彭向杰,黃川,范立青,2,盧光琇,2,朱文兵,2*
(1.中信湘雅生殖與遺傳??漆t(yī)院,長沙 410000;2.中南大學(xué)基礎(chǔ)醫(yī)學(xué)院生殖與干細(xì)胞工程研究所,長沙 410000)
人類精子染色體非整倍體研究進(jìn)展
彭向杰1,黃川1,范立青1,2,盧光琇1,2,朱文兵1,2*
(1.中信湘雅生殖與遺傳??漆t(yī)院,長沙 410000;2.中南大學(xué)基礎(chǔ)醫(yī)學(xué)院生殖與干細(xì)胞工程研究所,長沙 410000)
人類最常見的染色體異常是非整倍體。由于在胚胎發(fā)育的早期階段多數(shù)的非整倍體胚胎會(huì)停止發(fā)育,因此對(duì)胚胎的非整倍體率的精確評(píng)估多通過對(duì)配子的直接研究來進(jìn)行。大多數(shù)非整倍體胚胎的產(chǎn)生,是由于父源或母源性減數(shù)分裂中偶然的染色體不分離所導(dǎo)致。本文綜述了正常人群的精子非整倍體發(fā)生率以及不同種類患者的精子非整倍體率,包括不育患者、體細(xì)胞核型異?;颊?,以及暴露于某些有害的環(huán)境或生活方式中的個(gè)體;并對(duì)精子非整倍體率升高的臨床影響進(jìn)行討論。
非整倍體; 減數(shù)分裂; 染色體不分離; 精子
(JReprodMed2017,26(11):1109-1113)
人類最常見的染色體異常是非整倍體(包括單體和三體)。在新生兒以及自發(fā)性流產(chǎn)的胎兒中,性染色體非整倍體均比常染色體非整倍體更為常見。據(jù)估計(jì),非整倍體胚胎占全部妊娠的5%[1]。人類非整倍體胚胎中,僅13-三體、18-三體、21-三體及包括X染色體單體在內(nèi)的性染色體非整倍體能夠存活。多數(shù)非整倍體胚體在胚胎發(fā)育早期階段即死亡,往往發(fā)生在臨床檢出之前,表現(xiàn)為自然流產(chǎn)、不育或不孕,因此決定了只能直接研究配子對(duì)胚胎非整倍體率進(jìn)行精確評(píng)估。
在過去30余年中,對(duì)人精子非整倍體的研究主要通過以下途徑:(1)在體外將人精子與去透明帶的倉鼠卵融合,然后進(jìn)行精子染色體核型分析[2],或(2)用多色熒光原位雜交(FISH)實(shí)驗(yàn)分析間期精子核。在這些研究中,由于無法區(qū)分制片過程中人為造成的染色體丟失或者雜交失敗所造成的缺體,則通常對(duì)精子非整倍體率進(jìn)行保守的估計(jì),即二體率的兩倍。
最近,Templado等[3]對(duì)388位健康志愿者(18~80歲)精液進(jìn)行FISH實(shí)驗(yàn)所得出的非整倍體率進(jìn)行綜述。其納入標(biāo)準(zhǔn)如下:志愿者例數(shù)不少于5人、每個(gè)人每套探針按嚴(yán)格的計(jì)數(shù)標(biāo)準(zhǔn)計(jì)數(shù)10 000個(gè)精子的研究,匯總描述了精子中18條染色體的二體情況(圖1)。對(duì)于單條染色體來說,平均的二體率大約是0.1%,總的非整倍體率估計(jì)為4.5%(2×2.26),比精子核型分析所得結(jié)果(1.8%)要高[4-5]。這一綜述同時(shí)注意到,21號(hào)染色體(0.17%)與性染色體(0.27%)出現(xiàn)非整倍體的情況要比平均值高出2~3倍。與此類似,健康男性精子核型分析中這些染色體的二體情況亦最為常見[4-5]。此外,在減數(shù)分裂研究中,21號(hào)染色體和性染色體配對(duì)體在精母細(xì)胞間期Ⅰ分離成單價(jià)染色體,在精母細(xì)胞間期Ⅱ形成二體的幾率更高[6]。這是因?yàn)槎r(jià)的21號(hào)染色體及性染色體配對(duì)區(qū)域最小,而且在減數(shù)分裂Ⅰ通常表現(xiàn)出單一交叉[7],因此,它們更容易發(fā)生染色體不分離。
圖1 用多色FISH分析對(duì)健康個(gè)體進(jìn)行的實(shí)驗(yàn)所得每一條精子染色體的平均二體率[3]
近幾年,關(guān)于精子全染色體組非整倍體率或二體率的研究鮮有報(bào)道。慕尼黑一家研究機(jī)構(gòu)發(fā)表了全染色體組研究結(jié)果[8],但研究包含的例數(shù)十分有限。這也提示,制定精子全染色體組非整倍體率的參考值十分迫切。
此外,近些年輔助生殖技術(shù)以及治療勃起障礙的新藥的應(yīng)用使得高齡男性有了成為父親的可能。因此,為了評(píng)估后代遺傳風(fēng)險(xiǎn),年齡對(duì)精子非整倍體的影響的研究受到了重視。然而,到目前為止暫未發(fā)現(xiàn)年齡增長對(duì)精子二體率的潛在影響[9-10]。
通常來說,不育患者的精子非整倍體率顯著增高,且非整倍體率隨男性因素的不育程度嚴(yán)重性而增加。在對(duì)6個(gè)輔助生殖中心的319名咨詢生育問題的患者進(jìn)行回顧性研究的過程中,Sarrate等[11]發(fā)現(xiàn)這一群體的性染色體二體率較正常值高2~3倍,21號(hào)染色體非整倍體及二倍體率亦增高3倍。在與異常非整倍體率水平相關(guān)的精液參數(shù)中,少精癥與非整倍體率增高相關(guān),特別是嚴(yán)重的少精子癥(性染色體二體率升高2~6倍,21號(hào)染色體二體率升高4倍)[12];而嚴(yán)重的非梗阻性少精子癥性染色體非整倍體率為升高4倍[13]。在非梗阻性弱精癥患者中也有報(bào)道其睪丸精子的非整倍體率升高(性染色體二體率升高2~4倍,21號(hào)染色體二體率升高4倍)[14]。
但是,關(guān)于精子活力與精子非整倍體之間的關(guān)系暫無定論:Sarrate等[11]表明精子活力低下與精子非整倍體率升高之間并無關(guān)聯(lián)。但是其他研究者[15]的研究結(jié)果則表明二者之間有一定的聯(lián)系。
對(duì)于精子形態(tài)而言,各種畸形精子癥的患者性染色體二體率升高2~4倍,非整倍體率升高2~3倍[16-19]。然而,Sarrate等[11]并未發(fā)現(xiàn)畸形精子癥與非整倍體之間的關(guān)系,但僅分析了17例畸形精子癥患者。其他嚴(yán)重的精子形態(tài)異常,如大頭多尾畸形精子綜合征(占不育男性患者的1%)與對(duì)照組相比非整倍體水平明顯升高(10~30倍),另有20%~40%的為二倍體、三倍體及四倍體[20]。據(jù)Morel等[21]報(bào)道,圓頭精子癥患者(占不育男性患者的1%)二體率稍有升高(性染色體2~3倍),但是Brahem等[19]在圓頭精子患者中發(fā)現(xiàn)所有染色體的二體率均有顯著升高(8~10倍)。
核型異常患者通?;加胁辉屑耙驈?fù)發(fā)性自然流產(chǎn)而難以獲得妊娠,異常表現(xiàn)包括精子密度低下、精子非整倍體率升高等。通常,在這些患者中觀察到的精子非整倍體率低于由減數(shù)分裂中三價(jià)體或四價(jià)體所導(dǎo)致的染色體配對(duì)異常所推導(dǎo)的理論值。
在非鑲嵌型克氏綜合征(XXY)中,首例報(bào)道的患者性染色體非整倍體率為25%[22],平均為6%[23]。因此,可以推測(cè),在非鑲嵌型患者中有一些XXY細(xì)胞可以起始并完成減數(shù)分裂,產(chǎn)生性染色體三體。在XY/XXY鑲嵌型個(gè)體中,性染色體非整倍體平均值接近3%。大多非鑲嵌型XYY患者外周血性染色體二體率升高,平均為4.2%[24]。在2007年由Gonzalez-Merino等[25]報(bào)道的一例患者中,XY二體高達(dá)19%,YY二體高達(dá)16.7%。
在男性倒位攜帶者中,不平衡配子可能占到20%~77%[26]。在一篇綜述中,Benet等[27]報(bào)道了經(jīng)倉鼠實(shí)驗(yàn)研究發(fā)現(xiàn)平均55.3%的倒位不平衡配子,而經(jīng)FISH驗(yàn)證得到的結(jié)果為53.5%。對(duì)羅氏易位攜帶者來說,不平衡配子預(yù)估值為66%,而實(shí)際研究中發(fā)現(xiàn)不平衡配子占1%~36%(平均15%)[28-29]。
生活方式、環(huán)境及職業(yè)暴露均可能導(dǎo)致精子非整倍體升高。不過因?yàn)閯┝?、研究?duì)象的年齡、個(gè)體差異、暴露的時(shí)間和長度等等并不統(tǒng)一,這些因素之間難以進(jìn)行比較,而且生活方式和職業(yè)暴露的混合效應(yīng)通常難以分離。
最近的研究結(jié)果表明[30-35],盡管精子非整倍體和以上因素之間出現(xiàn)明顯的關(guān)聯(lián),染色體二體率僅比未暴露于以上因素者升高1.5~3倍,大部分研究對(duì)象未達(dá)2.5倍。這是因?yàn)樯罘绞胶推渌┞犊赡苁菚簳r(shí)的,因此個(gè)體的精子非整倍體率可能經(jīng)常變化。
在吸煙者中可見精子非整倍體率略有升高,這是一個(gè)廣為人知的非整倍體誘發(fā)因素。據(jù)報(bào)道13-二體升高了3倍[30],X-二體升高1.5倍[31],Y-二體升高2倍[32],XY二體升高2倍[33];但是Shi等[30]于2001年發(fā)現(xiàn)吸煙與性染色體非整倍體之間并無聯(lián)系。由于缺少研究,飲酒對(duì)精子非整倍體的影響并不明確。Robbins等[34]曾報(bào)道了暴露于硼中的飲酒的工人XY二體率升高(1.38倍)。在之前的研究中,Robbins等[31]在一項(xiàng)對(duì)中國人的研究中發(fā)現(xiàn),酒精攝入與XX二體之間有顯著線性關(guān)系。Xing等[35]研究了職業(yè)暴露于苯的效應(yīng),報(bào)道了在低水平暴露的情況下,YY二體輕微升高(1.2倍),而在暴露于高水平苯的情況下,XX二體升高2.8倍。XY二體及總性染色體二體同樣受到影響,但其值在中等水平。
大量農(nóng)藥釋放到環(huán)境中,因此大多數(shù)人都有不同程度的暴露。一般的農(nóng)藥污染并不會(huì)導(dǎo)致精子非整倍體率的改變[36-37],而氰戊菊酯(殺滅菊酯)污染則會(huì)使性染色體二體率升高1.9倍,18號(hào)染色體二體率升高2.6倍[38]。相似地,西維因(胺甲萘)使性染色體二體率升高1.7倍,18號(hào)染色體二體率升高2.2倍[39]。多氯聯(lián)苯及p,p ′-DDE均輕微升高性染色體二體率[40]。
Young等[41]評(píng)估了營養(yǎng)性葉酸、鋅及抗氧化劑的攝入。發(fā)現(xiàn)食用葉酸的個(gè)體中XX二體率發(fā)生率輕微下降(-0.75倍),而口服鋅與抗氧化劑并不影響精子非整倍體。
一些實(shí)驗(yàn)室集中研究了經(jīng)父系遺傳的Down綜合征[42-43]、Turner綜合征[44]、克氏綜合征[45]患兒父親的精子非整倍體率。這些研究表明,在所有這三個(gè)類型患兒父親的精子中,21號(hào)染色體和性染色體的二體率至少是正常人的兩倍。
復(fù)發(fā)性流產(chǎn)的男性精子非整倍體與對(duì)照組相比,精子性染色體二體率明顯增高(2.3倍)[46]。至少在某些病例中,父源性非整倍體后代或復(fù)發(fā)性流產(chǎn)與精子非整倍體水平的升高有關(guān),這些例子提示需要制定一個(gè)臨床上的上限值,即精子非整倍體率需多高才能導(dǎo)致后代的非整倍體率升高。
目前在輔助生殖領(lǐng)域,男女雙方受到的重視程度并不平等,這一情況在ICSI技術(shù)的出現(xiàn)和逐步完善之后更加嚴(yán)重,尤其是“只要一個(gè)活精子,就能讓你成功做父親”這句廣告語變得耳熟能詳之后。但實(shí)際上ICSI在一定程度上解決了不少嚴(yán)重少弱精子癥患者的生育難題,使其能用上自己的精子,生育生物學(xué)上屬于自己的后代,而不是使用供精;但是,在多年的臨床實(shí)踐中,同樣也有為數(shù)不少的嚴(yán)重少弱精子癥患者在經(jīng)歷多次ICSI之后仍無法獲得正常的妊娠,而又不甘心或不被允許使用供精,隨著男女雙方年齡的增長,治療的黃金時(shí)期亦被耽誤。
這些情況提出:在ICSI操作過程中,如何確保所選取的嚴(yán)重少弱精子癥患者的精子從內(nèi)(內(nèi)部染色體數(shù)量)到外(外部形態(tài))都是正常的?外部形態(tài)可以通過更高放大倍數(shù)的顯微鏡來實(shí)現(xiàn),如精子形態(tài)學(xué)選擇后卵胞漿內(nèi)顯微注射(IMSI);但是內(nèi)部的染色體情況,尚需額外的檢查與評(píng)估,如FISH技術(shù)。對(duì)于通過全染色體組FISH技術(shù)評(píng)估后全染色體組非整倍體率偏高較為嚴(yán)重的患者,是否可以考慮更換方案(如全供精或者半供精)?畢竟,能使患者成功妊娠,是所有輔助生殖領(lǐng)域臨床工作者的終極目標(biāo)。
另外建議,對(duì)于嚴(yán)重少弱精子癥多次行ICSI未成的患者,考慮納入全染色體組非整倍體率檢查作為其選擇供精的指征之一。如果患者的全染色體組非整倍體率為10%,從百分比這個(gè)相對(duì)值來看并不見得多嚴(yán)重,但是其一次排精(假設(shè)總數(shù)1 000萬個(gè)精子)中就有100萬個(gè)非整倍體精子,這個(gè)絕對(duì)數(shù)值不容忽視。在患者充分知情同意的情況下,可以提供供精方案。
[1] Hassold T,Hunt P.To err(meiotically) is human:the genesis of human aneuploidy[J].Nat Rev Genet,2001,2:280-291.
[2] Martin RH,Balkan W,Burns K,et al. The chromosome constitution of 1000 human spermatozoa[J].Hum Genet,1983,63:305-309.
[3] Templado C,Vidal F,Estop A.Aneuploidy in human spermatozoa[J].Cytogenet Genome Res,2011,133:91-99.
[4] Templado C,Marquez C,Munne S,et al. An analysis of human sperm chromosome aneuploidy[J].Cytogenet Cell Genet,1996,74:194-200.
[5] Templado C,Bosch M,Benet J.Frequency and distribution of chromosome abnormalities in human spermatozoa[J].Cytogenet Genome Res,2005,111:199-205.
[6] Uroz L,Templado C.Meiotic non-disjunction mechanisms in human fertile males[J].Hum Reprod,2012,27:1518-1524.
[7] Laurie DA,Hulten MA.Further studies on bivalent chiasma frequency in human males with normal karyotypes[J].Ann Hum Genet,1985,49(Pt 3):189-201.
[8] Neusser M,Rogenhofer N,Dürl S,et al. Increased chromosome 16 disomy rates in human spermatozoa and recurrent spontaneous abortions[J].Fertil Steril,2015,104:1130-1137.
[9] Buwe A,Guttenbach M,Schmid M.Effect of paternal age on the frequency of cytogenetic abnormalities in human spermatozoa[J].Cytogenet Genome Res,2005,111:213-228.
[10] Fonseka KG,Griffin DK.Is there a paternal age effect for aneuploidy?[J].Cytogenet Genome Res,2011,133:280-291.
[11] Sarrate Z,Vidal F,Blanco J.Role of sperm fluorescent in situ hybridization studies in infertile patients:indications,study approach,and clinical relevance[J].Fertil Steril,2010,93:1892-1902.
[12] Durak AB,Aras I,Can C,et al. Exploring the relationship between the severity of oligozoospermia and the frequencies of sperm chromosome aneuploidies[J].Andrologia,2012,44:416-422.
[13] Mougou-Zerelli S,Brahem S,Kammoun M,et al. Detection of aneuploidy rate for chromosomes X,Y and 8 by fluorescence in-situ hybridization in spermatozoa from patients with severe non-obstructive oligozoospermia[J].J Assist Reprod Genet,2011,28:971-977.
[14] Sun F,Mikhaail-Philips M,Oliver-Bonet M,et al. Reduced meiotic recombination on the XY bivalent is correlated with an increased incidence of sex chromosome aneuploidy in men with non-obstructive azoospermia[J].Mol Hum Reprod,2008,14:399-404.
[15] Aran B,Blanco J,Vidal F,et al. Screening for abnormalities of chromosomes X,Y,and 18 and for diploidy in spermatozoa from infertile men participating in an in vitro fertilization-intracytoplasmic sperm injection program[J].Fertil Steril,1999,72:696-701.
[16] Gole LA,Wong PF,Ng PL,et al. Does sperm morphology play a significant role in increased sex chromosomal disomy? A comparison between patients with teratozoospermia and OAT by FISH[J].J Androl,2001,22:759-763.
[17] Templado C,Hoang T,Greene C,et al. Aneuploid spermatozoa in infertile men:teratozoospermia.[J].Mol Reprod Dev,2002,61:200-204.
[18] Tang SS,Gao H,Zhao Y,et al. Aneuploidy and DNA fragmentation in morphologically abnormal sperm[J].Int J Androl,2010,33:e163-e179.
[19] Brahem S,Elghezal H,Ghedir H,et al. Cytogenetic and molecular aspects of absolute teratozoospermia:comparison between polymorphic and monomorphic forms[J].Urology,2011,78:1313-1319.
[20] Perrin A,Morel F,Moy L,et al. Study of aneuploidy in large-headed,multiple-tailed spermatozoa:case report and review of the literature[J].Fertil Steril,2008,90:1201-1213.
[21] Morel F,Douet-Guilbert N,Moerman A,et al. Chromosome aneuploidy in the spermatozoa of two men with globozoospermia[J].Mol Hum Reprod,2004,10:835-838.
[22] Estop AM,Cieply KM,Wakim A,et al. Meiotic products of two reciprocal translocations studied by multicolor fluorescence in situ hybridization[J].Cytogenet Cell Genet,1998,83:193-198.
[23] Tempest HG.Meiotic recombination errors,the origin of sperm aneuploidy and clinical recommendations[J].Syst Biol Reprod Med,2011,57:93-101.
[24] Blanco J,Egozcue J,Vidal F.Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies(47,XXY,mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization[J].Hum Reprod,2001,16:887-892.
[25] Gonzalez-Merino E,Hans C,Abramowicz M,et al. Aneuploidy study in sperm and preimplantation embryos from nonmosaic 47,XYY men[J].Fertil Steril,2007,88:600-606.
[26] Martin RH,Spriggs EL.Sperm chromosome complements in a man heterozygous for a reciprocal translocation 46,XY,t(9;13)(q21.1;q21.2) and a review of the literature[J].Clin Genet,1995,47:42-46.
[27] Benet J,Oliver-Bonet M,Cifuentes P,et al. Segregation of chromosomes in sperm of reciprocal translocation carriers:a review[J].Cytogenet Genome Res,2005,111:281-290.
[28] Frydman N,Romana S,Le LM,et al. Assisting reproduction of infertile men carrying a Robertsonian translocation[J].Hum Reprod,2001,16:2274-2277.
[29] Ogur G,Van Assche E,Vegetti W,et al. Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers[J].Mol Hum Reprod,2006,12:209-215.
[30] Shi Q,Ko E,Barclay L,et al. Cigarette smoking and aneuploidy in human sperm[J].Mol Reprod Dev,2001,59:417-421.
[31] Robbins WA,Vine MF,Truong KY,et al. Use of fluorescence in situ hybridization(FISH) to assess effects of smoking,caffeine,and alcohol on aneuploidy load in sperm of healthy men[J].Environ Mol Mutagen,1997,30:175-183.
[32] Rubes J,Lowe X,Moore DN,et al. Smoking cigarettes is associated with increased sperm disomy in teenage men[J].Fertil Steril,1998,70:715-723.
[33] Naccarati A,Zanello A,Landi S,et al. Sperm-FISH analysis and human monitoring:a study on workers occupationally exposed to styrene[J].Mutat Res,2003,537:131-140.
[34] Robbins WA,Elashoff DA,Xun L,et al. Effect of lifestyle exposures on sperm aneuploidy[J].Cytogenet Genome Res,2005,111:371-377.
[35] Xing C,Marchetti F,Li G,et al. Benzene exposure near the U.S.permissible limit is associated with sperm aneuploidy[J].Environ Health Perspect,2010,118:833-839.
[36] Harkonen K,Viitanen T,Larsen SB,et al. Aneuploidy in sperm and exposure to fungicides and lifestyle factors.ASCLEPIOS.A European Concerted Action on Occupational Hazards to Male Reproductive Capability[J].Environ Mol Mutagen,1999,34:39-46.
[37] Smith JL,Garry VF,Rademaker AW,et al. Human sperm aneuploidy after exposure to pesticides[J].Mol Reprod Dev,2004,67:353-359.
[38] Xia Y,Bian Q,Xu L,et al. Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate[J].Toxicology,2004,203:49-60.
[39] Xia Y,Cheng S,Bian Q,et al. Genotoxic effects on spermatozoa of carbaryl-exposed workers[J].Toxicol Sci,2005,85:615-623.
[40] Mcauliffe ME,Williams PL,Korrick SA,et al. Environmental exposure to polychlorinated biphenyls and p,p′-DDE and sperm sex-chromosome disomy[J].Environ Health Perspect,2012,120:535-540.
[41] Young SS,Eskenazi B,Marchetti FM,et al. The association of folate,zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men[J].Hum Reprod,2008,23:1014-1022.
[42] Blanco J,Gabau E,Gomez D,et al. Chromosome 21 disomy in the spermatozoa of the fathers of children with trisomy 21,in a population with a high prevalence of Down syndrome:increased incidence in cases of paternal origin[J].Am J Hum Genet,1998,63:1067-1072.
[43] Soares SR,Templado C,Blanco J,et al. Numerical chromosome abnormalities in the spermatozoa of the fathers of children with trisomy 21 of paternal origin:generalised tendency to meiotic non-disjunction[J].Hum Genet,2001,108:134-139.
[44] Martinez-Pasarell O,Nogues C,Bosch M,et al. Analysis of sex chromosome aneuploidy in sperm from fathers of Turner syndrome patients[J].Hum Genet,1999,104:345-349.
[45] Arnedo N,Templado C,Sanchez-Blanque Y,et al. Sperm aneuploidy in fathers of Klinefelter’s syndrome offspring assessed by multicolour fluorescent in situ hybridization using probes for chromosomes 6,13,18,21,22,X and Y[J].Hum Reprod,2006,21:524-528.
[46] Rubio C,Simon C,Blanco J,et al. Implications of sperm chromosome abnormalities in recurrent miscarriage[J].J Assist Reprod Genet,1999,16:253-258.
[編輯:谷炤]
Research progress on aneuploid of human sperm chromosome
PENGXiang-jie1,HUANGChuan1,F(xiàn)ANLi-qing1,2,LUGuang-xiu1,2,ZHUWen-bing1,2*
1.Reproductive&GeneticHospitalofCITIC-XiangYa,Changsha410000 2.InstituteofReproductive&StemCellEngineering,BasicMedicineCollege,CentralSouthUniversity,Changsha410000
The most common chromosomal abnormality in human is aneuploidy.Since the majority of aneuploid embryos cease to develop during the early stages of embryonic development,accurate estimate of aneuploid rate in embryos is mostly carried out by direct studies of gametes.The most of aneuploid embryos are caused by accidental chromosomes non-disjunction in the paternal or maternally derived meiosis.This paper reviews the sperm aneuploid rate in normal men and different types of patients with infertility or somatic chromosome abnormalities,as well as the individuals exposed to harmful environment or lifestyle.The clinical impacts of higher sperm aneuploid rate are also discussed.
Aneuploid; Meiosis; Chromosome non-disjunction; Spermatozoa
10.3969/j.issn.1004-3845.2017.11.012
2017-08-22;
2017-09-13
湖南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016WK2019)
彭向杰 男,湖南婁底人,碩士,基礎(chǔ)醫(yī)學(xué)專業(yè).(*
)