• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QUASISYMMETRICALLY PACKING-MINIMAL MORAN SETS

    2017-11-06 09:36:37LIYanzheHEQihan
    數(shù)學雜志 2017年6期
    關(guān)鍵詞:廣西南寧廣西大學信息科學

    LI Yan-zhe,HE Qi-han

    (Colledge of Mathematics and Information Science,Guangxi University,Nanning 530004,China)

    QUASISYMMETRICALLY PACKING-MINIMAL MORAN SETS

    LI Yan-zhe,HE Qi-han

    (Colledge of Mathematics and Information Science,Guangxi University,Nanning 530004,China)

    In this paper,we study the problem of packing-minimality of 1-dimensional Moran sets.By using the principle of mass distribution,we obtain that a large class of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal,which extends a known result of quasisymmetrically packing-minimality.

    quasisymmetric mapping;packing dimension;Moran set

    1 Introduction

    A homeomorphism mappingf:X→Y,whereXandYare two metric spaces,is said to be quasisymmetric if there is a homeomorphismη:[0,∞)→[0,∞)such that

    for all triplesa,b,xof distinct points inX.Here we follow the notation in Heinonen[1]by using|x?y|to denote the distance between the two pointsxandyin every metric space.In particular,we also say thatfis ann-dimensional quasisymmetric mapping whenX=Y=Rn.

    De finition 1We call a setE?Rnquasisymmetrically packing-minimal,if dimPf(E)≥dimPEfor anyn-dimensional quasisymmetric mappingf.

    In this paper,we will show that a large class of Moran sets in R1of packing dimension 1 have quasisymmetric packing-minimality.

    Similarly,we call a setE?Rnis quasisymmetrically Hausdor ff-minimal,if dimHf(E)≥dimHEfor anyn-dimensional quasisymmetric mappingf.Recall some results on the Hausdor ffdimensions of quasisymmetric images.First,n-dimensional quasisymmetric mappings are locally H?lder continuous[2],so if dimHE=0,then dimHf(E)=0 andEis quasisymmetrically Hausdor ff-minimal.In Euclidean space Rnwithn≥2,Gehring[3,4]obtainedthat for any subsetE?Rnof Hausdor ffdimensionn,its quasisymmetric image also has Hausdor ffdimensionn,soEis quasisymmetrically Hausdor ff-minimal.If 0<dimHE<1,there are 1-dimensional quasisymmetric mappingsfεandFεsuch that dimHfε(E)< ε(see[5])and dimHFε(E)>1?ε(see[6]),that is anyE?R1satisfies 0<dimHE<1 is not quasisymmetrically Hausdor ff-minimal.

    For R1,Tukia[7]found an interesting fact,quite different from Gehring’s result for Rnwithn≥2,that there existsE?R1such that dimHE=1 and dimHf(E)<1 for some 1-dimensional quasisymmetric mappingf,soEis not quasisymmetrically Hausdor ff-minimal.

    There is a question:what kinds of sets in R1are quasisymmetrically Hausdor ff-minimal?

    For R1,many works were devoted to the quasisymmetrically Hausdor ff-minimal set,i.e.,the subsetE?R1satisfying dimHf(E)≥dimHEfor any 1-dimensional quasisymmetric mappingf.

    Kovalev[5]showed that any quasisymmetrically Hausdor ff-minimal set in R1with dimHE>0 has full Hausdor ffdimension 1.Hakobyan[8]proved that middle interval Cantor sets of Hausdor ffdimension 1 are all quasisymmetrically Hausdor ff-minimal.Hu and Wen[9]obtained that some uniform Cantor sets of Hausdor ffdimension 1 are quasisymmetrically Hausdor ff-minimal.Dai,Wen,Xi and Xiong[10]found a large class of Moran sets of Hausdor ffdimension 1 which are quasisymmetrically Hausdor ff-minimal.

    Compared with quasisymmetric Hausdor ff-minimality,there are few results on quasisymmetric packing-minimality.

    Kovalev[5]showed that any quasisymmetrically packing-minimal set in R1with dimpE>0 has packing dimension 1.Li,Wu and Xi[11] find two classes of Moran sets of packing dimension 1 which are quasisymmetrically packing-minimal.Wang and Wen[12]obtained that the uniform Cantor sets of packing dimension 1 are quasisymmetrically packing-minimal.

    In this paper,we will show that aresult of[11]is not accidents.In fact,a larger class of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal(Theorem 1).

    This paper is organized as follows.In Section 2,we state our main results and give the introduction to the Moran sets.Some preliminaries are given in Section 3,including quasisymmetric mappings,Moran sets and certain probability measure supported on the quasisymmetric image.The key of this paper is to get the estimate in Lemma 1 for the above measure.Section 4 is the proof of Theorem 1.

    2 De finition and Main Results

    2.1 De finition of Moran Sets

    Before the statement of theorems,we introduce the notion of Moran setsin R1.Letandbe sequences satisfyingnk≥2 andfor anyk≥1,setand ?0={?}with empty word?.Writeand(σ1···σk)? σk+1=σ1···σkσk+1.LetI?R1be a closed interval.Denote by|A|the diameter ofA?Rn.We say thatF={Iσ:σ∈?},which is a collection of closed intervals,has Moran structure(I,{nk},{ck,j}),ifI?=Iand for anyσ ∈?k?1,Iσ?1,···,Iσ?nk,whose interiors are pairwise disjoint,are subintervals ofIσsuch that

    Then a Moran set determined byFis de fined by

    where anyIσinFis called a basic interval of rankkifσ ∈?k.Denote byM(I,{nk},{ck,j})the class of all Moran sets associated withI,{nk}and{ck,j}.

    For the classM(I,{nk},{ck,j}),we write

    and

    whereskis de fined by the equation

    Ifσ ∈?k?1,k≥1,letbe the most left(or the most right)one ofIσ?1,···,Iσ?nk.Write

    Some probability of quasisymmetric mappings and Moran sets can be seen in[13]and[14].

    2.2 Main Results

    The main result of paper are stated as follows.

    Theorem 1SupposeE∈M(I,{nk},{ck,j}),r?>0 and supknk<∞,and there exist a costantl>1 such thatfor anyσ ∈?k?1andk≥2.If dimPE=1,then dimPf(E)=1 for any 1-dimensional quasisymmetric mappingsf.

    Remark 1Without loss of generality,supposeandforσ ∈?k,k≥1,the conditions of Theorem 1 impliesck,1andck,nkis neither too“l(fā)arge”nor too“small”,and for 2≤i≤nk?1,ck,imay be very“small”,evenc?=0,butis not too“small”.

    Remark 2Notice that the condition“and there exist a costantl>1 such thatfor anyσ ∈?k?1andk≥2”impliesnk≥3 for allk≥1.Notice that IfE∈M(I,{nk},{ck,j}),thenE∈M(I,{Nk},{Ck,q}),whereNk=n2k?1·n2k≥3 andCk,(i?1)n2k?1+j=c2k?1,i·c2k,jfor 1≤i≤n2k?1,1≤j≤n2k,so without loss of generality,we always assume thatnk≥3 for allk≥1 in this paper.

    Example 1LetE∈M(I,{nk},{ck,j})withc?>0.Ifnk≥3 for allk≥1,thenr?≥c?>0,supknk< ∞andfor anyσ ∈?k?1andk≥2;if infknk=2,thenE∈M(I,{Nk},{Ck,q}),whereNkandCk,qare de fined the same as the above remark(Nk≥3),it is easy to obtain thatE∈M(I,{Nk},{Ck,q})satisfies the conditions of Theorem 1.Then by Theorem 1,if dimPE=1,we have dimPf(E)=1 for any 1-dimensional quasisymmetric mappingf.

    Therefore Theorem 1 extends the results of Theorem 2 in[11].

    Example 2LetEbe an uniform Cantor set(see[12])withc?>0.Ifnk≥3,thenr?=c?>0,supknk< ∞andfor anyσ ∈?k?1andk≥2;if infknk=2,thenE∈M(I,{Nk},{Ck,q}),whereNkandCk,qare de fined the same as the above remark(Nk≥3),it is easy to obtain thatE∈M(I,{Nk},{Ck,q})satisfies the conditions of Theorem 1.Then by Theorem 1,if dimPE=1,we have dimPf(E)=1 for any 1-dimensional quasisymmetric mappingf.

    Therefore Theorem 1 extends the results of Theorem 1.2 in[12]whenc?>0.

    3 Preliminaries

    Before the proofs of the two theorems,we give some preliminaries.

    The following fact on packing dimension can be found in Proposition 2.3 of[15].

    Lemma 1LetE?Rnbe a Borel set,andμa probability measure supported onE.If there existsE′?Ewithμ(E′)>0 and a constantc>0 such that

    then dimPE≥s.

    We need some properties on quasisymmetry.For closed intervalI,setρIbe a closed interval with a length ofρ|I|and with the same center withI.

    From[16],it is easy to check the following lemma.

    Lemma 2Supposef:R1→R1is quasisymmetric,there exist constantsλ,Kρ>0,q≥1 andp∈(0,1]such that

    and

    whenever closed intervalI,I′satisfyingI?I′

    The following lemma comes from[17].

    Lemma 3SupposeEis a Moran set satisfying the following conditions

    Then we have dimPE=s?.

    It is easy to verify that if for a Moran setE∈M(I,{nk},{ck,j}),the conditions of Theorem 1 hold,thenEsatisfiesby Lemma 3,dimPE=s?.

    The length ofσ ∈?kwill be denoted by|σ|(=k).

    Fix a 1-dimensional quasisymmetric mappingf:R1→R1.Given a Moran setEand its basic intervalIσofEwith rankk,we also callf(Iσ)a basic interval off(E)with rankkfor convenience.LetJσ=f(Iσ).

    3.1 The MeasureμdSupported on f(E)

    Fixd∈(0,1).We will de fine a probability measureμdonf(E)as follows.

    Without loss of generality,we setI=[0,1]the initial interval ofE.

    Letμd(f([0,1]))=1,for everyk≥1,and for every basic intervalJσof rankk?1,we de fine

    for 1≤j′≤nk.

    3.2 Estimate ofμd(Jσ)

    The next proposition can be found in[11].

    Proposition 1SupposeEis the Moran set satisfyingand

    for some constantα ∈(0,1).If s?=1,then there exists a subsequence{kt}tand a constantc>0 such that

    for any basic intervalJσoff(E)with|σ|∈{kt}t.

    By Proposition 1,we have the corollary below.

    Corollary 1SupposeEis the Moran satisfies the conditions of Theorem 1.If dimPE=1,then there exists a subsequence{kt}tand a constantc>0 such that

    for any basic intervalJσoff(E)with|σ|∈{kt}t.

    ProofSincenk≥2,r?>0,we haveDk≤1?r?<1.Takeα=1?r?,we have notice that dimpE=s?by Lemma 3 and Proposition 1,the corollary follows.

    4 Proof of Theorem 1

    Let{kt}tbe the subsequence in Proposition 1.Let

    Lemma 4Suppose thatnk≥3 andc?>0.Then there exists a constant∈>0 such that

    for allσwith|σ|=k?1 and 1≤j1,j2≤nk.

    ProofWith out loss of generality,we letJLσ=Jσ?1,JRσ=Jσ?nk,sincenk≥3.Takei0(1≤i0≤nk)as follows

    Case 1Ifpicki0such thatthen 2≤i0≤nk?1,we have

    Case 2Ifpicki0such thatwe have

    By Lemma 2,we have

    which imply

    Therefore

    where

    Proposition 2μd(B)=0 ford∈(0,1).

    ProofIt suffices to provefor anys.

    Let

    For anyσ,letJLσ=f(ILσ),JRσ=f(IRσ).Therefore,fort≥s,

    By Lemma 4,we have

    it follows from(4.1)and(4.2)that

    which implies

    Next we finish the proof of Theorem 1.

    From the proposition above,we haveμd(f(E)B)=1>0.Fixx∈(f(E)B),then we can picktn↑∞satisfieswith some

    notice thatrn→0 whenn→∞.

    which impliesB(x,rn)?Jσ.

    LetJσ?j1,Jσ?j2,···,Jσ?jl′(1≤l′≤nktn)be the basic intervals of rankktnmeetingB(x,rn).Then

    Using the conclusion of Corollary 2,we get

    Sincer? >0,for anyi,there exists a constantδ≥1,

    hence|Iσ?ji|?(3δ)f?1(B(x,rn)),whereδ≥1.By Lemma 2,we have

    whereK3δ >0 is a constant.This together with(4.4)gives

    Letn→∞,then for anyx∈f(E)B,there exists a constantC′>0,such that

    it follows fromμd(f(E)B)>0 and Lemma 1 that dimpf(E)≥d.Letd→1,we have

    [1]Heinonen J.Lectures on analysis on metric spaces[M].New York:Springer-Verlag,2001.

    [2]Ahlfors L V.Lectures on quasiconformal mappings(2nd ed.)[M].Unversity Lecture Series,Vol.38,Maryland:American Mathematical Society,2006.

    [3]Gehring F W.TheLp-integrability of the partial derivatives of a quasiconformal mapping[J].Acta Math.,1973,130:265–277.

    [4]Gehring F W,V?is?l? J.Hausdor ffdimension and quasiconformal mappings[J].J.London Math.Soc.,1973,6(2):504–512.

    [5]Kovalev L V.Conformal dimension does not assume values between zero and one[J].Duke Math.J.,134(1):1–13,2006.

    [6]Bishop C J.Quasiconformal mappings which increase dimension[J].Ann.Acad.Sci.Fenn.Math.,1999,24(2):397–407.

    [7]Tukia P.Hausdor ffdimension and quasisymmetric mappings[J].Math.Scand.,1989,65(1):152–160.

    [8]Hakobyan H.Cantor sets that are minimal for quasisymmetric mappings[J].J.Contemp.Math.Anal.,2006,41(2):13–21.

    [9]Hu Meidan,Wen Shengyou.Quasisymmetrically minimal uniform Cantor sets[J].Topology.Appl.,2008,155(6):515–521.

    [10]Dai Yuxia,Wen Zhixiong,Xi Lifeng,Xiong Ying.Quasisymmetrically minimal Moran sets and Hausdor ffdimension[J].Ann.Acad.Sci.Fenn.Math.,2011,36:139–151.

    [11]Li Yanzhe,Wu Min,Xi Lifeng.Quasisymmetric minimality on packing dimension for Moran sets[J].J.Math.Anal.Appl.,2013,408:324–334.

    [12]Wang Wen,Wen Shengyou.Quasisymmetric minimality of Cantor sets[J].Topology Appl.,2014,178:300–314.

    [13]Lou Manli.Gap sequence and quasisymmetric mapping[J].J.Math.,2015,35:705–708.

    [14]Liu Xiaoli,Liu Weibin.The Hausdor ffdimension of a class of Moran sets[J].J.Math.,2016,36:100–104.

    [15]Falconer K.Techniques in fractal geometry[M].Chichester:John Wiley Sons Ltd,1997.

    [16]Wu J M.Null sets for doubling and dyadic doubling measures[J].Ann.Acad.Sci.Fenn.Ser.A.Math.,1993,18(1):77–91.

    [17]Hua Su,Rao Hui,Wen Zhiying,Wu Jun.On the structures and dimensions of Moran sets[J].Sci.China Ser.A.,2000,43(8):836–852.

    擬對稱packing極小Moran集

    李彥哲,何其涵
    (廣西大學數(shù)學與信息科學學院,廣西南寧 530004)

    本文研究了一維Moran集的擬對稱packing極小性的問題.利用質(zhì)量分布原理的方法,獲得了直線上一類packing維數(shù)為1的Moran集為擬對稱packing極小集的結(jié)果,推廣了參考文獻中關(guān)于擬對稱packing極小性的已知結(jié)果.

    擬對稱映射;packing維數(shù);Moran集

    O174.12

    28A75;28A78;28A80

    A

    0255-7797(2017)06-1125-09

    date:2016-08-15Accepted date:2016-11-09

    Supported by NSFC(11626069);Guangxi Natural Science Foundation(2016GXNSFAA380003);Science Foundation of Guangxi University(XJZ150827).

    Biography:Li Yanzhe(1986–),male,born at Guilin,Guangxi,lecturer,major in fractal geometry.

    He Qihan.

    猜你喜歡
    廣西南寧廣西大學信息科學
    山西大同大學量子信息科學研究所簡介
    朋友,我祝福你們
    大眾文藝(2021年24期)2022-01-13 08:39:20
    大眾文藝(2021年14期)2021-08-15 18:40:08
    三元重要不等式的推廣及應用
    光電信息科學與工程專業(yè)模塊化課程設計探究
    廣西大學為畢業(yè)生制作今昔對比照
    廣西大學廣西創(chuàng)新發(fā)展研究院簡介
    金色年華(2017年11期)2017-07-18 11:08:44
    莫武
    廣西大學學報(自然科學版)2016年第41卷總目次
    權(quán)力控制:權(quán)力清單制度背后的公法思維
    尼勒克县| 明溪县| 麻江县| 锦屏县| 贵州省| 鄂托克前旗| 安徽省| 扬州市| 奈曼旗| 陈巴尔虎旗| 许昌市| 凤冈县| 喀什市| 景德镇市| 博爱县| 施甸县| 巴中市| 安平县| 南城县| 仁布县| 济宁市| 高清| 浦北县| 宜丰县| 库尔勒市| 新蔡县| 黔西县| 普格县| 余庆县| 屏东市| 疏附县| 南充市| 宁津县| 界首市| 萍乡市| 承德县| 卓尼县| 施秉县| 师宗县| 德格县| 神农架林区|