• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter *

    2017-11-02 09:09:15XuanlieZhao趙玄烈DezhiNing寧德志MalintemanHaiguiKang康海貴
    關(guān)鍵詞:寧德

    Xuan-lie Zhao (趙玄烈), De-zhi Ning (寧德志),2, Malin G?teman, Hai-gui Kang (康海貴)

    1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023,China, E-mail: zhaoxuanlie@163.com

    2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

    3. Department of Engineering Science, Uppsala University, Uppsala, Sweden

    (Received January 25, 2016, Revised March 21, 2017)

    Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter*

    Xuan-lie Zhao (趙玄烈)1, De-zhi Ning (寧德志)1,2, Malin G?teman3, Hai-gui Kang (康海貴)1

    1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023,China, E-mail: zhaoxuanlie@163.com

    2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

    3. Department of Engineering Science, Uppsala University, Uppsala, Sweden

    (Received January 25, 2016, Revised March 21, 2017)

    The information of the wave loads on a wave energy device in operational waves is required for designing an efficient wave energy system with high survivability. It is also required as a reference for numerical modeling. In this paper, a novel system,which integrates an oscillating wave energy converter with a pile-restrained floating breakwater, is experimentally investigated in a 2-D wave flume. The measurements of the wave pressure on the wet-surface of the device are made as the function of the power take-off (PTO) damping force. It is shown that the wave pressure is significantly affected by the PTO system, in particular, at the edges, and the wave pressure varies under different wave conditions. From the results, conclusions can be drawn on how the PTO damping force and wave conditions affect the loads on the device, which is of engineering concern for constructing safe and reliable devices.

    Wave energy converter, power take-off (PTO), wave pressure, experimental measurement

    Introduction

    Even with an advanced power take-off (PTO)system that changes in time, a constant ratio between the PTO damping force and the wave excitation force is not realizable in the realistic sea states[1]. During a routine operation in moderate sea states, the wave energy converters (WECs) are under the impact of cyclic wave loads, which is an important issue for the construction of safe WECs[2]. The dynamical wave force on a floating body includes two parts: the wave excitation force and the radiation force[3]. Generally,the wave forces on a heaving wave energy device(coupled with the PTO damping force) is different from that on a freely floating buoy of identical geometry, since the radiation force is closely related to the heave response amplitude of the floating buoy.Hence, it is meaningful to investigate the variation of the wave loads on the devices as a function of the PTO damping force. It is perhaps surprising that a detailed experimental data of the variation of the wave pressure loads on the floating buoy as a function of the extra PTO damping force is not readily available in the literature. The wave pressure at different positions of the buoy is the input in designing a device and evaluating the structure fatigue and life-expectancy. It is the intention of this paper to provide experimental data obtained under the action of welldefined moderate regular waves, and to evaluate the accuracy of the hydrodynamic model of the device.

    The floating device studied in the paper is constrained to oscillate in heave by a vertical pile. The base structure of the WEC can be used as the floating breakwater, and the construction-cost sharing can be achieved with the cost-effective generation of electricity from the waves[6]. Indeed, in recent years, several concepts were proposed, where the wave energy converters were integrated into the design of a breakwater have emerged[4-7]. The present study gives a new configuration, for which the so-called dual function(the wave attenuation performance and the wave energy utilization) can be realized, under the principle of an oscillating buoy wave energy converter. For thebase structure, the study of the wave loads on the rectangular box, as a common marine structure, attracts much attention in view of different applications,such as Shi et al.[8], Li and Lin[9], Diamantoulaki et al.[10], Koutandos[11]and Chen et al.[12]. For the heaving point-absorbing WECs, the PTO damping force was found to affect the wave loads on the device to a great extent[13,14], and the variation of the wave loads as a function of the PTO damping force was also found to be meaningful for other wave energy devices.The effect of the PTO damping force on the wave pressure loads can also play a vital role in improving the survival characteristics.

    1. Experiment

    1.1Experiment description

    The experiment is carried out in a flume in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. The flume is 69 m long, 2 m wide and 1.8 m deep. A piston-type unidirectional wave-maker is installed at one end of the flume, and a wave-absorbing beach is located at the other end to reduce the wave reflection.A wall is installed along the longitudinal direction of the wave flume to divide the width of the flume into two parts: the part of 1.2 m width and the part of 0.8 m width, where the part of 0.8 m width is selected as the test section. A floating breakwater of rectangular cross-section is chosen as the base structure. A 1:10 scale model is constructed based on the Froude scaling. The model is 0.78 m long (along the direction perpendicular to the incident wave), 0.8 m wide and 0.6 m in height (as shown in Fig.1(a)). In order to avoid unnecessary friction and possible collisions, a 0.01 m gap is set between each side of the floating breakwater and the flume wall, and the two gaps are checked after each experiment. The integrated system consists of a floating breakwater connected through a rack-gear transmission mechanism to a power take-off system installed above the breakwater. A slide rail (as shown in Fig.1(b)) is used as the vertical pile, which restrains the floating breakwater to a pure heave motion. Two pulleys (as shown in Fig.1(b)) are used to connect the floating breakwater with the vertical pile, with the friction coefficient between the pulley and the slide rail of 0.035 (determined in a friction coefficient measurement test). The power take-off system is modeled physically by a current controllermagnetic p owder b rake system. To ensure the accuracy of thedata, allexperiments areperformedthree times, and the average is taken.

    The following parameters are used in the experiments: the static water depthh= 1.0m, the draft of the floating breakwaterd=0.25m , and the incident wave heightHiis kept as a constant of 0.2 m. To simulate the wave periods of 4 s-7 s in the real sea state, four wave periodsTin the range of 1.37 s-2.42 s are investigated in the experiment. For the floating breakwater, the range of the non-dimensional relative widthB/L(whereBis the width of the device a(Knd o u tLa ndtohse e w t a aveleng. th T)huos f, 0B.1 = -0 0..38 mis o isf aidnot ep rtee sdt and the value ofB/Lvaried from 0.12 to 0.28 (as shown in Table 1) according to the selected wave periods. According tothe optimumdamping of thebase structure (Ning et the excitation currentI, which represents the value of the PTO damping force, is selected in the range of 0-0.30 A with an interval of 0.06 A. The test conditions are shown in Table 1.

    Fig.1 (Color online) Dimensions of FB model and a view of the pulley and the slide rail

    Table 1 Test conditions. (The ratio /BL is derived fromthedifferent wave periodsT tested, the parameter forthecucurrent I is independent and represents the PTO damping force)

    1.2Data acquisition system and data analysis

    The absorbed power and the PTO damping force can be recorded by a power-torque sensor, and two gauges are arranged on the front side and the leeside of the floating breakwater to collect the data to be used for calculating the reflection coefficient (Kr)and the transmission coefficient (Kt), respectively.Seven pressure sensors are used to measure the wave pressure (p) on the wet-surface of the floating breakwater. The detailed locations of the pressure sensors are shown in Fig.2. The heave motion of the floating breakwater is measured by using a noncontact displacement measurement system. The ratio between the height of the heave motion (Hheave) and the incident wave height,ζ=Hheave/Hi, indicates the system response to the incident waves. The validation of the experimental design in terms of the th reaing shmt irsastiioo n wco ase ff ciocni ed nu tc taendd bt hy e Nhien ag v ee-tin ciden, t wwh ai v che paves the way for the present study.

    Fig.2 Detailed positions of the pressure measuring points (repre- sented by black circles)

    Due to the high frequency noise from the pressure sensor, the measurement results are filtered using a low pass FFT filter, in which the frequency cutoff percentage of 10 is adopted. Figure 3 gives the typical measured and filtered time series of the wave pressure, which shows that the present filtering method could effectively remove the noise.

    Fig.4 Time-averaged PTO damping force under each conditions of d /H=0.25

    Fig.5 Time series of outputted PTO damping force under typi- cal conditions of B /L = 0.18,d /H =0.25

    2. Experimental results

    2.1Characteristics of the PTO damping force

    The PTO damping force is studied firstly. The relative PTO damping force ()εis a non-dimensional PTO damping force, defined as the ratio between the outputted time-averaged PTO damping force and the vertical exciting force (obtained by an analytical method based on the linear potential theory[16]) acted on the device. The relative PTO damping forces under each working condition are shown in Fig.4. Eight wave periods are adopted to calculate the time-averaged PTO damping force. As a particular case, Fig.5 shows the time series of the damping force, which indicates that the Coulomb damping force can be exactly obtained for cases ofI≥ 0 .18A and approximately for others. Note that,since a small friction always exists in the magnetic powder system, the damping force is non-zero. The power-torque sensor can capture the friction force and the power generated by the intrinsic friction. In the case of a hydraulic PTO, a Coulomb damping model is often used. Different from the linear damping force,the remarkable feature of the Coulomb damping force is that the magnitude of the damping force is constant and its direction is only related with the device movement. The approximate Coulomb damping force is a slight modification of the perfect Coulomb damping force (the details can be found in Babarit et al.[18]). Thus, the experiment may provide an important input for the Wave-2-Wire model.

    2.2Wave pressures on the seaward and leeward surfaces

    Figures 6-10 show the time-series of the nondimensional wave pressure at positions 1# and 7#,located on the seaward and leeward surfaces, respectively, as shown in Fig.2. The vertical coordinate refers to the non-dimensional wave pressure by dividing the measured wave pressurepby the hydrostatic pressure0ghρ(where is the water density, the gravitational acceleration and0hthe distance to the static water surface).

    Fig.6 Time series of wave pressure for the case of B /L =0.28

    Fig.7 Time series of wave pressure for the case of B /L =0.22

    Fig.8 Time series of wave pressure at for the case of B /L= 0.18

    Fig.9 Time series of wave pressure for the case of B /L =0.15

    Fig.10 Time series of wave pressure for the case of B /L =0.12

    Fig.11 Results of reflection coefficient (Kr ) and transmission coefficient (Kt)

    From Figs.6-10, we can see that the PTO damping force has a significant effect on the wave pressure loads (at positions 1# and 7#) for the tested rela tive widthsB/L. But the varia tio n tendency of thenon-dimensionalwavepressureasafunction of the PTO damping force is different for different /BL.For cases of /=BL0.22 and 0.28 at position 1#, the wave pressure decreases with the increase of the PTO damping force. Conversely, for cases of /=BL0.12,0.15 and 0.18, the wave pressure increases slightly with the increase of the PTO damping force at the same position. This is probably due to the fact that for the present 2-D experiment, there are standing waves formed in the front of the breakwater (this phenomenon was verified by Koutandos et al.[15]). From Fig.11(a) we can see that the reflection coefficient increases drastically with the increase of the PTO damping force, which may imply that the effect of standing waves becomes more prominent when the floating device is under the action of short period waves, i.e., 0.22 <B/L< 0 .28. Thus, the wave amplitude in the region close to the front wall of the floating breakwater is decreased relatively. However,when the floating breakwater is under the action of relatively longer waves, there are no standing waves formed and the reflection coefficient increases with the increase of the PTO damping force, which leads to a larger wave amplitude. Then the wave pressure increases accordingly.

    Fig.12 Results of heave RAO for tested cases

    At the position 7#, the wave pressure loads dethe back wall is closely related to the relative motion between the floating breakwater and the waves formed on the leeside. The transmission coefficient in Fig.11(b) shows that the transmitted waves on the leeside decrease slightly with the increase of the PTO,which could explain the decrease in the wave pressure.Also, the decrease of the heave response amplitude with the increase of the PTO damping (Fig.12) could add to this effect.crease with the increase of the PTO damping force for all tested relative widths /BL. The wave pressure on

    2.3Wave pressures on the bottom surface

    Figures 13(a)-13(e) show the results of the nondimensional wave pressure amplitude at the positions 2#-6# on the bottom of the floating breakwater, as in Fig.2. As previously mentioned, the hydrostatic componentgdρ(wheredis the draft), is subtrac-ted from the recordings and the vertical coordinate refers to the non-dimensional wave pressure amplitude defined as the wave pressure amplitudeApdivided by gdρ.

    Fig.13 Wave pressure amplitude at positions 2#-6# for all tested relative widths

    As can be seen from Figs.13(a)-13(e), the PTO damping force affects the measured wave pressure, in particular, at the positions close to the front and back edges of the float. From Fig.13(a) we can conclude that the variation tendency of the wave pressure at position 2# is similar to that at position 1#, as expected due to the close proximity of the two positions. The wave pressure amplitude decreases with the increase of the PTO damping force for /=BL 0.28 and 0.22, conversely, for cases of B /L < 0 .22, the wave pressure increases with the increase of the PTO damping force.

    At positions 3# and 4#, on the middle section of the bottom on the up-wave side, the wave pressure loads are increasing slightly with the damping force for the tested five relative widths.

    Interestingly, at positions 5# and 6#, on the middle section of the bottom on the down-wave side,the wave pressure decreases with the increase of the damping force up to the point of =0.10ε, after which it increases.

    From Figs.13(b)-13(e), we also conclude that the measured wave pressure is smaller at positions closer to the middle of the bottom, and that the wave periods affect the pressure to a smaller extent. This may be due to the more complex flow field and vortices at the edges.

    3. Discussions

    At the front position 1#, the pressure time series are periodic, but not simple harmonic periodic. This can be due to the fact that the waves formed on the front side of the floating box is the superposition of the incident waves and the reflection waves, and the waves formed on the leeside is the transmitted waves.Obviously, the wave amplitude on the front side is larger than that on the leeside. This may be due to the fact that the position 1# can heave out of the waves and the position 7# will not. So the pressure time series at the position 1# are not simple harmonic periodic.

    The position 6# is close to the back wall, thus,the wave pressure here is inclined to be affected by the waves on the leeside of the breakwater, and follows a similar trend as that at the position 7# for the PTO damping 0.10ε<. However, the pressure increases slightly after =0.10ε. At the position 5#, the same trend occurs but to a smaller extent. This behavior at the positions 5#-6# can possibly be attributed to the vortices which may dominate the flow field, and which are stronger near the position closer to the back edge. The positions close to the front edge do not show a similar parabolic trend, since the normal pressure caused by the incident potential, the diffracted potential and the radiation potential dominate the total pressure, even though the vortex strength is larger than that at the positions close to the edge of back wall[19].

    G?teman et al.'s study[13]indicates that the measured force in the mooring line of the heaving wave energy converter system is effectively reduced with the increased PTO force. In the present study, the wave pressure shows a more complex behavior as a function of the PTO damping force. Due to the different setups of the two experiments, a direct comparison is not possible: a 2-D experiment in this study and a 3-D experiment in G?teman et al.[13], the geometry of the WEC in this study is a rectangular box and that in G?teman et al.[13]is a circular cylinder.Further, the measured force in the mooring line is a total force which is equals to the integration of the pressure on the surface, whereas in the present experiment the wave pressure is measured directly at chosen positions of the wet-surface. Nevertheless, both papers show that the wave loads are affected by the PTO damping, which is an important conclusion to consider when designing a WEC.

    From the point of view of engineering applications, the variation of the wave pressure loads at each position shall be measured to prevent the structural damage. As seen in the previous section, the wave pressure at locations close to the edges are of particular importance, the dependence of the PTO damping force and different wave periods is more complex, and the maximum value of the wave pressure amplitude is relatively higher.

    The test is conducted in a 2-D wave flume and the 3-D effects cannot be taken into account. The 2-D hydrodynamic problem is different from the 3-D problem even though the studied object is a long structure in terms of the longitudinal direction perpendicular to the dominating wave direction[20]. This paper serves as a study of the wave loads as a function of the PTO damping in operational waves, which gives insight into important design parameters and verifies the model for further studies. In the future studies, the effect of the PTO damping force on the wave loads will be investigated for a 3-D problem in both operational and extreme waves.

    4. Conclusions

    A 1:10 scale model test of a pile-restrained floating breakwater is conducted in a wave flume,under the principle of an oscillating buoy wave energy converter. The wave pressure is measured on the front wall, the back wall and the bottom for different waves,corresponding to relative widths / =BL 0.12, 0.15,0.18, 0.22 and 0.28, where B is the width of the device and Lthe wavelength. The experimental results show that the influence of the PTO damping on the wave pressure is different at different positions of the wet-surface. The wave pressure is affected by the damping force most significantly on the front and back walls. For short period waves (/=BL 0.22, 0.28),the wave pressure on the front and back walls decreases with the increasing PTO damping force.However, for longer period waves (/=BL 0.12, 0.15 and 0.18), the wave pressure on the front increases with the increasing PTO damping force, whereas it decreases on the back. The measured wave pressure is the smallest on the middle section of the bottom, and increases slightly with the increasing PTO damping force. The wave pressure close to the back sees a rather complex behavior, with the decreasing pressure up to a certain PTO damping, after which the measured pressure increases.

    Acknowledgement

    This wotk was supported by the Royal Academy of Engineeringunder theUK-China Industry Academia Partnership Programme(Grant No.UK-CIAPP/73), the Open Fund of State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology.

    [1] Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter [J]. Renewable Energy, 2006, 31(2):271-283.

    [2] Yao Q., Wang S. M., Hu H. P. One the development and prospect of wave energy power generation device [J].Ocean Development and Management, 2016, 33(1): 86-92(in Chinese).

    [3] Newman J. N. Marine hydrodynamics [M]. Cambridge,USA: MIT Press, 1977.

    [4] Michailides C., Angelides D. C. Modeling of energy extraction and behavior of a flexible floating breakwater[J]. Applied Ocean Research, 2012, 35(1): 77-94.

    [5] Arena F., Romolo A., Malara G. et al. On design and building of a U-OWC wave energy converter in the Mediterranean Sea: A case study [C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE. Nantes, France, 2013, V008T09A102.

    [6] He F., Huang Z. H. Hydrodynamic performance of pilesupported OWC-type structures as breakwaters: An experimental study [J]. Ocean Engineering, 2014, 88:618-626.

    [7] Chen B., Liu C. Q., Kang H. G. Performance of floating breakwater double used as wave energy converter [C].Proceedings of the International Offshore and Polar Engineering Conference. Hawaii, USA, 2015, 888-892.

    [8] Shi Q., You Y. X., Wei G. et al. The wave forces and moments on a floating rectangular box in a two-layer fluid [J].Journal of Hydrodynamics, Ser. B, 2006, 18(3): 166-170.

    [9] Li Y., Lin M. Wave-current impacts on surface-piercing structure based on a fully nonlinear numerical tank [J].Journal of Hydrodynamics, 2015, 27(1): 131-140.

    [10] Diamantoulaki I., Angelides D. C., Manolis G. D. Performance of pile-restrained flexible floating breakwaters [J].Applied Ocean Research, 2008, 30(4): 243-255.

    [11] Koutandos E. V. Pontoon breakwaters-efficiency and loads-effect of attached plate layout[J]. International Review of Civil Engineering, 2010, 1(2): 143-153.

    [12] Chen L., Sun L., Zang J. et al. Numerical study of roll motion of a 2-D floating structure in viscous flow [J]. Journal of Hydrodynamics, 2016, 28(4): 544-563.

    [13] G?teman M., Engstr?m J., Eriksson M. et al. Wave loads on a point-absorbing device in extreme waves [J]. Journal of Ocean and Wind Energy, 2015, 2(3): 176-181.

    [14] Zhang X. T., Yang J. M., Xiao L. F. An oscillating wave energy converter with nonlinear snap-through powertake-off systems in regular waves [J]. ChinaOcean Engineering, 2016, 30(4): 565-580.

    [15] Koutandos E. V., Prinos P., Gironella X. Floating breakwaters under regular and irregular wave forcing-reflection and transmission characteristics [J]. Journal of Hydraulic Research, 2005, 43(2): 174-188.

    [16] Ning D., Zhao X., G?teman M. et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study [J]. Renewable Energy,2016, 95: 531-541.

    [17] Li Y. C., Teng B. Wave action on maritime structure [M].Beijing: China Ocean Press, 2015(in Chinese).

    [18] Babarit A., Hals J., Muliawan M. J. et al. Numerical benchmarking study of a selection of wave energy converters [J].Renewable Energy, 2012, 41: 44-63.

    [19] Koftis T. H., Prinos P., Koutandos E. V. 2D-V hydrodynamics of wave–floating breakwater interaction [J]. Journal of Hydraulic Research, 2006, 44(4): 451-469.

    [20] Isaacson M., Nwogu O. U. Wave loads and motions of long structures in directional seas [J]. Journal of Offshore Mechanics and Arctic Engineering,1987,109(2):126-132.

    * Project supported by the National Natural Science Foundation of China (Grant No. 51379037).

    Biography: Xuan-lie Zhao (1989-), Male, Ph. D. Candidate

    De-zhi Ning,E-mail: dzning@dlut.edu.cn

    猜你喜歡
    寧德
    寧德時(shí)代凈利潤下跌
    寧德市婦聯(lián)舉辦“傳承好家風(fēng)·建設(shè)新寧德”主題活動(dòng)
    海峽姐妹(2020年10期)2020-10-28 08:08:06
    寧德:撐起脫貧攻堅(jiān)“半邊天”
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    守正創(chuàng)新 春風(fēng)化雨 寧德基層?jì)D女思想政治引領(lǐng)亮點(diǎn)多
    海峽姐妹(2019年12期)2020-01-14 03:24:40
    寧德核電站火災(zāi)事故的情景構(gòu)建
    The wave absorption efficiency of multi-layer vertical perforated thin plates *
    寧德時(shí)代價(jià)值幾何
    能源(2018年7期)2018-09-21 07:56:24
    上汽與寧德時(shí)代合作回收動(dòng)力電池
    寧德迎來大黃魚豐收季
    以扶貧開發(fā)“寧德模式”引領(lǐng)老區(qū)精準(zhǔn)扶貧
    紅土地(2017年1期)2017-06-05 09:37:28
    午夜精品一区二区三区免费看| 国产一区二区三区av在线| 亚洲国产精品专区欧美| 一夜夜www| 日韩 亚洲 欧美在线| 亚洲精品一区蜜桃| 夫妻性生交免费视频一级片| 99久久精品热视频| 最后的刺客免费高清国语| 成人亚洲精品av一区二区| 国产成人一区二区在线| 午夜福利在线在线| 国产精品女同一区二区软件| 成年免费大片在线观看| 亚洲欧美成人精品一区二区| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 久久久久久久国产电影| 99久久九九国产精品国产免费| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 亚洲久久久久久中文字幕| 麻豆成人av视频| 男人舔奶头视频| 一级毛片电影观看 | 久久精品国产自在天天线| 激情 狠狠 欧美| 久99久视频精品免费| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| 亚洲欧美精品专区久久| 岛国在线免费视频观看| av线在线观看网站| 你懂的网址亚洲精品在线观看 | 国产精品电影一区二区三区| 汤姆久久久久久久影院中文字幕 | 狠狠狠狠99中文字幕| 中文字幕精品亚洲无线码一区| 亚洲三级黄色毛片| 男人舔奶头视频| a级毛片免费高清观看在线播放| 久久久久网色| 看黄色毛片网站| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久 | 午夜免费激情av| 99久久成人亚洲精品观看| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看| 国产私拍福利视频在线观看| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 五月伊人婷婷丁香| 插阴视频在线观看视频| 国产淫语在线视频| 国产精品无大码| 国产高清国产精品国产三级 | 国产午夜福利久久久久久| 日本免费在线观看一区| 男人舔奶头视频| 在线观看一区二区三区| 久久精品综合一区二区三区| 黑人高潮一二区| 在线观看美女被高潮喷水网站| 免费看美女性在线毛片视频| 99久国产av精品国产电影| 国产黄片视频在线免费观看| 热99re8久久精品国产| a级毛色黄片| 亚洲三级黄色毛片| 天天一区二区日本电影三级| 国产午夜福利久久久久久| 国产成人freesex在线| 国产精品.久久久| 夫妻性生交免费视频一级片| av在线蜜桃| 欧美精品一区二区大全| 午夜福利网站1000一区二区三区| 大话2 男鬼变身卡| 国产乱人视频| 日韩欧美精品v在线| 久久欧美精品欧美久久欧美| 久久精品国产自在天天线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 乱系列少妇在线播放| 成年av动漫网址| 啦啦啦韩国在线观看视频| 亚洲精华国产精华液的使用体验| av.在线天堂| 国产一区二区三区av在线| 噜噜噜噜噜久久久久久91| a级毛色黄片| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 日本欧美国产在线视频| 色5月婷婷丁香| 日本色播在线视频| 亚洲欧美清纯卡通| 18+在线观看网站| 日本与韩国留学比较| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 永久网站在线| 青青草视频在线视频观看| 欧美成人免费av一区二区三区| 亚洲色图av天堂| 美女国产视频在线观看| 在线免费观看不下载黄p国产| 色5月婷婷丁香| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 国产欧美日韩精品一区二区| 日本色播在线视频| 国内精品宾馆在线| 国产午夜精品论理片| 少妇丰满av| videossex国产| 国产色婷婷99| av免费观看日本| 久久韩国三级中文字幕| 免费观看精品视频网站| 亚洲成人中文字幕在线播放| 99久国产av精品国产电影| 波多野结衣巨乳人妻| 亚洲欧美精品专区久久| 国产亚洲av嫩草精品影院| 日韩一区二区视频免费看| 国产极品天堂在线| 成人无遮挡网站| 亚洲在线观看片| 久久久午夜欧美精品| 日日干狠狠操夜夜爽| 精品人妻一区二区三区麻豆| 国产三级中文精品| 毛片一级片免费看久久久久| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 精品国产露脸久久av麻豆 | 久久久久久久午夜电影| 九九爱精品视频在线观看| 日本黄色视频三级网站网址| 中国国产av一级| 欧美高清性xxxxhd video| 全区人妻精品视频| 超碰av人人做人人爽久久| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 天堂网av新在线| 亚洲精品久久久久久婷婷小说 | 91狼人影院| 午夜a级毛片| 亚洲欧美日韩高清专用| 国内精品一区二区在线观看| 有码 亚洲区| 成人二区视频| 身体一侧抽搐| 免费观看性生交大片5| 真实男女啪啪啪动态图| 精品人妻视频免费看| 能在线免费看毛片的网站| 秋霞伦理黄片| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 国产毛片a区久久久久| 中文精品一卡2卡3卡4更新| 啦啦啦啦在线视频资源| 午夜福利网站1000一区二区三区| 卡戴珊不雅视频在线播放| 天堂网av新在线| 村上凉子中文字幕在线| 国产淫片久久久久久久久| 熟妇人妻久久中文字幕3abv| 高清日韩中文字幕在线| 极品教师在线视频| ponron亚洲| av在线播放精品| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 日韩亚洲欧美综合| 人人妻人人澡人人爽人人夜夜 | 久久99热这里只频精品6学生 | 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 国产真实乱freesex| 欧美一级a爱片免费观看看| 国内精品一区二区在线观看| 一级毛片aaaaaa免费看小| 中文天堂在线官网| 综合色丁香网| 天堂影院成人在线观看| 波野结衣二区三区在线| 美女国产视频在线观看| 精品一区二区三区视频在线| 精品国内亚洲2022精品成人| 日本-黄色视频高清免费观看| 日韩欧美三级三区| 欧美色视频一区免费| 国产午夜精品一二区理论片| 亚洲乱码一区二区免费版| 日本av手机在线免费观看| 亚洲国产精品国产精品| 国产精品一区二区性色av| 97在线视频观看| 国产精品一区www在线观看| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 如何舔出高潮| 久久精品国产99精品国产亚洲性色| 国产精品不卡视频一区二区| ponron亚洲| 亚州av有码| 久久久色成人| 亚洲av成人精品一区久久| av.在线天堂| av又黄又爽大尺度在线免费看 | 久热久热在线精品观看| 高清视频免费观看一区二区 | 菩萨蛮人人尽说江南好唐韦庄 | 可以在线观看毛片的网站| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 精品一区二区三区视频在线| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 男女那种视频在线观看| 婷婷六月久久综合丁香| 女的被弄到高潮叫床怎么办| 久久99蜜桃精品久久| 禁无遮挡网站| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久 | 亚洲欧美精品综合久久99| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 久久久欧美国产精品| 亚洲av.av天堂| 女人被狂操c到高潮| 午夜福利网站1000一区二区三区| 春色校园在线视频观看| 网址你懂的国产日韩在线| 久久久精品欧美日韩精品| 国产成人a区在线观看| 欧美bdsm另类| 国产精品伦人一区二区| 婷婷色麻豆天堂久久 | 自拍偷自拍亚洲精品老妇| 男人的好看免费观看在线视频| 日韩,欧美,国产一区二区三区 | 国产精品一区二区三区四区免费观看| 亚洲av一区综合| 成人欧美大片| 亚州av有码| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 国产真实乱freesex| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 日韩制服骚丝袜av| 午夜精品国产一区二区电影 | 久久精品国产亚洲av涩爱| 麻豆国产97在线/欧美| 国产精品永久免费网站| 成人国产麻豆网| 久久久久性生活片| 久久精品人妻少妇| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 最近最新中文字幕免费大全7| 三级毛片av免费| 日本免费在线观看一区| 成人无遮挡网站| 日本熟妇午夜| 综合色丁香网| 高清视频免费观看一区二区 | 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 亚洲va在线va天堂va国产| 免费看光身美女| 亚洲最大成人av| 亚洲在线自拍视频| 国产欧美另类精品又又久久亚洲欧美| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 女的被弄到高潮叫床怎么办| av国产免费在线观看| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 欧美人与善性xxx| 国产亚洲最大av| 国产免费又黄又爽又色| 亚州av有码| 直男gayav资源| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 91久久精品电影网| 亚洲国产色片| 1000部很黄的大片| 国产精品久久久久久精品电影小说 | 嫩草影院新地址| 18+在线观看网站| 色哟哟·www| 成人综合一区亚洲| 少妇的逼好多水| 国产成人精品一,二区| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 久久99蜜桃精品久久| 非洲黑人性xxxx精品又粗又长| 午夜福利网站1000一区二区三区| 在线免费十八禁| 国产极品精品免费视频能看的| 久久午夜福利片| 成年版毛片免费区| 美女内射精品一级片tv| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 国产av码专区亚洲av| 嫩草影院入口| 在线观看66精品国产| 天天躁日日操中文字幕| .国产精品久久| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| www.av在线官网国产| 最近中文字幕高清免费大全6| 亚洲在线自拍视频| 国产精品国产三级专区第一集| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 内地一区二区视频在线| 永久免费av网站大全| 听说在线观看完整版免费高清| 高清毛片免费看| 国产女主播在线喷水免费视频网站 | 草草在线视频免费看| 国产美女午夜福利| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 三级国产精品片| 亚洲av二区三区四区| 一边亲一边摸免费视频| 国产大屁股一区二区在线视频| 久久亚洲精品不卡| 国产在视频线在精品| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 超碰97精品在线观看| 欧美日本亚洲视频在线播放| 国产精品久久久久久久久免| 少妇被粗大猛烈的视频| 久久久久久久久久久丰满| 日韩中字成人| 亚洲不卡免费看| 精品久久久久久电影网 | 一边亲一边摸免费视频| 少妇的逼水好多| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 校园人妻丝袜中文字幕| 三级经典国产精品| 男人的好看免费观看在线视频| 久久精品91蜜桃| 国产精品熟女久久久久浪| 国产一级毛片七仙女欲春2| 男人和女人高潮做爰伦理| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站 | 超碰97精品在线观看| 少妇人妻一区二区三区视频| 欧美另类亚洲清纯唯美| 色吧在线观看| 夜夜爽夜夜爽视频| 成年女人永久免费观看视频| 日韩欧美在线乱码| 天美传媒精品一区二区| 一个人看的www免费观看视频| 亚洲国产最新在线播放| 亚洲中文字幕一区二区三区有码在线看| 老司机影院成人| 成人毛片a级毛片在线播放| 51国产日韩欧美| 男人舔奶头视频| 国产精品一二三区在线看| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 搡女人真爽免费视频火全软件| 亚洲国产精品久久男人天堂| 亚州av有码| 久久精品熟女亚洲av麻豆精品 | 毛片一级片免费看久久久久| 国产精品久久久久久久电影| 在线免费十八禁| 午夜日本视频在线| 久久久国产成人精品二区| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 国产精品人妻久久久影院| 日韩视频在线欧美| 我要看日韩黄色一级片| 国产精品一区二区三区四区免费观看| 一区二区三区免费毛片| 永久网站在线| 韩国av在线不卡| 日韩欧美精品v在线| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 国产高清三级在线| 九九热线精品视视频播放| 麻豆成人av视频| 丝袜美腿在线中文| 久久精品91蜜桃| 国产精品一区www在线观看| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人看人人澡| 在线观看美女被高潮喷水网站| 色综合色国产| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 欧美成人免费av一区二区三区| 精品久久久久久电影网 | 在线观看美女被高潮喷水网站| 老司机影院毛片| 色播亚洲综合网| 高清午夜精品一区二区三区| 午夜爱爱视频在线播放| 亚洲自拍偷在线| 亚洲久久久久久中文字幕| 美女黄网站色视频| 天堂av国产一区二区熟女人妻| 一级二级三级毛片免费看| 少妇高潮的动态图| 亚洲四区av| 国语对白做爰xxxⅹ性视频网站| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 免费观看a级毛片全部| 亚洲不卡免费看| 国产高清视频在线观看网站| 日韩在线高清观看一区二区三区| 亚洲av熟女| 人体艺术视频欧美日本| 最近2019中文字幕mv第一页| 成人三级黄色视频| 老师上课跳d突然被开到最大视频| 精品久久久久久久久av| 国产探花极品一区二区| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 国产精品伦人一区二区| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 一个人免费在线观看电影| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 亚洲国产精品国产精品| 国产一区二区亚洲精品在线观看| 人妻制服诱惑在线中文字幕| 99久国产av精品国产电影| 蜜臀久久99精品久久宅男| 特大巨黑吊av在线直播| 国产成年人精品一区二区| 波多野结衣巨乳人妻| av在线播放精品| 免费av不卡在线播放| 好男人在线观看高清免费视频| 免费看a级黄色片| 色尼玛亚洲综合影院| 欧美精品国产亚洲| 熟妇人妻久久中文字幕3abv| 亚洲欧美清纯卡通| 亚洲真实伦在线观看| 99久久人妻综合| 国产精品三级大全| 国产精品乱码一区二三区的特点| 免费观看的影片在线观看| 国产av在哪里看| 九九爱精品视频在线观看| 高清av免费在线| 免费看光身美女| 国产亚洲av嫩草精品影院| 蜜臀久久99精品久久宅男| 国产精品永久免费网站| 丰满乱子伦码专区| 亚洲av二区三区四区| 乱系列少妇在线播放| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 建设人人有责人人尽责人人享有的 | 性插视频无遮挡在线免费观看| 麻豆久久精品国产亚洲av| 欧美丝袜亚洲另类| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 91久久精品国产一区二区成人| 边亲边吃奶的免费视频| 国产精品久久久久久久久免| 中文精品一卡2卡3卡4更新| 一个人看视频在线观看www免费| 久久国内精品自在自线图片| 村上凉子中文字幕在线| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 欧美3d第一页| 国产成年人精品一区二区| 搞女人的毛片| 亚洲欧美日韩高清专用| eeuss影院久久| 免费观看精品视频网站| 亚洲av熟女| 久久久久久九九精品二区国产| 国产91av在线免费观看| 国产一区二区亚洲精品在线观看| 内射极品少妇av片p| 成人午夜高清在线视频| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜 | 国产麻豆成人av免费视频| 亚洲av中文av极速乱| 国产乱人偷精品视频| 激情 狠狠 欧美| 九九在线视频观看精品| 国产69精品久久久久777片| 爱豆传媒免费全集在线观看| 免费看光身美女| 亚洲欧美中文字幕日韩二区| 久久久久精品久久久久真实原创| 波多野结衣巨乳人妻| videossex国产| 只有这里有精品99| 亚洲在线自拍视频| 欧美激情在线99| 久久久亚洲精品成人影院| 国产精品永久免费网站| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 久久草成人影院| 国产黄a三级三级三级人| 免费无遮挡裸体视频| 欧美xxxx性猛交bbbb| 亚洲av男天堂| 亚洲在久久综合| 亚洲国产精品成人久久小说| 国产精品av视频在线免费观看| 免费av观看视频| 禁无遮挡网站| 久久精品国产自在天天线| 国产在线男女| 国产在视频线精品| 日本午夜av视频| 亚洲丝袜综合中文字幕| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区| 久久久久久久亚洲中文字幕| 两个人视频免费观看高清| 男的添女的下面高潮视频| 99久久人妻综合| 欧美一区二区亚洲| 午夜福利网站1000一区二区三区| 久久精品国产亚洲av天美| 美女xxoo啪啪120秒动态图| 身体一侧抽搐| 日本三级黄在线观看| 嫩草影院精品99| 三级国产精品欧美在线观看| 高清毛片免费看| 深爱激情五月婷婷| 亚洲精品aⅴ在线观看| 在线播放国产精品三级| 综合色丁香网| 中文字幕av成人在线电影| 国产综合懂色| 亚洲欧美日韩卡通动漫| 婷婷色麻豆天堂久久 | 亚洲av一区综合| 91久久精品电影网| 级片在线观看| av在线播放精品| 亚洲精品久久久久久婷婷小说 | 美女国产视频在线观看| 日韩国内少妇激情av| 国产成人aa在线观看| 最近最新中文字幕免费大全7| 国内精品一区二区在线观看| 久久久久性生活片| 亚洲av成人av| 老司机影院毛片|