龐素艷,楊 悅,姜成春,周 揚(yáng),江 進(jìn),馬 軍
?
KMnO4降解2-溴酚的氧化產(chǎn)物與反應(yīng)路徑
龐素艷1,2*,楊 悅2,姜成春3,周 揚(yáng)4,江 進(jìn)4,馬 軍4
(1.吉林建筑大學(xué)市政與環(huán)境工程學(xué)院,吉林長(zhǎng)春130118;2.哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,黑龍江哈爾濱150040;3.深圳職業(yè)技術(shù)學(xué)院建筑與環(huán)境工程學(xué)院,廣東深圳 518055;4.哈爾濱工業(yè)大學(xué)城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,黑龍江哈爾濱 150090)
為了探討KMnO4氧化降解溴酚過(guò)程中溴代聚合產(chǎn)物的生成機(jī)理,利用三重四級(jí)桿串聯(lián)線性離子阱液相-質(zhì)譜聯(lián)用儀(LC-MS/MS)對(duì)KMnO4氧化降解2-溴酚的產(chǎn)物進(jìn)行檢測(cè)分析.結(jié)果表明,根據(jù)溴的天然同位素特性,建立了LC-MS/MS-PIS(79和81)子找母質(zhì)譜掃描方法測(cè)定溴代有機(jī)物,測(cè)得KMnO4氧化降解2-溴酚的主要產(chǎn)物為4個(gè)質(zhì)量數(shù)相同,341/343(79)和343/345(81),且分子結(jié)構(gòu)中含有2個(gè)溴的氧化耦合產(chǎn)物,同位素豐度比為1:1.推測(cè)4個(gè)溴代聚合產(chǎn)物為同分異構(gòu)體,由2-溴酚氧自由基通過(guò)C-C和C-O耦合產(chǎn)生,其中,C-C耦合的聚合產(chǎn)物先出峰,C-O耦合的聚合產(chǎn)物后出峰.2-溴酚氧自由基發(fā)生氧化耦合反應(yīng),理論上產(chǎn)生的8個(gè)溴代聚合產(chǎn)物并沒(méi)有全部被檢測(cè)到,主要是由于酚氧自由基的氧化耦合速率不同,導(dǎo)致聚合產(chǎn)物的形成產(chǎn)率不同.
KMnO4;2-溴酚;聚合產(chǎn)物;氧化耦合;反應(yīng)路徑
溴酚類有機(jī)物被廣泛應(yīng)用于助燃劑、木材防腐劑、聚合物等產(chǎn)品的生產(chǎn)過(guò)程中,導(dǎo)致地表水中溴代污染物含量增加[1-2].溴酚類污染物自身毒性高且能夠危害人類身體健康和水生生態(tài)環(huán)境[3-6].同時(shí),溴酚也能夠引起飲用水的嗅味問(wèn)題,而且嗅閾值非常低,只有ng/L范圍[7].目前,溴酚的處理技術(shù)主要有二氧化錳氧化[8]、光催化氧化[9-13]、過(guò)硫酸鹽催化氧化[14]等,同時(shí),這些研究的產(chǎn)物分析結(jié)果證實(shí)溴酚的氧化降解產(chǎn)物是一些聚合物,如羥基化多溴聯(lián)苯醚(OH-PBDEs)和羥基化多溴聯(lián)苯(OH-PBBs).
高錳酸鉀(KMnO4)作為綠色氧化劑,運(yùn)輸、儲(chǔ)存、使用方便,且氧化后不易產(chǎn)生有毒有害副產(chǎn)物,能夠在水處理過(guò)程中進(jìn)行大規(guī)模應(yīng)用. Jiang等[15]研究了KMnO4降解2,4-二溴酚的氧化產(chǎn)物和反應(yīng)路徑,LC-MS/MS質(zhì)譜測(cè)定結(jié)果表明,2,4-二溴酚氧化后產(chǎn)生2個(gè)含有4個(gè)溴的聚合產(chǎn)物,一個(gè)為多溴聯(lián)苯醚,由2個(gè)2,4-二溴酚氧自由基通過(guò)鄰位C與O耦合產(chǎn)生,另一個(gè)是由2個(gè)2,4-二溴酚氧自由基通過(guò)鄰位C與鄰位C耦合產(chǎn)生,結(jié)構(gòu)中含有2個(gè)羥基,且每個(gè)苯環(huán)中都含有1個(gè).到目前為止,還沒(méi)有關(guān)于KMnO4氧化降解2-溴酚氧化產(chǎn)物與反應(yīng)路徑的研究.
因此,本文利用液相色譜質(zhì)譜聯(lián)用儀(LC-MS/MS)測(cè)定KMnO4降解2-溴酚過(guò)程中的氧化產(chǎn)物,研究溴代氧化產(chǎn)物的質(zhì)譜特點(diǎn)及反應(yīng)路徑.
2-溴酚(2-BrP)為分析純,購(gòu)買于Sigma公司.乙腈為色譜醇,購(gòu)買于Merck公司,甲酸為色譜純,購(gòu)買于Sigma公司.實(shí)驗(yàn)中所用其他試劑均為分析純,購(gòu)買于國(guó)藥集團(tuán)上?;瘜W(xué)試劑有限公司.
一系列含10μmol/L 2-溴酚的純水中(含10%乙腈),加入不同濃度KMnO4起始反應(yīng)(5~20μmol/L),反應(yīng)完全后(即KMnO4完全被消耗),用0.45μm的玻璃纖維膜過(guò)濾,利用液相色譜質(zhì)譜聯(lián)用儀(LC-MS/MS)對(duì)過(guò)濾后樣品進(jìn)行產(chǎn)物分析測(cè)定.
KMnO4降解2-溴酚的氧化產(chǎn)物采用AB SCIEX QTRAP 5500三重四級(jí)桿串聯(lián)線性離子阱質(zhì)譜與Agilent 1260高效液相聯(lián)用(LC-MS/ MS)進(jìn)行分析測(cè)定.色譜柱為Agilent Poroshell 120EC-C18(4.6mm×150mm,2.7μm),流動(dòng)相為乙腈(A)和含1‰甲酸的超純水(B),流動(dòng)相梯度為A先從5%開(kāi)始,保持5min,然后在30min內(nèi)從5%線性升到50%,保持10min,再在0.1min內(nèi)降到5%,保持5min,流速為200μL/min,進(jìn)樣量為10μL,柱溫為35℃.采用電噴霧離子源負(fù)離子模式(ESI-)進(jìn)行檢測(cè),測(cè)定方法選擇子找母掃描模式(PIS),即在四級(jí)桿Q3設(shè)定特殊質(zhì)量數(shù)的子離子,然后在四級(jí)桿Q1設(shè)定質(zhì)量數(shù)掃描范圍,尋找能夠產(chǎn)生該子離子的母離子.Q1設(shè)定掃描范圍為50~500Da, Q3設(shè)定子離子質(zhì)量數(shù)為79或81Da,掃描速度為1000Da/s,離子源電壓和溫度分別為-4500V和500℃,氮?dú)?N2)作為氣簾氣,流速為35L/min,去簇電壓(DP)和入口電壓(EP)分別為-70V和-10V,碰撞電壓(CE)為-30V~-100V.
天然環(huán)境中溴(Br)的同位素主要有2個(gè),質(zhì)量數(shù)為79和81(Br79和Br81),且豐度比為1:1.研究中根據(jù)溴的這一同位素特性,建立了一種簡(jiǎn)便、快速,可以選擇性檢測(cè)溴代有機(jī)物的質(zhì)譜檢測(cè)方法,其原理主要是利用溴代有機(jī)物在ESI源負(fù)電(ESI-)模式下,通過(guò)溴離子的同位素信息,進(jìn)行三重四級(jí)桿的質(zhì)譜掃描追蹤母離子測(cè)定,即子找母質(zhì)譜掃描模式[16-17].
研究中計(jì)算了溴代有機(jī)物中含溴元素個(gè)數(shù)與質(zhì)譜測(cè)定信息的關(guān)系,見(jiàn)表1[16,18-22].例如,2-溴酚分子結(jié)構(gòu)中含有1個(gè)溴,進(jìn)行質(zhì)譜全掃描模式測(cè)定時(shí),會(huì)產(chǎn)生2個(gè)1:1的質(zhì)譜峰,采用79或81子找母質(zhì)譜掃描模式(79和81)進(jìn)行測(cè)定時(shí),會(huì)各產(chǎn)生1個(gè)質(zhì)譜峰.
由圖1可見(jiàn),全掃描色譜圖中觀察不到明顯的2-溴酚色譜峰,而在子找母掃描色譜圖中能夠觀察到響應(yīng)值很高的色譜峰.因此,與全掃描質(zhì)譜模式相比,子找母質(zhì)譜掃描模式對(duì)溴代有機(jī)物的測(cè)定更靈敏,響應(yīng)值更高.2-溴酚的保留時(shí)間為24.8min,在嵌入的質(zhì)譜圖中,子找母掃描時(shí)質(zhì)量數(shù)為171(79)和173(81),全掃描時(shí)質(zhì)量數(shù)為171/173,且質(zhì)譜峰的溴同位素豐度比為1:1,與表1中含1個(gè)溴的總結(jié)相一致.
圖1 2-溴酚標(biāo)準(zhǔn)樣品LC-MS/MS色譜圖
(a) PIS79, (b) PIS81, (c) 全掃描
圖2 KMnO4氧化2-溴酚的LC-MS/MS色譜圖
(a) PIS79, (b) PIS81, (c) 全掃描
圖3 2-溴酚氧自由基的所有C-C和C-O耦合反應(yīng)
表1 溴代有機(jī)物在LC-MS/MS全掃描和子找母掃描中理論同位素豐度規(guī)律
注:為被檢測(cè)物質(zhì)的最小質(zhì)量數(shù).
從圖2可見(jiàn),與全掃描色譜圖相比,采用子找母掃描模式測(cè)定KMnO4降解2-溴酚氧化產(chǎn)物的色譜峰更清晰、更靈敏、更全面.與2-溴酚標(biāo)準(zhǔn)色譜圖相比,通過(guò)子找母質(zhì)譜掃描模式檢測(cè)到KMnO4降解2-溴酚產(chǎn)生4個(gè)主要產(chǎn)物,分別標(biāo)記為I、II、III、IV,而在全掃描模式下只測(cè)到產(chǎn)物I和II,并且色譜峰非常小.從質(zhì)譜圖可以看出,4個(gè)產(chǎn)物進(jìn)行子找母掃描時(shí)質(zhì)量數(shù)相同,為341/343(79)和343/345(81),且2個(gè)質(zhì)譜峰的同位素豐度比為1:1,應(yīng)該是同分異構(gòu)體.在全掃描時(shí)質(zhì)量數(shù)為341/343/345,且豐度比為1:2:1.根據(jù)表1的計(jì)算結(jié)果,推測(cè)產(chǎn)物I-IV中含有2個(gè)Br,可能是目標(biāo)物2-溴酚氧自由基的聚合物.這一測(cè)定結(jié)果,與Jiang等[15]研究中KMnO4氧化降解2,4-二溴酚的LC-MS/MS質(zhì)譜檢測(cè)結(jié)果相似.2,4-二溴酚氧化后產(chǎn)生2個(gè)含有4個(gè)溴的聚合產(chǎn)物,而2-溴酚氧化后產(chǎn)生4個(gè)含有2個(gè)Br的聚合產(chǎn)物.溴酚中溴離子的個(gè)數(shù)和位置直接導(dǎo)致其氧化產(chǎn)物和反應(yīng)路徑不同,從而導(dǎo)致LC-MS/MS質(zhì)譜測(cè)定結(jié)果不同.
酚氧自由基易發(fā)生氧化耦合反應(yīng),在耦合過(guò)程中會(huì)產(chǎn)生各種聚合產(chǎn)物[23-28].理論上,2-溴酚的4個(gè)酚氧自由基如果全部參與反應(yīng),通過(guò)C-O和C-C耦合可能產(chǎn)生8個(gè)含溴聚合產(chǎn)物,見(jiàn)圖3.這8個(gè)溴代聚合產(chǎn)物中有5個(gè)聚合產(chǎn)物的質(zhì)量數(shù)為341/343/345,含有2個(gè)溴,其中有2個(gè)聚合產(chǎn)物是通過(guò)C-O耦合生成,另外3個(gè)聚合產(chǎn)物是通過(guò)C-C耦合生成.但利用LC-MS/MS-PIS測(cè)定只檢測(cè)到4個(gè)聚合產(chǎn)物(圖2),同時(shí)也不能確定這4個(gè)產(chǎn)物是5個(gè)聚合產(chǎn)物中的哪一個(gè).根據(jù)Jiang等[15]的研究結(jié)果,只能確定通過(guò)C-C耦合,含有2個(gè)羥基的聚合產(chǎn)物先出峰,通過(guò)C-O耦合,含有1個(gè)羥基的聚合產(chǎn)物后出峰.
圖3中質(zhì)量數(shù)為263/265的3個(gè)聚合產(chǎn)物是2-溴酚氧自由基通過(guò)脫1個(gè)溴產(chǎn)生,但是在LC-MS/MS-PIS測(cè)定過(guò)程中并未檢測(cè)到質(zhì)量數(shù)為263/265的產(chǎn)物.2-溴酚氧自由基發(fā)生耦合反應(yīng)理論上產(chǎn)生的聚合產(chǎn)物并沒(méi)有全部被檢測(cè)到,主要是由于酚氧自由基相互耦合的速率不同,從而導(dǎo)致聚合產(chǎn)物的產(chǎn)率有所不同[15,23].
3.1 根據(jù)溴的天然同位素特性,建立了一種簡(jiǎn)便、快速LC-MS/MS-PIS (79和81)子找母質(zhì)譜掃描測(cè)定方法.
3.2 LC-MS/MS-PIS子找母質(zhì)譜掃描方法測(cè)得KMnO4氧化2-溴酚的主要產(chǎn)物為4個(gè)不脫溴的氧化耦合產(chǎn)物,分子結(jié)構(gòu)中含有2個(gè)溴,質(zhì)量數(shù)為341/343(79)和343/345(81),豐度比為1:1.
3.3 KMnO4氧化2-溴酚產(chǎn)生的4個(gè)溴代聚合產(chǎn)物推測(cè)是由2-溴酚氧自由基通過(guò)C-C和C-O耦合產(chǎn)生,其中,C-C耦合的聚合產(chǎn)物先出峰,C-O耦合的聚合產(chǎn)物后出峰.
3.4 2-溴酚氧自由基發(fā)生耦合反應(yīng)理論上產(chǎn)生的8個(gè)溴代聚合產(chǎn)物并沒(méi)有全部被檢測(cè)到,主要是由于酚氧自由基的氧化耦合速率不同,導(dǎo)致耦合產(chǎn)物的形成產(chǎn)率不同.
[1] Sim W J, Lee I S, Choi S D, et al. Distribution and formation of chlorophenols and bromophenols in marine and riverine environments [J]. Chemosphere, 2009,77:552-558.
[2] Xiong J, Li G, An T, et al. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China [J]. Environ. Pollut., 2016,219:596-603.
[3] Hassenklover T, Predehl S, Pilli J, et al. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+signaling in neuroendocrine cells (PC12) [J]. Aquat. Toxicol., 2006,76:37-45.
[4] Kammann U, Vobach M, Wosniok W. Toxic effects of brominated iodoles and phenols on zebrafish embryos. Arch [J]. Environ. Contam. Toxicol., 2006,51:97-102.
[5] Bruchajzer E, Szymanska J A, Piotrowski J K. Acute and subacute nephrotoxicity of 2–bromophenol in rats [J]. Toxicol. Letters, 2002,134:245-252.
[6] Yang M, Zhang X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii [J]. Environ. Sci. Technol., 2013,47:10868-10876.
[7] Acero J L, Piriou P, von Gunten U. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: Assessment of taste and odor development [J]. Water Res., 2005,39:2979-2993.
[8] Lin K, Yan C, Gan J. Production of hydroxylated polybrominated diphenyl ethers (OH-PEDEs) from bromophenols by manganese dioxide [J]. Environ. Sci. Technol., 2014,48:263-271.
[9] Eriksson J, Rahm S, Green N, et al. Photochemical transformations of tetrabromobisphenol A and related phenols in water [J]. Chemosphere, 2004,54:117-126.
[10] Liu H, Zhao H, Quan X, et al. Formation of 2’-hydroxy-2, 3’,4,5’-tetrabromodipheyl ether (2’-HO-BDE68) from 2,4- dibromophenol in aqueous solution under simulated sunlight irradiation [J]. Chemosphere, 2011,84:512-518.
[11] Saeed A, Altarawneh M, Dlugogorski B Z. Photodecomposition of bromophenols [J]. Chemosphere, 2016,150:749-758.
[12] Zhu Q, Igarashi M, Sasaki M, et al. Degradation and debromination of bromophenols using a free-base porphyrin and metalloporphyrins as photosensitizers under conditions of visible light irradiation in the absence and presence of humic substances [J]. Appl. Catal. B- Environ.,2016,183:61-68.
[13] Xie B, Li X, Huang X, et al. Enhanced debromination of 4-bromophenol by the UV/sulfite process: Efficiency and mechanism [J]. J. Environ. Sci., 2017,54:231-238.
[14] Guan C, Jiang Jin, Luo C, et al. Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products. Environ. Sci. Technol., 2017,51:10718-10728.
[15] Jiang J, Gao Y, Pang S Y, et al. Oxidation of bromophenols and formation of brominated polymeric products of concern during water treatment with potassium permanganate [J]. Environ. Sci. Technol., 2014,48:10850-10858.
[16] Zhang X, Talley J W, Boggess B, et al. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans [J]. Environ. Sci. Technol., 2008,42:6598-6603.
[17] 羅從偉,馬 軍,江 進(jìn),等.UV/H2O2降解2,4,6-三氯苯甲醚動(dòng)力學(xué)及產(chǎn)物研究[J].中國(guó)環(huán)境科學(xué), 2017,37(5):1831-1837.
[18] Zhai H, Zhang X. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination [J]. Environ. Sci. Technol., 2011,45:2194-2201.
[19] Pan Y, Zhang X. Four groups of new aromatic halogenated disinfection byproducts: Effect of bromide concentration on their formation and speciation in chlorinated drinking water [J]. Environ. Sci. Technol., 2013,47:1265-1273.
[20] Xiao F, Zhang X, Zhai H, et al. New halogenated disinfection byproducts in swimming pool water and their permeability across skin [J]. Environ. Sci. Technol., 2012,46:7112-7119.
[21] Ding G, Zhang X, Yang M, et al. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents [J]. Water Res., 2013,47:2710-2718.
[22] Pang S Y, Jiang J, Gao Y, et al. Oxidation of flame retardant tetrabromobisphenol A by aqueous permanganate: Reaction kinetics, brominated products, and pathways [J]. Environ. Sci. Technol., 2014,48:615-623.
[23] Dec J, Haider K, Bollag J M. Release of substituents from phenolic compounds during oxidative coupling reactions [J]. Chemosphere, 2003,52:549-556.
[24] Poerschmann J, Trommler U. Pathways of advanced oxidation of phenol by Fenton's reagent-Identification of oxidative coupling intermediates by extractive acetylation [J]. J. Chromatogr. A, 2009,1216:5570-5579.
[25] Castillo I, Pérez V, Monsalvo I, et al. Copper (II) complexes of piperazine-derived tetradentate ligands and their chiral diazabicyclic analogues for catalytic phenol oxidative C–C coupling [J]. Inorg. Chem. Commun., 2013,38:1-4.
[26] Gao R, Xu F, Li S, et al. Formation of bromophenoxy radicals from complete series reactions of bromophenols with H and OH radicals [J]. Chemosphere, 2013,92:382-390.
[27] Lin K, Zhou S, Chen X, et al. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols [J]. Chemosphere, 2015,138:806-813.
[28] Huguet M, Deborde M, Papot S, et al. Oxidative decarboxylation of diclofenac by manganese oxide bed filter [J]. Water Res., 2013,47:5400-5408.
Products and pathways of 2-bromophenol oxidation by potassium permanganate.
PANG Su-yan1,2*, YANG Yue2, JIANG Cheng-chun3, ZHOU Yang4, JIANG Jin4, MA Jun4
(1.School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China;2.College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China;3.School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China;4.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China)., 2017,37(11):4159~4165
The purpose of this article was to investigate the mechanism responsible for the formation of brominated polymeric products from oxidation of bromophenols by aqueous potassium permanganate. Experiments were conducted to determine brominated oxidation products of 2-bromophenol by aqueous potassium permanganate using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). The results showed that four polymeric products of341/343 (at79) and 343/345 (at81) containing two bromine atoms were detected by the precursor ion scan (PIS) approach at79 and 81, respectively, and their abundance was about 1:1, consistent with the natural isotope of bromine atom. The four polymeric products were isomers, and they were formed by the C-O and C-C coupling of 2-bromophenoxy radicals, where the C-C coupling products eluted faster than the C-O coupling ones in LC-MS/MS. According to phenolic coupling theory, there would be eight brominated polymeric products. However, they were partially detected, probably due to the difference in coupling rates of phenoxy radicals.
potassium permanganate;2-Bromophenol;polymeric product;oxidative coupling;reaction pathways
X703.5
A
1000-6923(2017)11-4159-07
龐素艷(1978-),女,吉林遼源人,教授,博士,主要從事水質(zhì)物化處理技術(shù)與理論.發(fā)表論文30余篇.
2017-05-03
國(guó)家自然科學(xué)基金資助項(xiàng)目(51578203, 51378316)
* 責(zé)任作者, 教授, psyhit@126.com