(quán)的計(jì)量技術(shù)監(jiān)督模糊綜合評(píng)價(jià)方法[J]. 江蘇電機(jī)工程,2016,35(5):14-18.
CUI Gaoying,ZHOU Yu,ZHENG Aixia,et al. A fuzzy comprehensive evaluation method based on entropy weight for metering technical supervision[J]. Jiangsu Electrical Engineering,2016,35(5):14-18.
[19] 龐清樂,孫同景,孫 波,等. 基于蟻群算法的神經(jīng)網(wǎng)絡(luò)配電網(wǎng)故障選線方法[J]. 繼電器,2007,35(16):1-6.
PANG Qingle,SUN Tongjing,SUN Bo,et al. Neural network based fault line selection method for distribution network based on ant colony algorithm[J]. Electric Relay,2007,35(16):1-6.
[20] 束洪春. 配電網(wǎng)絡(luò)故障選線[M]. 北京:機(jī)械工業(yè)出版社,2008.
SHU Hongchun. Distribution network fault line selection[M]. BeiJing:Machinery Industry Press,2008.
[21] 劉 詩. 電力安全工作規(guī)程[M]. 北京:中國電力出版社,2009.
LIU Shi. Electric safety working procedure[M]. BeiJing:China Electric Power Press,2009.
沈興來
沈興來(1983—),男,江蘇徐州人,工程師,主要研究方向?yàn)殡娏ο到y(tǒng)自動(dòng)化(E-mail:56902273@qq.com);
楊 智(1992—),男,江蘇徐州人,碩士研究生,主要研究方向?yàn)榕潆娋W(wǎng)故障定位(E-mail:2293655518@qq.com)。
(編輯錢 悅)
ASelf-adaptedFaultLineSelectionMethodBasedonCompleteDataFusionTheory
SHENG Xinglai1, YANG Zhi2
(1. State Grid Jiangsu Electric Power Company Xuzhou Power Supply Company, Xuzhou 221003, China;2. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China)
Due to the factors such as weak fault-induced signals, change of neutral grounding mode, and complicated fault conditions, fault line selection in non-effectively grounded system has been a technical challenge in actual field. Based on data fusion technology, the information of fault-generated zero-sequence voltages and currents is fully analyzed by means of colony amplitude comparison-based, the fifth harmonics-based and wavelet analysis-based methods. Fuzzy theory is employed to create membership functions of the criteria and weights of each method, which improves the adaptive ability and success rate. A single-terminal radial distribution grid model is constructed in PSCAD/EMTDC to test the performance of the presented method and the calculation results demonstrate the high reliability and applicability of the method.
distribution network; single-phase-to-ground fault line selection; steady-state information; transient-state information; fuzzy theory;membership function
TM711
A
2096-3203(2017)06-0090-06
2017-06-30;
2017-08-25
國家自然科學(xué)基金資助項(xiàng)目(51504253);江蘇省自然科學(xué)基金資助項(xiàng)目(BK20161185)