鄧 勇, 蔣亞輝, 萬(wàn) 焰, 楊和榮, 于春水, 黃 娟
(1遂寧市中心醫(yī)院皮膚科,四川 遂寧 629000; 2四川省人民醫(yī)院血液科, 四川 成都 610041)
血小板源性生長(zhǎng)因子受體α影響過(guò)氧化氫誘導(dǎo)的黑素細(xì)胞凋亡*
鄧 勇1, 蔣亞輝1, 萬(wàn) 焰1, 楊和榮1, 于春水1, 黃 娟2△
(1遂寧市中心醫(yī)院皮膚科,四川 遂寧 629000;2四川省人民醫(yī)院血液科, 四川 成都 610041)
目的探討血小板源性生長(zhǎng)因子受體α(PDGFRα)對(duì)過(guò)氧化氫(H2O2)誘導(dǎo)的黑素細(xì)胞凋亡的影響。方法以黑素細(xì)胞PIGI為研究對(duì)象,分別用不同濃度的H2O2作用后,用MTT法檢測(cè)細(xì)胞活力,并計(jì)算半數(shù)抑制濃度。經(jīng)H2O2處理的PIGI細(xì)胞轉(zhuǎn)染空載體pCMV6或PDGFRα過(guò)表達(dá)載體pCMV6-PDGFRα,以不做轉(zhuǎn)染的細(xì)胞為空白對(duì)照,RT-qPCR和Western blot檢測(cè)轉(zhuǎn)染效率。用半數(shù)抑制濃度的H2O2作用于過(guò)表達(dá)PDGFRα的PIGI細(xì)胞,MTT法檢測(cè)細(xì)胞活力,繪制細(xì)胞生長(zhǎng)曲線;流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡情況;Western blot檢測(cè)細(xì)胞中p38、磷酸化p38(p-p38)和cleaved caspase-3的蛋白水平;二氯二氫熒光素二乙酸酯(DCDHF-DA)法檢測(cè)細(xì)胞中活性氧簇(ROS)水平。結(jié)果H2O2作用后PIGI細(xì)胞生長(zhǎng)減慢,細(xì)胞凋亡率升高,細(xì)胞中ROS水平、p-p38和cleaved caspase-3蛋白水平升高(P<0.05),H2O2的半數(shù)抑制濃度為0.7 mmol/L。PDGFRα過(guò)表達(dá)載體能夠成功上調(diào)PIGI細(xì)胞中PDGFRα的mRNA和蛋白水平(P<0.05)。過(guò)表達(dá)PDGFRα后經(jīng)過(guò)H2O2處理的PIGI細(xì)胞存活率升高(P<0.05),細(xì)胞凋亡率下降(P<0.05),細(xì)胞中的ROS水平下降(P<0.05),p-p38和cleaved caspase-3蛋白水平降低(P<0.05)。結(jié)論P(yáng)DGFRα能夠抑制H2O2誘導(dǎo)的黑素細(xì)胞凋亡,部分逆轉(zhuǎn)H2O2對(duì)黑素細(xì)胞增殖的抑制作用,降低細(xì)胞中的ROS水平,其作用機(jī)制可能與p-p38和cleaved caspase-3蛋白水平的變化有關(guān)。
黑素細(xì)胞; 血小板源性生長(zhǎng)因子受體α; 細(xì)胞凋亡; 過(guò)氧化氫
白癜風(fēng)是一種常見(jiàn)的皮膚病,以皮膚上的白斑為主要特征。目前白癜風(fēng)的發(fā)病機(jī)制尚不十分明確,黑素細(xì)胞缺失是其發(fā)病的主要原因。造成黑素細(xì)胞損傷的原因有很多,包括免疫學(xué)說(shuō)、生化假說(shuō)和神經(jīng)假說(shuō)等,其中氧化應(yīng)激與黑素細(xì)胞損傷密切相關(guān)[1-2]。有研究表明,在白癜風(fēng)患者損傷的表皮處發(fā)現(xiàn)其過(guò)氧化氫的濃度是正常表皮的1 000倍[3-5]。
血小板源性生長(zhǎng)因子受體α(platelet-derived growth factor receptor α,PDGFRα)基因在遺傳性白癜風(fēng)患者中的突變率明顯高于正常人,說(shuō)明該基因可能與白癜風(fēng)的發(fā)生有關(guān)[6]。除此以外,后續(xù)研究報(bào)道稱PDGFRα能夠減弱細(xì)胞氧化損傷,因此PDGFRα可能與黑素細(xì)胞氧化損傷有關(guān)[7-8]。本研究通過(guò)體外構(gòu)建黑素細(xì)胞氧化損傷模型,并過(guò)表達(dá)黑素細(xì)胞中PDGFRα水平,探討PDGFRα對(duì)氧化損傷誘導(dǎo)的黑素細(xì)胞凋亡的作用,以期為探討白癜風(fēng)的發(fā)病機(jī)制奠定基礎(chǔ)。
1細(xì)胞和主要材料
黑素細(xì)胞PIGI購(gòu)自于中國(guó)科學(xué)院細(xì)胞庫(kù)。
二喹啉甲酸(bicinchoninic acid,BCA)蛋白濃度檢測(cè)試劑盒和細(xì)胞RNA提取試劑盒均購(gòu)于碧云天生物技術(shù)研究所;過(guò)氧化氫(hydrogen peroxide,H2O2)、DMEM培養(yǎng)基和M-254培養(yǎng)基均購(gòu)自于Sigma;胎牛血清購(gòu)于杭州四季青生物工程材料有限公司;PDGFRα和β-肌動(dòng)蛋白(β-actin)引物由上海生工合成;抗PDGFRα單克隆抗體、β-actin單克隆抗體、p38單克隆抗體、磷酸化p38(p-p38)單克隆抗體和cleaved caspase-3單克隆抗體均購(gòu)自于CST;活性氧簇(reactive oxygen species,ROS)含量檢測(cè)試劑盒購(gòu)自于上海翊圣生物科技有限公司;空載體(pCMV6)和PDGFRα過(guò)表達(dá)載體(pCMV6-PDGFRα)購(gòu)于Origene;Lipofectamine 2000轉(zhuǎn)染試劑購(gòu)自于Invitrogen。
2方法
2.1黑素細(xì)胞氧化損傷模型構(gòu)建 黑素細(xì)胞PIGI在含5%胎牛血清的M-254培養(yǎng)液中培養(yǎng),培養(yǎng)條件為37 ℃、5% CO2。PIGI細(xì)胞以每孔5 000個(gè)細(xì)胞的密度接種到96孔細(xì)胞培養(yǎng)板中,每孔設(shè)置6個(gè)復(fù)孔,培養(yǎng)48 h后,吸除細(xì)胞培養(yǎng)液,在對(duì)照(control)組中加入含有5%胎牛血清的DMEM培養(yǎng)基,H2O2組細(xì)胞培養(yǎng)基中加入不同濃度的H2O2,使其終濃度為0、0.2、0.4和0.8 mmol/L,培養(yǎng)24 h。
2.2H2O2對(duì)細(xì)胞活力影響 按照方法2.1處理PIGI細(xì)胞,培養(yǎng)24 h后,每孔中加入MTT溶液(5 g/L)20 μL,孵育4 h后,棄去上清液,加入二甲基亞砜,振蕩反應(yīng)10 min,觀察結(jié)晶物溶解后,酶標(biāo)儀檢測(cè)490 nm的吸光度(A)值,以0 mmol/L組為陰性對(duì)照組,以不加入細(xì)胞的組為空白對(duì)照組,計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=(H2O2處理細(xì)胞A值-空白組A值)÷(對(duì)照細(xì)胞A值-空白組A值)×100%。
2.3細(xì)胞轉(zhuǎn)染 取造模成功的PIGI細(xì)胞,接種到6孔細(xì)胞培養(yǎng)板中,接種密度為2×108/L,觀察細(xì)胞融合度達(dá)到60%時(shí),進(jìn)行細(xì)胞轉(zhuǎn)染。取5 μL的Lipofectamine 2000轉(zhuǎn)染試劑和95 μL的DMEM混合后記為A液,分別取2 μg的pCMV6和pCMV6-PDGFRα與96 μL的DMEM混合,記為B液,將A液和B液混合,放在室溫下靜置15 min,加入到細(xì)胞中,5 h后更換細(xì)胞培養(yǎng)液。將轉(zhuǎn)染pCMV6和pCMV6-PDGFRα后的黑素細(xì)胞PIGI分別記為陰性對(duì)照(negative)組和PDGFRα組,以不做處理的細(xì)胞記為空白對(duì)照(control)組。
2.4RT-qPCR檢測(cè)轉(zhuǎn)染效果 取control組、negative組和PDGFRα組細(xì)胞,培養(yǎng)24 h后,按照細(xì)胞RNA提取試劑盒提取細(xì)胞總RNA,用紫外分光光度計(jì)檢測(cè)提取的RNA的濃度和純度。RT-qPCR定量分析PDGFRα的mRNA表達(dá)水平。結(jié)果采用2-ΔΔCt法定量分析,內(nèi)參照為β-actin。兩步法反應(yīng)程序?yàn)?95 ℃預(yù)變性14 min; 95 ℃變性10 s, 60 ℃退火30 s, 72 ℃延伸120 s, 35個(gè)循環(huán); 72 ℃總延伸360 s。PDGFRα的上游引物為5’-GGCCCCATTTACATCATCAC-3’,下游引物為5’-CATAGCTCCGTGTGCTTTCA-3’;β-actin的上游引物為5’-AGCGAGCATCCCCCAAAGT-3’,下游引物為5’-GGGCACGAAGGCTCATCATT-3’。
2.5Western blot檢測(cè)轉(zhuǎn)染效果 取control組、ne-gative組和PDGFRα組細(xì)胞,培養(yǎng)24 h后,加入細(xì)胞裂解液,放在冰上裂解30 min后,4 ℃、12 000 r/min離心15 min,吸取蛋白上清液,用BCA蛋白定量試劑盒檢測(cè)蛋白濃度。取蛋白樣品與Loading Buffer混合后,在100 ℃煮沸5 min。取變性蛋白樣品加入上樣孔中,每孔中加入50 μL,電泳初始電壓為80 V,終末電壓為120 V,蛋白凝膠分離膠為12 %,濃縮膠為6%。電泳結(jié)束后,取出蛋白凝膠,4 ℃轉(zhuǎn)印至PVDF膜上,用5 %脫脂奶粉在室溫封閉60 min,依次與 I 抗(500倍稀釋,4 ℃過(guò)夜)、II 抗(1 000倍稀釋,室溫反應(yīng)60 min)反應(yīng)后,轉(zhuǎn)移至暗室中,滴加顯色液,曝光后,以β-actin為內(nèi)參照,分析PDGFRα的蛋白相對(duì)表達(dá)水平。
2.6PDGFRα對(duì)細(xì)胞增殖的影響 取control組、negative組和PDGFRα組細(xì)胞,用0.7 mmol/L的H2O2加入細(xì)胞培養(yǎng)液培養(yǎng)24 h,以不轉(zhuǎn)染且不經(jīng)過(guò)H2O2處理的PIGI細(xì)胞為normal組,按照方法2.2中步驟檢測(cè)細(xì)胞存活率。同時(shí)將PIGI細(xì)胞接種于24孔板中,每孔加入2 000個(gè)細(xì)胞,每隔1 d對(duì)細(xì)胞進(jìn)行計(jì)數(shù),培養(yǎng)4 d后,繪制生長(zhǎng)曲線,實(shí)驗(yàn)重復(fù)3次,取均值。
2.7流式細(xì)胞術(shù)檢測(cè)PDGFRα對(duì)細(xì)胞凋亡的影響 取control組、negative組和PDGFRα組細(xì)胞,加入含有0.7 mmol/L的H2O2的細(xì)胞培養(yǎng)液培養(yǎng)24 h,以不轉(zhuǎn)染且不經(jīng)過(guò)H2O2處理的PIGI細(xì)胞為normal組,調(diào)整細(xì)胞濃度為5×108/L。收集1 mL的細(xì)胞懸液,加入500 μL的結(jié)合緩沖液充分懸浮細(xì)胞,在細(xì)胞中分別加5 μL的Annexin V-FITC/PI,在避光環(huán)境中反應(yīng)20 min。流式細(xì)胞儀檢測(cè)細(xì)胞凋亡情況。
2.8Western blot檢測(cè)p38、p-p38和cleaved caspase-3的蛋白水平 取control組、negative組和PDGFRα組細(xì)胞,加入含有0.7 mmol/L的H2O2的細(xì)胞培養(yǎng)液培養(yǎng)24 h,以不轉(zhuǎn)染且不經(jīng)過(guò)H2O2處理的PIGI細(xì)胞為normal組,按方法2.5,Western blot檢測(cè)細(xì)胞中p38、p-p38和cleaved caspase-3的蛋白水平,實(shí)驗(yàn)重復(fù)3次。
2.9ROS含量的檢測(cè) 取control組、negative組和PDGFRα組細(xì)胞,用含0.7 mmol/L H2O2的細(xì)胞培養(yǎng)液培養(yǎng)24 h后,以不轉(zhuǎn)染且不經(jīng)過(guò)H2O2處理的PIGI細(xì)胞(normal組)為內(nèi)參照,按照試劑盒說(shuō)明書的步驟,用二氯二氫熒光素二乙酸酯(2’,7’-dichlorodihydrofluorescein diacetate,DCDHF-DA)法檢測(cè)細(xì)胞中ROS水平。
3統(tǒng)計(jì)學(xué)處理
所得的實(shí)驗(yàn)數(shù)據(jù)均采用SPSS 22.0統(tǒng)計(jì)學(xué)軟件分析。數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,2組數(shù)據(jù)比較用t檢驗(yàn),多組之間比較用單因素方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1過(guò)氧化氫對(duì)細(xì)胞活力的影響
經(jīng)0、0.2、0.4和0.8 mmol/L的H2O2處理后,PIGI細(xì)胞的存活率依次為(100.61±9.33)%、(82.63±3.71)%、(64.38±8.30)%和(47.36±5.21)%。0.2、0.4和0.8 mmol/L的H2O2處理后細(xì)胞存活率較0 mmol/L H2O2作用組明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)圖1。經(jīng)計(jì)算,H2O2的半數(shù)抑制濃度(IC50)為(0.72±0.06)mmol/L,因此后續(xù)選用0.7 mmol/L的H2O2處理PIGI細(xì)胞。
Figure 1. The effect of H2O2on the viability of the PIGI cells. Mean±SD.n=3.*P<0.05vs0 mmol/L group.
圖1H2O2對(duì)PIGI細(xì)胞活力的影響
2轉(zhuǎn)染效果的檢測(cè)
Control組、negative組和PDGFRα組中PDGFRα的mRNA水平依次為 1.00±0.08、1.01±0.11和2.91±0.34,蛋白水平依次為0.21±0.05、0.20±0.08和0.58±0.07。這提示PIGI細(xì)胞轉(zhuǎn)染PDGFRα過(guò)表達(dá)載體后,細(xì)胞中PDGFRα的mRNA和蛋白水平均明顯高于control組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01),而轉(zhuǎn)染空載體后細(xì)胞中PDGFRα mRNA和蛋白水平與control組相比沒(méi)有差異,見(jiàn)圖2。
Figure 2. The expression of PDGFRα in transfected PIGI cells. A: the relative mRNA expression levels of PDGFRα; B: the representitive images of Western blot for determining the protein levels of PDGFRα and the quantitative analysis. Mean±SD.n=3.**P<0.01vscontrol group.
圖2RT-qPCR和Westernblot檢測(cè)轉(zhuǎn)染效果
3PDGFRα對(duì)細(xì)胞生長(zhǎng)的影響
Normal組、control組、negative組和PDGFRα組的細(xì)胞存活率依次為(100.81±9.12)%、(50.72±4.91)%、(51.92±5.25)%和(70.92±4.31)%。Control組、negative組和PDGFRα組細(xì)胞存活率明顯低于normal組(P<0.01),PDGFRα組細(xì)胞存活率明顯高于control組(P<0.01),見(jiàn)圖3。過(guò)表達(dá)PDGFRα后細(xì)胞存活率升高,說(shuō)明過(guò)表達(dá)PDGFRα能夠部分逆轉(zhuǎn)H2O2對(duì)細(xì)胞的生長(zhǎng)抑制作用。
4PDGFRα對(duì)細(xì)胞凋亡的影響
Normal組、control組、negative組和PDGFRα組的細(xì)胞凋亡率依次為(6.32±1.08)%、(19.58±1.13)%、(19.84±1.14)%和(12.65±1.17)%。Control組、negative組和PDGFRα組凋亡率明顯高于normal組(P<0.01);PDGFRα組凋亡率明顯低于control組(P<0.01),見(jiàn)圖4。這提示H2O2處理后細(xì)胞凋亡增多,而過(guò)表達(dá)PDGFRα能夠抑制H2O2誘導(dǎo)的PIGI細(xì)胞凋亡。
Figure 3. The effect of PDGFRα on the cell proliferation. A: the cell growth curve; B: the changes of cell viability. Mean±SD.n=3.&P<0.05vsnormal group;*P<0.05vscontrol group.
圖3PDGFRα對(duì)細(xì)胞生長(zhǎng)的影響
Figure 4. The effect of PDGFRα on the apoptosis of PIGI cells. Mean±SD.n=3.&P<0.05vsnormal group;*P<0.05vscontrol group.
圖4PDGFRα對(duì)細(xì)胞凋亡的影響
5PDGFRα對(duì)細(xì)胞中ROS水平的影響
Normal組、control組、negative組和PDGFRα組的ROS水平依次為1.01±0.14、3.30±0.25、3.31±1.10和2.79±0.14。Control組、negative組和PDGFRα組的ROS水平均高于normal組(P<0.01);PDGFRα組水平低于control組(P<0.05),見(jiàn)圖5。這表明過(guò)表達(dá)PDGFRα能夠部分抑制H2O2導(dǎo)致的ROS水平升高。
6PDGFRα對(duì)細(xì)胞中p38、p-p38和cleavedcaspase-3蛋白水平的影響
Western blot結(jié)果顯示,control組p-p38和cleaved caspase-3的蛋白水平明顯高于normal組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05);PDGFRα組p-p38和cleaved caspase-3的蛋白水平明顯低于control組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。H2O2能夠誘導(dǎo)PIGI細(xì)胞中p-p38和cleaved caspase-3的蛋白水平升高,而過(guò)表達(dá)PDGFRα的PIGI細(xì)胞經(jīng)H2O2處理后細(xì)胞中的p-p38和cleaved caspase-3蛋白水平下降。提示PDGFRα可能通過(guò)調(diào)節(jié)p-p38和cleaved caspase-3影響PIGI細(xì)胞的凋亡,見(jiàn)圖6、表1。
Figure 5. The effect of PDGFRα on the generation of ROS in the PIGI cells. Mean±SD.n=3.&P<0.05vsnormal group;*P<0.05vscontrol group.
圖5PDGFRα對(duì)細(xì)胞ROS水平的影響
Figure 6. The effect of PDGFR α on the protein levels of p38, p-p38 and cleaved caspase-3 in the PIGI cells determined by Western blot.
圖6PDGFRα對(duì)細(xì)胞中p38、p-p38和cleavedcaspase-3蛋白水平的影響
表1p38、p-p38和cleavedcaspase-3的相對(duì)表達(dá)量
Table 1. The relative expression levels of p38, p-p38 and cleaved caspase-3 (Mean±SD.n=3)
Groupp?p38p38Cleavedcaspase?3Normal0.15±0.030.99±0.100.12±0.01Control0.29±0.07&0.98±0.120.23±0.04&Negative0.30±0.02&1.00±0.090.24±0.06&PDGFRα0.17±0.02&?0.99±0.140.13±0.03&?
&P<0.05vsnormal group;*P<0.05vscontrol group.
白癜風(fēng)的發(fā)病機(jī)制與氧化應(yīng)激的關(guān)系密切。氧化應(yīng)激作用于黑素細(xì)胞,導(dǎo)致黑素細(xì)胞凋亡或者破壞后,在炎癥因子和抗原等作用下可引起機(jī)體的免疫應(yīng)答反應(yīng),導(dǎo)致白癜風(fēng)的發(fā)生[9-15]。PDGFRα是PDGF的受體之一,有酪氨酸激酶活性,能夠在骨骼、心臟、肺臟和性腺等發(fā)育過(guò)程中發(fā)揮調(diào)控作用,在中風(fēng)、癌癥和糖尿病等疾病的發(fā)生中也發(fā)揮重要作用[16-19]。有研究表明,過(guò)氧化氫刺激后黑素細(xì)胞中PDGFRα表達(dá)水平隨著H2O2濃度的升高而升高,對(duì)于黑素細(xì)胞自噬具有抑制作用[20]。
本研究運(yùn)用了不同濃度的H2O2刺激黑素細(xì)胞,發(fā)現(xiàn)H2O2刺激后的黑素細(xì)胞存活率下降,計(jì)算其半數(shù)抑制濃度為0.7 mmol/L,后續(xù)實(shí)驗(yàn)中選用0.7 mmol/L的H2O2刺激黑素細(xì)胞。本研究還成功構(gòu)建了過(guò)表達(dá)PDGFRα的黑素細(xì)胞,結(jié)果發(fā)現(xiàn)過(guò)表達(dá)PDGFRα后的黑素細(xì)胞經(jīng)H2O2刺激后細(xì)胞凋亡有所減少,細(xì)胞增殖能力增加,提示過(guò)表達(dá)PDGFRα能夠抑制H2O2誘導(dǎo)的黑素細(xì)胞凋亡,拮抗H2O2對(duì)黑素細(xì)胞的增殖抑制作用。
細(xì)胞凋亡機(jī)制十分復(fù)雜,是受到一系列基因的嚴(yán)格調(diào)控的共同結(jié)果。目前公認(rèn)的與細(xì)胞凋亡有關(guān)的基因主要有caspase蛋白家族,該蛋白家族在受到凋亡信號(hào)的刺激后能夠迅速活化,引起caspase級(jí)聯(lián)反應(yīng),誘導(dǎo)細(xì)胞凋亡發(fā)生[21-25]。其中caspase-3是caspase級(jí)聯(lián)反應(yīng)中執(zhí)行凋亡的蛋白,其活化后標(biāo)志著凋亡進(jìn)入不可逆的階段[26-27]。本研究結(jié)果發(fā)現(xiàn),過(guò)氧化氫刺激后的黑素細(xì)胞中caspase-3活化水平升高,而過(guò)表達(dá)PDGFRα后能夠有效降低過(guò)氧化氫處理后的黑素細(xì)胞中caspase-3活化水平。這提示,PDGFRα能夠作用于caspase-3活化水平影響H2O2誘導(dǎo)的黑素細(xì)胞凋亡。
正常情況下,細(xì)胞內(nèi)的ROS水平處于動(dòng)態(tài)平衡當(dāng)中,當(dāng)細(xì)胞內(nèi)ROS水平異常升高時(shí)能夠?qū)е录?xì)胞內(nèi)蛋白和DNA等損傷,破壞細(xì)胞的正常平衡,引起疾病的發(fā)生[28-32]。白癜風(fēng)的發(fā)生與黑素細(xì)胞氧化應(yīng)激損傷有關(guān),而氧化應(yīng)激是機(jī)體內(nèi)產(chǎn)生的ROS與生物機(jī)體內(nèi)活性介質(zhì)的清除及組織損傷修復(fù)能力遭到破壞的結(jié)果[33-35]。本研究結(jié)果表明,H2O2作用后黑素細(xì)胞中ROS水平升高,而過(guò)表達(dá)PDGFRα能夠降低H2O2誘導(dǎo)的ROS水平異常升高。
細(xì)胞凋亡除了受到細(xì)胞內(nèi)ROS水平和caspase蛋白家族等的影響外,細(xì)胞內(nèi)信號(hào)通路的傳導(dǎo)也參與細(xì)胞凋亡過(guò)程[13,36-37]。p38信號(hào)通路參與心肌細(xì)胞、癌細(xì)胞、骨骼細(xì)胞、膠質(zhì)細(xì)胞和表皮細(xì)胞等多種細(xì)胞的生長(zhǎng)和凋亡過(guò)程,p38磷酸化后能夠促進(jìn)細(xì)胞凋亡的發(fā)生[38-40]。本研究結(jié)果發(fā)現(xiàn),H2O2刺激后黑素細(xì)胞中p38磷酸化水平升高,而過(guò)表達(dá)PDGFRα后細(xì)胞中p38磷酸化水平有所降低。
綜上所述,PDGFRα能夠抑制H2O2誘導(dǎo)的黑素細(xì)胞凋亡,拮抗H2O2對(duì)黑素細(xì)胞增殖的抑制作用,抑制H2O2誘導(dǎo)的細(xì)胞中ROS水平升高,其作用機(jī)制可能與p38信號(hào)通路有關(guān)。本研究結(jié)果為后續(xù)進(jìn)一步研究白癜風(fēng)的發(fā)病機(jī)制提供了實(shí)驗(yàn)依據(jù)。本研究只對(duì)PDGFRα的作用機(jī)制進(jìn)行了初步探討,后續(xù)會(huì)繼續(xù)深入研究PDGFRα對(duì)黑素細(xì)胞氧化損傷的作用機(jī)制。
[1] Richmond JM, Bangari DS, Essien KI, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease[J]. J Invest Dermatol, 2017, 137(2):350-358.
[2] Zailaie MZ. Epidermal hydrogen peroxide is not increased in lesional and non-lesional skin of vitiligo[J]. Arch Dermatol Res, 2017, 309(1):31-42.
[3] Komen L, da Gra?a V, Wolkerstorfer A, et al. Vitiligo area scoring index and vitiligo european task force assessment: reliable and responsive instruments to measure the degree of depigmentation in vitiligo[J]. Br J Dermatol, 2015, 172(2): 437-443.
[4] 張麗宏, 安麗鳳, 黃敬文, 等. 當(dāng)歸/蒺藜不同配比對(duì)過(guò)氧化氫誘導(dǎo)實(shí)驗(yàn)性白癜風(fēng)豚鼠的治療作用[J]. 遼寧中醫(yī)藥大學(xué)學(xué)報(bào), 2016, 18(8):36-38.
[5] 田 軍, 朱龍飛, 堅(jiān) 哲, 等. 過(guò)氧化氫誘導(dǎo)人黑素細(xì)胞氧化應(yīng)激損傷模型的建立[J]. 實(shí)用皮膚病學(xué)雜志, 2014, 7(6):406-410.
[6] Waltari M, Sihto H, Kukko H, et al. Association of Merkel cell polyomavirus infection with tumor p53, KIT, stem cell factor, PDGFR-α and survival in Merkel cell carcinoma[J]. Int J Cancer, 2011, 129(3):619-628.
[7] Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system[J]. J Neuroimmune Pharmacol, 2014, 9(2):168-181.
[8] Hirobe T, Shibata T, Sato K. Human fibroblasts treated with hydrogen peroxide stimulate human melanoblast proliferation and melanocyte differentiation, but inhibit melanocyte proliferation in serum-free co-culture system[J]. J Dermatol Sci, 2016, 84(3):282-295.
[9] Denat L, Kadekaro AL, Marrot L, et al. Melanocytes as instigators and victims of oxidative stress[J]. J Invest Dermatol, 2014, 134(6):1512-1518.
[10] Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo[J]. J Invest Dermatol, 2014, 134(8):2221-2230.
[11] Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8[J]. J Invest Dermatol, 2012, 132(11):2601-2609.
[12] Rao A, Gupta S, Dinda AK, et al. Study of clinical, biochemical and immunological factors determining stability of disease in patients with generalized vitiligo undergoing melanocyte transplantation[J]. Br J Dermatol, 2012, 166(6):1230-1236.
[13] Yang L, Wei Y, Sun Y, et al. Interferon-γ inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+cytotoxic T lymphocytes in vitiligo[J]. Acta Derm Venereol, 2015, 95(6):664-670.
[14] Reimann E, Kingo K, Karelson M, et al. The mRNA expression profile of cytokines connected to the regulation of melanocyte functioning in vitiligo skin biopsy samples and peripheral blood mononuclear cells[J]. Human Immunol, 2012, 73(4):393-398.
[15] 劉邦民, 堅(jiān) 哲, 李春英, 等. 抗氧化應(yīng)激中藥在白癜風(fēng)治療中的潛在應(yīng)用[J]. 中國(guó)美容醫(yī)學(xué), 2012, 21(8):1363-1366.
[16] Andrae J, Gouveia L, Gallini R, et al. A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex[J]. Biol Open, 2016, 5(4):461-474.
[17] 李艷艷, 高 靜, 田 野, 等. 827 例胃腸間質(zhì)瘤 c-kit 或 PDGFRα 基因突變譜解讀及其與臨床病理特征的關(guān)系[J]. 中華胃腸外科雜志, 2015, 12(4):332-337.
[18] Ieronimakis N, Hays A, Prasad A, et al. PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy[J]. J Pathol, 2016, 240(4):410-424.
[19] Fantauzzo KA, Soriano P. PDGFRβ regulates craniofacial development through homodimers and functional hetero-dimers with PDGFRα[J]. Genes Dev, 2016, 30(21):2443-2458.
[20] 黃 也. PDGFRα在人黑素細(xì)胞氧化應(yīng)激損傷中的作用和機(jī)制研究[D]. 西安: 第四軍醫(yī)大學(xué), 2015.
[21] 李嚴(yán)嚴(yán), 徐曉燕, 張家君, 等. 蜂膠醇提物通過(guò)抑制 caspase-12 減輕氧化低密度脂蛋白誘導(dǎo)的巨噬細(xì)胞凋亡[J]. 中國(guó)病理生理雜志, 2015, 31(12): 2202-2208.
[22] 張念念,吳 艷, 劉貞富, 等. HtrA2/Omi、 XIAP 和 caspase-3 在銀屑病皮損中的表達(dá)[J]. 中國(guó)麻風(fēng)皮膚病雜志, 2012, 28(3):155-157.
[23] D’Amelio M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis[J]. Trends Neuro-sci, 2012, 35(11):700-709.
[24] White K, Dempsie Y, Caruso P, et al. Endothelial apoptosis in pulmonary hypertension is controlled by a micro-RNA/programmed cell death 4/caspase-3 axis[J]. Hypertension, 2014, 64(1):185-194.
[25] 韋家俊, 李 浩, 廖小明, 等. 肢體缺血后處理對(duì)局灶性腦缺血再灌注大鼠caspase-3 和細(xì)胞凋亡的影響[J]. 中國(guó)老年學(xué)雜志, 2017, 37(4): 804-806.
[26] Takano S, Shiomoto S, Inoue KY, et al. Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity[J]. Anal Chem, 2014, 86(10):4723-4728.
[27] Maellaro E, Leoncini S, Moretti D, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients[J]. Acta Diabetol, 2013, 50(4):489-495.
[28] Be Tu PT, Chompoo J, Tawata S. Hispidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes[J]. Drug Discov Ther, 2015, 9(3):197-204.
[29] Jian Z, Tang L, Yi X, et al. Aspirin induces Nrf2-mediated transcriptional activation of haem oxygenase-1 in protection of human melanocytes from H2O2-induced oxidative stress[J]. J Cell Mol Med, 2016, 20(7):1307-1318.
[30] Golan K, Vagima Y, Ludin A, et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-me-diated ROS signaling and SDF-1 release[J]. Blood, 2012, 119(11):2478-2488.
[31] Maryanovich M, Gross A. A ROS rheostat for cell fate regulation[J]. Trends Cell Biol, 2013, 23(3):129-134.
[32] Garg AD, Dudek AM, Ferreira GB, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death[J]. Autophagy, 2013, 9(9):1292-1307.
[33] Schallreuter KU, Salem MA, Gibbons NC, et al. Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 2: epidermal H2O2/ONOO--mediated stress in vitiligo hampers indoleamine 2, 3-dioxygenase and aryl hydrocarbon receptor-mediated immune response signaling[J]. FASEB J, 2012, 26(6): 2471-2485.
[34] Barygina V, Becatti M, Lotti T, et al. Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin[J]. J Dermatol Sci, 2015, 79(2):163-170.
[35] Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within[J]. Curr Opin Immunol, 2013, 25(6):676-682.
[36] Sui X, Kong N, Ye L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents[J]. Cancer Lett, 2014, 344(2):174-179.
[37] Zhang W, Lan Y, Huang Q, et al. Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK[J]. Cytotechnology, 2013, 65(3):447-455.
[38] Yang X, Zhou G, Ren T, et al. β-Arrestin prevents cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt pathways[J]. Apoptosis, 2012, 17(9):1019-1026.
[39] Jensen KJ, Garmaroudi FS, Zhang J, et al. An ERK-p38 subnetwork coordinates host cell apoptosis and necrosis during coxsackievirus B3 infection[J]. Cell Host Microbe, 2013, 13(1):67-76.
[40] Chun J, Joo EJ, Kang M, et al. Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells[J]. J Cell Biochem, 2013, 114(2):456-470.
(責(zé)任編輯: 林白霜, 羅 森)
Effects of PDGFRα on melanocyte apoptosis induced by hydrogen peroxide
DENG Yong1, JIANG Ya-hui1, WAN Yan1, YANG He-rong1, YU Chun-shui1, HUANG Juan2
(1DepartmrntofDermatology,CentralHospitalofSuiningCity,Suining629000,China;2DepartmentofHematology,ThePeople’sHospitalofSichuanProvince,Chengdu610041,China.E-mail:xingdubu596707@163.com)
AIM: To investigate the effects of platelet-derived growth factor receptor α (PDGFRα) on melanocyte apoptosis induced by hydrogen peroxide (H2O2).METHODSMelanocyte PIGI was used as the research object. After exposed to H2O2at different concentrations, the cell viability was detected by MTT assay. The PIGI cells were transfec-ted with empty vector pCMV6 orPDGFRαover-expression vector pCMV6-PDGFRα. The transfection efficiency was determined by RT-qPCR and Western blot. The effect of H2O2on the viability of the PIGI cells after over-expression ofPDGFRαwas measured by MTT assay. The cell apoptosis was analyzed by flow cytometry. The protein levels of p38, p-p38 and cleaved caspase-3 in the cells were detected by Western blot. DCDHF-DA was used to estemate the generation of reactive oxygen species (ROS) in the cells.RESULTSThe viability of PIGI cells decreased after exposed to H2O2(P<0.05), and the half maximal inhibitory concentration of H2O2was 0.7 mmol/L. Transfection withPDGFRαover-expression vector successfully induced high expression of PDGFRα at mRNA and protein levels in the PIGI cells, and increased the viability of the cells with H2O2treatment (P<0.05). Over-expression ofPDGFRαdecreased the apoptotic rate of PIGI cells treated with H2O2(P<0.05), and the level of ROS in the cells (P<0.05). The protein levels of cleaved caspase-3 and p-p38 were also decreased (P<0.05).CONCLUSIONPDGFRα inhibits the apoptosis of melanocytes induced by H2O2, partially reverses the growth inhibition of melanocytes by H2O2, and decreases the ROS level. The mechanism may be related to regulating the protein levels of p-p38 and cleaved caspase-3 in the cells.
Melanocytes; Platelet-derived growth factor receptor α; Apoptosis; Hydrogen peroxide
1000- 4718(2017)11- 2060- 07
2017- 05- 15
2017- 07- 20
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81500173)
△通訊作者 Tel: 18108189376; E-mail: xingdubu596707@163.com
R758.4; R363
A
10.3969/j.issn.1000- 4718.2017.11.022