• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The wave absorption efficiency of multi-layer vertical perforated thin plates *

    2018-10-27 09:11:06BaoleiGeng耿寶磊RongquanWang王榮泉DezhiNing寧德志
    水動力學研究與進展 B輯 2018年5期
    關(guān)鍵詞:寧德

    Bao-lei Geng (耿寶磊), Rong-quan Wang (王榮泉), De-zhi Ning (寧德志)

    1. National Engineering Laboratory for Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transportation Engineering, Tianjin 300456, China

    2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024,China

    Abstract: This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory.The influence of the thickness, the porosity and the layout form of the plates on the wave absorptivity is studied on the assumption that all perforated plates are composed of the same materials and have the same thickness and porosity.The calculation results indicate that the larger the number of layers of the perforated plate set, the better the wave absorption efficiency,however, when the layer number exceeds a certain value, the efficiency of the plates is not significantly increased.For the case of porosity ε=0.2, thickness b = 0.07m and 4 layers of perforated plates with a distance l=1.0m between the layers, 90% of the energy of the wave within the incident wave period between 1.6 s and 4.4 s can be absorbed.

    Key words: Wave absorptivity, multi-layer vertical plate, porous structure, analytic method

    Introduction

    To reduce the wave reflection and the wave force,a perforated structure is adopted in coastal engineering,this problem was studied over the past several decades by a large number of researchers by experiments,theoretical analyses and numerical simulations.

    Ma[1]studied the reflection coefficient of vertical perforated breakwater structures with and without a top plate on a wave and its main influencing factors and proposed a formula for calculating the reflection coefficient and the phase difference.Koraimet al.[2]experimentally studied the hydrodynamic efficiency of a new type porous seawall by using physical models.The seawall consists of front steel screen,back solid wall and filled rock-core.Chyonet al.[3]performed experiments to investigate the interaction between wave and horizontal slotted submerged breakwater to find out the effective size and porosity of the structure for the reduction of wave height.Fang et al.[4]experimentally investigated a submerged breakwater with four-layer horizontal porous plates.In the design of the breakwater's geometrical parameters(i.e., plate submergence, porosity and width), the vertical velocity distribution of fluid particles and suggestions from previous studies were considered.The wave-dissipating characteristics, i.e., the wave reflection, transmission, energy dissipation, and vertical force coefficients, were examined in a series of experiments.The effects of layer number, breakwater width, porosity of the upper plate and incident wave height were investigated in their experimental study.

    In the field of theoretical analyses, Yu and Chwang (1994) studied the water oscillation situation inside semi-circular perforated breakwaters based on the linear potential flow theory and obtained the amplitude when the perforation resistance can effectively reduce the resonance within the harbor.Subsequently, Yu (1995) calculated the diffraction action on the permeable semi-infinite breakwaters also based on the linear potential flow theory.Chwang and Chan (1998) analyzed the action between the wave and the perforated structure based on the Darcy Law and found that the perforated structure could reduce the wave generation and the resonance within the harbor.They discussed the application of this finding in engineering practice.Tenget al.[5], Liet al.[6]studied systematically the wave action using a partially porous double-wall cylinder and analyzed the influencing factors for reducing the wave surface height and the wave load.Twu and Chieu[7]developed an offshore breakwater composed of multiple layers of porous materials based on the eigenfunction expansion method.Liu and Li[8]presented an alternative analytical solution approach for water wave motion over a submerged horizontal porous plate using matched eigenfunction expansion approach.Later, Liu and Li[9]developed a new analytical solution for water wave motion through a surface-piercing porous breakwater.Karmakar and Guedes Soares[10]analyzed the multiple bottom-standing flexible porous barriers with different edge conditions to determine the performance of the wave interaction with multiple submerged barriers as breakwaters in the coastal region based on the eigenfunction expansion method.Kaligatlaet al.[11]investigated the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths by assuming that the flexible plate to be thin.Beheraet al.[12]investigated the trapping of oblique wave by porous barrier located near a rigid wall in the presence of a step type bottom bed.The physical problem is solved by using the eigenfunction expansion method and multi-mode approximation associated with modified mild-slope equation.Meng and Lu[13]studied the porous rectangular barrier on a seabed based on the linear potential flow theory and the matched eigenfunction expansion method.Manam and Sivanesan[14]studied scattering of deep water waves by a submerged or a surface piercing vertical porous barrier.Manam and Sivanesan[15]establish a new type of connection between the solutions of wave scattering problems involving vertical porous and solid barriers of same configuration.Behera and Ng[16]analyzed the performance of multiple bottom-standing flexible porous barriers in the presence of a rigid vertical wall and a step-type bottom on the basis of linearized water wave theory.Zhao et al.[17]investigated the oblique wave motion over multiple submerged porous bars in front of a vertical wall based on linear potential theory matched eigenfunction expansion method.Singla et al.[18]studied the role of partial permeable vertical barriers on the reduction of wave-induced hydroelastic response on a very large floating structure in a finite depth of water based on eigenfunction matching technique.

    In the field of numerical simulations, Li and Jiang[19]studied a perforated structure in a numerical wave flume to dissipate the reflection wave with considerations of the influence of the porosity, the number of perforations, the total length of the device,and other factors on the wave dissipation efficiency.Zhanet al.[20]used the energy-dissipating property of porous media to tackle the problem of wave reflections from computational domain in the numerical wave tank.Chenet al.[21]calculated the point pressure of the wave action on the perforated plate and the reflection coefficient by utilizing a numerical wave flume based on the VOF method and thek-εturbulent model and analyzed the influencing factors for the reflection coefficient and the point pressure distribution, especially, the influence of the porosity.

    Previous researches primarily focused on the correlation between the reflection coefficient, the wave force and the influencing factors under the wave action for the perforated structure, without much consideration of the influences of the porosity, the thickness and the layout form of the perforated plates on the wave absorption efficiency.The present study focuses on the influence of the porosity, the thickness and the layout form of such plates on the wave absorptivity.The proper porosity value, thickness value and layout form are proposed to improve the wave-absorbing ability of the multi-layer vertical perforated thin plates.

    1.Fundamental theory and calculation method

    For the wave action on a uniformly perforated plate with incident waves propagating along thex-direction at the water depthh, a plane-coordinate systemOxzis established with the originOon the static water surface and the axisOzmeasured vertically upward, as shown in Fig.1.The present study is based on the potential flow theory, and it is assumed that the perforated plates are composed of the same materials with the same thickness and porosity.In the analysis, the waveward side of the plate is set to coincide with the axisOz.

    Fig.1 Schematic diagram of the action of a wave and uniformly perforated thin plates

    For an ideal fluid, there is a velocity potentialφthat satisfies the Laplace equation in the whole domain.

    where

    is the two-dimensional Laplacian.

    The bottom of the flume satisfies the condition that the water cannot permeate the boundary of the rigid walls, that is, the normal derivative of the velocity potentialφis 0.

    In the interior of uniformly perforated thin plates(i.e.,b|λ?1, wherebis the thickness of the plate andλis the incident wave length), the fluid flow satisfies the continuity equation

    and the Euler equation, with the convective term ignored

    whereUis the fluid velocity,ρis the fluid density,pis the intensity of the pressure of the fluid,fis the resistance coefficient,ωis the frequency of the incident wave,Cmandεare the added mass and the porosity of the thin plate, respectively.

    The time term is separated from the velocityUand the intensity of the pressurePas

    The equations for the complex variableuandpare:

    where

    The real and imaginary parts correspond to the resistance and inertia force influences of the medium,respectively.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference is as follows

    where the subscripts 0 andbare the physical values in the two sides of the thin plate.

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have

    Under different circumstances, for the velocity potentials to satisfy the boundary conditions, we have the theoretical expressions of the reflection coefficient,the transmission coefficient, the energy loss coefficient and the wave absorptivity of the wave absorbing structure model of one-layer and multi-layer vertical perforated plates.Finally, comparisons, selections and optimizations are made with regard to the thickness,the porosity and the distance of the multi-layer perforated plates, based on the wave elements and other factors.

    2.Modeling

    2.1 Action between wave and two-layer perforated plates

    Consider the two-layer perforated plates shown in Fig.2.A rectangular coordinate systemoxzis established, in which theozaxis coincides with the wave side of the first layer plate and theoxaxis is on the surface of the still water.For convenience, the computational domain is divided into 5 parts, among which1Ω,2Ωand3Ωare the external domains of the perforated plate andΩ4and5Ωare the internal domains of the 1# plate and the 2# plate, respectively.

    The action between the waves and the two uniformly perforated thin plates with a thickness ofbis shownin Fig.2.The velocity potentials1φ,2φand3φwithin the areas of1Ω,2Ωand3Ωshould satisfy the following conditions:

    Free water surface condition

    Water bottom condition

    Infinity condition

    in which0φis the incident potential.

    Fig.2 Schematic diagram of a wave absorbing structure with dual-layer vertical perforated plates

    The object surface condition on the straight wall is

    wherelmnis the distance between the No.nplate and the No.n+1 plate, the subscriptmrepresents the number of the layers of the perforated plates.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference can be derived as:

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have:

    where

    Equation (16) can be expressed as:

    In view of the fact that the wavelength is much greater than the thickness of the perforated plates, the thickness of the thin plate is ignored, the velocity continuity condition in the thin wall can be expressed as:

    φ1,φ2,φ3exclude the evanescent-wave component,thus, they can be expressed as:

    in whichR1and1Tare the reflection coefficient and the transmission coefficient of the first perforated plate, respectively,R2is the reflection coefficient of the second perforated plate, andT2is the transmission coefficient of the second perforated plate, as well as the reflection coefficient of the impermeable straight wall under the total reflection condition.

    Substituting the velocity potentials1φ,2φ,3φinto Formula (17) and Formula (18), we have:

    where

    Regarding all perforated plates as an entire wave absorbing structure.the reflection coefficientKrand the transmission coefficientKtof the structure can be written as:

    The energy loss coefficient is

    The wave energy absorbed by the wave absorbing structure is defined as the sum of the loss and transmission energies, and the absorptivity is

    2.2 Action between the wave and different perforated plates

    The reflection coefficient and the transmission coefficient of the incident wave when one layer, three layers and four layers of perforated plates are used can be obtained by using the same method.Figure 3 shows the schematic diagrams of the action between the wave and different-layer perforated plates, and the relevant formulas for describing the coefficients are as follows:

    (1) When we have one layer of perforated plate

    Fig.3 Schematic diagrams of different-layer perforated plate layouts

    The reflection coefficientKrand the transmission coefficientKtare:

    (2) When we have three layers of perforated plates

    where

    The reflection coefficientKrand the transmission coefficientKtof the wave absorbing structure are:

    (3) When we have four layers of perforated plates

    in which

    The reflection coefficientKrand the transmission coefficientKtof the absorbing structure to the

    wave are:

    For the action between the wave and differentlayer perforated plates, the expressions of the system energy loss coefficient and the absorptivity are the same as shown in Formulas (22), (23).

    3.Examples

    3.1 Influences of the number of layers of the perforated plates on the wave dissipation efficiency

    Consider multilayer plates, with each plate of the same characteristics, i.e., of the same material, thickness and porosity.The depth of the water is 2.5 m and the maximum width (i.e., the total width of the wave absorbing structure) for setting the perforated plate is 12 m.

    To study the influences of the number of layers of the perforated plates on the wave dissipation efficiency, calculations are performed to determine the wave dissipation efficiency when different layers of the perforated plates have different values of porosityεand thicknessb.According to Yu (1995), the resistance coefficient and the added mass aref=2.0 andCm=0, respectively.For the optimal positions of the perforated plates with an equal distance in the 12 m wave dissipation area when the incident period is 3.5 s,Fig.4 shows the reflection coefficientKrand the absorptivityKaagainst the porosityεand the thicknessbof the perforated plates.

    From Figs.3(a), 3(c), we can see that when the incident wave period is 3.5 s, the reflection coefficientKrdecreases and then increases with the increase of the porosityε.Such behavior is due to the fact that when the porosity of the perforated plate is small,much of the wave is reflected, whereas when the porosity of the perforated plate is large enough, the perforated plate is equivalent to a permeable structure and all waves are reflected by the vertical wall behind the perforated plate.The variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases with the increase of the porosityε.The reflection of the structure will decrease with the increase of the number of perforated plates; however,the absorptivity will increase, indicating that multilayer perforated plates have a better wave dissipation efficiency.The wave absorption efficiency is best when the number of plates is four and the porosity is approximately 0.2, as shown in Figs.3(a), 3(c).

    Fig.4 Effects of the porosity and thickness of the plate on the absorptivity efficiency of the plates

    The reflection coefficientKrdecreases and then increases with the increase of the thickness of the perforated plates, whereas the variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases.Overall, when the thicknessbremains unchanged, the reflection coefficient will decrease and the absorptivity will increase with the increase of the number of layers of the perforated plates, indicating that multilayer perforated plates have a better wave dissipation efficiency.A slight reduction of the reflection coefficient of the multilayer perforated plates of four layers is observed compared with that of three layers, indicating that more layers of plates have a very small influence on the reduction of the reflection coefficient when the number of layers reaches three.

    3.2 Influence of the thickness of the perforated plates on the wave absorptivity

    We now consider the influence of the perforated plates with different parameters (thickness, porosity and spacing) on the wave absorption efficiency with an incident period between 0.5 s and 5.0 s when four layers of perforated plates are considered.The resistance coefficient and the added mass are stillf=2.0 andCm=0, respectively (Yu (1995)).

    Fig.5 Influence of the thickness of the perforated plates on the wave absorptivity

    Assume that the four layers of perforated plates are with an equal spacing,l=1.0m, and the porosity of the perforated plates isε=0.2.The influence of the thickness of the perforated plates on the wave absorptivity with the incident periods from 0.5-5.0 s is shown in Fig.5.The wave absorptivity decreases with the increase of the thickness in the short wave region,whereas in the long wave region the trend is opposite.It is found that when the thickness is 0.07 m (i.e.,b= 0.07m), the perforated plate structure has a good wave absorption efficiency in a relative long wave period region; in addition, the absorptivity of the wave with an incident period between 1.6 s and 4.4 s will reach and exceed 90%, among which the highest absorptivity is over 95%.

    Fig.6 Influence of porosity and plate spacing on wave absorptivity (b=0.05m)

    3.3 Influence of porosity and plate spacing on wave absorptivity

    The influence of the porosity and the plate spacing on the wave absorptivity is considered in this subsection for perforated plates of four layers.Figures 6, 7 show the variations of the absorptivity versus the incident wave period at a plate thickness of 0.05 m and 0.07 m (b= 0.05m ,b=0.07m) for different values of the porosity and the plate spacing.

    We can see that the relation curves see a left-ward shift overally with the increase of the porosity.For the short period waves, the larger the porosity, the better the wave absorption efficiency, in contrast, for the long period waves, the absorptivity decreases with the increase of the porosity.The wave absorption efficiency of the structure is best when the porosity is 0.2, i.e.,ε=0.2, for which the period of an incident wave with an absorptivity over 90%reaches the maximum.

    Among plates with different spacings, the wave absorption efficiency of the structure is the best when the plate spacing is 1.0 m (i.e.,l=1.0m), in other words, the period range of an incident wave with an absorptivity over 90% reaches the maximum.The period range of an incident wave with an absorptivity over 90% will decrease when the plate spacing increases or decreases.

    Moreover, from Figs.6, 7, we can see that the structure will satisfy the design requirements better and reach a larger period range of the effective incident wave as indicated by the wave absorption requirements when the plate spacing is 1.0 m and the thickness is 0.07 m (i.e.,l=1.0m,b= 0.07m).Whenb=0.05m ,T∈ ( 1.4s,2.4s), whenb=0.07m,T∈ ( 1.6s,4.4s).

    Fig.7 Influence of porosity and plate spacing on wave absorptivity (b=0.07m)

    4.Conclusions

    Based on the analytical studies, it is found that the absorptivityKaincreases with the increase of the number of layers of perforated plates.However, the increase of the wave absorption efficiency is not significant when the number of layers of plates increases from 3-4.Thus, we consider 4 layers of perforated plates.

    For incident waves with a short period, the absorptivityKais found to decrease with the incincrease of the plate thicknessb,and increase with the increase of the porosityε.For incident waves with a long period, the absorptivityKais found to increase with the increase of the plate thicknessb,but decrease with the increase of the porosityε.It is shown that when the porosity is 0.2, the plate thickness is 0.07 m, and the adjacent spacing between the four layers of the perforated plates is 1.0 (i.e.,the wave absorption efficiency for a wave with an incident period of (1.6 s, 4.4 s) will reach 90% (even exceeding 95% for some incident wave periods).

    Acknowledgement

    This work was supported by the Central Commonwealth Research Institute Basic R&D Special Foundation of TIWTE (Grant No.TKS160107).

    猜你喜歡
    寧德
    寧德時代凈利潤下跌
    寧德市婦聯(lián)舉辦“傳承好家風·建設(shè)新寧德”主題活動
    海峽姐妹(2020年10期)2020-10-28 08:08:06
    寧德:撐起脫貧攻堅“半邊天”
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    守正創(chuàng)新 春風化雨 寧德基層婦女思想政治引領(lǐng)亮點多
    海峽姐妹(2019年12期)2020-01-14 03:24:40
    寧德核電站火災事故的情景構(gòu)建
    勞動保護(2019年3期)2019-05-16 02:37:40
    寧德時代價值幾何
    能源(2018年7期)2018-09-21 07:56:24
    上汽與寧德時代合作回收動力電池
    寧德迎來大黃魚豐收季
    Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter *
    以扶貧開發(fā)“寧德模式”引領(lǐng)老區(qū)精準扶貧
    紅土地(2017年1期)2017-06-05 09:37:28
    丰满人妻一区二区三区视频av| 国产伦精品一区二区三区视频9| 日本-黄色视频高清免费观看| 色5月婷婷丁香| 中文在线观看免费www的网站| 精品无人区乱码1区二区| 欧美成人性av电影在线观看| 亚洲av.av天堂| 午夜福利高清视频| 白带黄色成豆腐渣| 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 中文字幕免费在线视频6| 国产精品一区www在线观看 | 特大巨黑吊av在线直播| 日韩亚洲欧美综合| 成人午夜高清在线视频| 欧美黑人欧美精品刺激| 国产真实伦视频高清在线观看 | 一区二区三区免费毛片| 综合色av麻豆| 国产私拍福利视频在线观看| 国产乱人视频| 看免费成人av毛片| 国产欧美日韩精品一区二区| 免费黄网站久久成人精品| 三级毛片av免费| 99riav亚洲国产免费| 免费观看人在逋| 床上黄色一级片| 男女做爰动态图高潮gif福利片| 日韩精品青青久久久久久| 在线观看66精品国产| 色5月婷婷丁香| 欧美潮喷喷水| 日本三级黄在线观看| 麻豆精品久久久久久蜜桃| 一本久久中文字幕| 91在线精品国自产拍蜜月| 国产一区二区亚洲精品在线观看| 99久久精品热视频| 国产一区二区三区av在线 | 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久com| 丝袜美腿在线中文| 乱人视频在线观看| 床上黄色一级片| 99久久中文字幕三级久久日本| 亚洲精品日韩av片在线观看| 国产高潮美女av| 在线观看免费视频日本深夜| 国产免费男女视频| 可以在线观看毛片的网站| 国产av一区在线观看免费| 老司机午夜福利在线观看视频| 美女 人体艺术 gogo| 给我免费播放毛片高清在线观看| 男女视频在线观看网站免费| 欧美一区二区亚洲| 色综合站精品国产| 五月玫瑰六月丁香| 黄片wwwwww| 国产三级在线视频| 国产高清视频在线播放一区| 欧美区成人在线视频| 少妇熟女aⅴ在线视频| 中文字幕av在线有码专区| 啦啦啦观看免费观看视频高清| 在线播放国产精品三级| 国产单亲对白刺激| 韩国av在线不卡| 亚洲国产色片| 男人的好看免费观看在线视频| 91在线精品国自产拍蜜月| 美女xxoo啪啪120秒动态图| 男女边吃奶边做爰视频| 高清日韩中文字幕在线| 最新中文字幕久久久久| 国产真实伦视频高清在线观看 | 国产精品嫩草影院av在线观看 | 亚洲avbb在线观看| 国产69精品久久久久777片| 能在线免费观看的黄片| 久久久久国内视频| 女人十人毛片免费观看3o分钟| 噜噜噜噜噜久久久久久91| 国产黄a三级三级三级人| 美女高潮喷水抽搐中文字幕| 草草在线视频免费看| 村上凉子中文字幕在线| av天堂在线播放| 亚洲精品亚洲一区二区| 精品一区二区三区人妻视频| 日本成人三级电影网站| 国产精品98久久久久久宅男小说| 日韩,欧美,国产一区二区三区 | 国语自产精品视频在线第100页| 日韩,欧美,国产一区二区三区 | 97超级碰碰碰精品色视频在线观看| 麻豆成人午夜福利视频| 日本一二三区视频观看| a在线观看视频网站| 国模一区二区三区四区视频| 免费搜索国产男女视频| 69av精品久久久久久| 免费大片18禁| 亚洲狠狠婷婷综合久久图片| 成年女人永久免费观看视频| 精品久久久久久久久av| 十八禁网站免费在线| 91麻豆精品激情在线观看国产| 精品一区二区免费观看| 亚洲av.av天堂| 美女黄网站色视频| 亚洲精品色激情综合| 亚洲18禁久久av| 国产精品一区二区三区四区久久| 久久久久久久久久黄片| 波多野结衣高清作品| 美女高潮喷水抽搐中文字幕| 国产高清视频在线观看网站| 亚洲av成人av| 亚洲自偷自拍三级| 免费不卡的大黄色大毛片视频在线观看 | 搡老妇女老女人老熟妇| 99九九线精品视频在线观看视频| 在线免费观看的www视频| 久久精品国产清高在天天线| 一级a爱片免费观看的视频| 日韩欧美国产一区二区入口| av在线蜜桃| 国产不卡一卡二| 婷婷精品国产亚洲av在线| 亚洲电影在线观看av| 亚洲av五月六月丁香网| 亚洲精华国产精华液的使用体验 | 午夜福利在线在线| ponron亚洲| 22中文网久久字幕| 国产高清视频在线播放一区| 在线观看av片永久免费下载| 日韩一本色道免费dvd| 日韩一本色道免费dvd| 色在线成人网| 五月伊人婷婷丁香| 在线观看一区二区三区| 亚洲精品日韩av片在线观看| 国产精品av视频在线免费观看| 亚洲av.av天堂| 亚洲熟妇中文字幕五十中出| 久久久久久国产a免费观看| 国产精品精品国产色婷婷| 最近中文字幕高清免费大全6 | 一级av片app| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av天美| 老女人水多毛片| 啦啦啦韩国在线观看视频| 天堂av国产一区二区熟女人妻| 午夜日韩欧美国产| 国产精品99久久久久久久久| 成人国产综合亚洲| 九九在线视频观看精品| av在线蜜桃| 日日啪夜夜撸| 五月伊人婷婷丁香| 久久久久久伊人网av| 十八禁网站免费在线| 狂野欧美激情性xxxx在线观看| 亚洲av第一区精品v没综合| 久久九九热精品免费| 亚洲男人的天堂狠狠| 亚洲欧美日韩高清在线视频| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 亚洲人成网站高清观看| 国产精品亚洲美女久久久| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久久久久久| 午夜福利成人在线免费观看| 最新在线观看一区二区三区| 麻豆av噜噜一区二区三区| 日韩 亚洲 欧美在线| 国产人妻一区二区三区在| 给我免费播放毛片高清在线观看| 嫁个100分男人电影在线观看| 亚洲五月天丁香| 一区二区三区免费毛片| 成人无遮挡网站| 久久午夜福利片| 麻豆一二三区av精品| 亚洲午夜理论影院| 亚洲av五月六月丁香网| 身体一侧抽搐| 日本与韩国留学比较| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| 超碰av人人做人人爽久久| 一边摸一边抽搐一进一小说| 熟女人妻精品中文字幕| 色av中文字幕| 国内精品久久久久精免费| av在线亚洲专区| 国产熟女欧美一区二区| 此物有八面人人有两片| 男女做爰动态图高潮gif福利片| 国产一区二区在线av高清观看| 69人妻影院| 最近在线观看免费完整版| 欧美中文日本在线观看视频| 老女人水多毛片| 中文资源天堂在线| 久久香蕉精品热| 最好的美女福利视频网| 男女做爰动态图高潮gif福利片| 女生性感内裤真人,穿戴方法视频| 日日干狠狠操夜夜爽| 欧美色视频一区免费| 精品午夜福利视频在线观看一区| 国产精品一区二区免费欧美| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 日本与韩国留学比较| 97超视频在线观看视频| 极品教师在线免费播放| 久久久久国内视频| 在线看三级毛片| 久久国产精品人妻蜜桃| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 午夜影院日韩av| 久久久久久久久久黄片| 一个人免费在线观看电影| 亚洲最大成人手机在线| 欧美中文日本在线观看视频| 天堂网av新在线| 又黄又爽又免费观看的视频| 国产爱豆传媒在线观看| 精品国产三级普通话版| 成人特级av手机在线观看| 精品久久久久久久末码| 在线免费观看不下载黄p国产 | 国产一区二区在线观看日韩| 少妇的逼好多水| 一区二区三区免费毛片| 成年免费大片在线观看| 亚洲在线自拍视频| 国产精品国产高清国产av| 久久热精品热| 高清日韩中文字幕在线| 免费观看人在逋| 国产真实乱freesex| 亚洲图色成人| 尾随美女入室| 国产女主播在线喷水免费视频网站 | 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| 精品人妻偷拍中文字幕| 国产精品,欧美在线| 亚洲七黄色美女视频| 午夜激情欧美在线| 国产 一区 欧美 日韩| 亚洲最大成人中文| 又粗又爽又猛毛片免费看| 精品乱码久久久久久99久播| 91在线精品国自产拍蜜月| 非洲黑人性xxxx精品又粗又长| 久久久久久久亚洲中文字幕| 成年版毛片免费区| 亚洲乱码一区二区免费版| 国产av不卡久久| 国产成人影院久久av| 亚洲av不卡在线观看| 免费av观看视频| 我的老师免费观看完整版| 久久婷婷人人爽人人干人人爱| 我要搜黄色片| 精品人妻熟女av久视频| 男女那种视频在线观看| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 国国产精品蜜臀av免费| 俺也久久电影网| 中文字幕免费在线视频6| 国产精品亚洲美女久久久| 久久精品人妻少妇| 亚州av有码| 亚洲精品久久国产高清桃花| 女人被狂操c到高潮| 人人妻人人看人人澡| 亚洲精华国产精华液的使用体验 | 亚洲av免费在线观看| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办 | 欧美日韩中文字幕国产精品一区二区三区| 最后的刺客免费高清国语| 国产精品久久电影中文字幕| 国产伦一二天堂av在线观看| 日韩精品青青久久久久久| 夜夜爽天天搞| 久久99热6这里只有精品| 午夜视频国产福利| 12—13女人毛片做爰片一| 99久久中文字幕三级久久日本| 少妇猛男粗大的猛烈进出视频 | 免费人成在线观看视频色| av.在线天堂| 香蕉av资源在线| 啪啪无遮挡十八禁网站| 成熟少妇高潮喷水视频| 久久精品国产亚洲av涩爱 | 亚洲av不卡在线观看| 特级一级黄色大片| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 熟女人妻精品中文字幕| 精品国内亚洲2022精品成人| 身体一侧抽搐| 国产男人的电影天堂91| 嫁个100分男人电影在线观看| 高清在线国产一区| 亚洲经典国产精华液单| 午夜a级毛片| 免费人成视频x8x8入口观看| 亚洲av电影不卡..在线观看| 免费看光身美女| 97人妻精品一区二区三区麻豆| 日本免费a在线| 免费看日本二区| 日韩国内少妇激情av| 成人三级黄色视频| 搡老妇女老女人老熟妇| 免费看日本二区| 日韩,欧美,国产一区二区三区 | 美女高潮喷水抽搐中文字幕| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 在线天堂最新版资源| 在线免费观看的www视频| 美女cb高潮喷水在线观看| 久久国产精品人妻蜜桃| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 国产淫片久久久久久久久| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| 亚洲内射少妇av| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 午夜福利在线在线| 免费观看人在逋| 女的被弄到高潮叫床怎么办 | 精品免费久久久久久久清纯| 国产精品久久久久久久久免| 天天一区二区日本电影三级| 一a级毛片在线观看| 中亚洲国语对白在线视频| 老师上课跳d突然被开到最大视频| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 午夜精品久久久久久毛片777| a级一级毛片免费在线观看| 波多野结衣高清无吗| 极品教师在线免费播放| 99久国产av精品| 永久网站在线| 国产伦人伦偷精品视频| 国产淫片久久久久久久久| 成人欧美大片| 国产av在哪里看| 国产黄a三级三级三级人| 精品一区二区三区视频在线| 免费在线观看日本一区| 精品一区二区三区人妻视频| 国产一区二区在线av高清观看| 男人的好看免费观看在线视频| 国产精品久久电影中文字幕| 人妻制服诱惑在线中文字幕| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| av在线亚洲专区| 91av网一区二区| 嫁个100分男人电影在线观看| 亚洲美女搞黄在线观看 | 欧美日韩黄片免| 久久久久久国产a免费观看| aaaaa片日本免费| 欧美精品啪啪一区二区三区| 久久久久久久久大av| 如何舔出高潮| 免费av不卡在线播放| 高清日韩中文字幕在线| 给我免费播放毛片高清在线观看| 成人美女网站在线观看视频| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 日韩欧美在线二视频| 国产熟女欧美一区二区| 亚洲av成人av| 无人区码免费观看不卡| 91狼人影院| 欧美bdsm另类| videossex国产| 亚洲人成网站高清观看| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| av天堂中文字幕网| 69人妻影院| 国内久久婷婷六月综合欲色啪| 全区人妻精品视频| 麻豆国产97在线/欧美| 久久99热6这里只有精品| 黄色一级大片看看| 国产私拍福利视频在线观看| 免费在线观看成人毛片| 亚洲欧美日韩东京热| 美女高潮喷水抽搐中文字幕| 成人无遮挡网站| 欧美最黄视频在线播放免费| 99国产极品粉嫩在线观看| 国产高清有码在线观看视频| 高清在线国产一区| 1000部很黄的大片| 欧美成人性av电影在线观看| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 春色校园在线视频观看| 真实男女啪啪啪动态图| av福利片在线观看| 欧美精品国产亚洲| 久久99热6这里只有精品| 99久久九九国产精品国产免费| 我的女老师完整版在线观看| 99精品久久久久人妻精品| 亚洲无线观看免费| 一区福利在线观看| 老司机午夜福利在线观看视频| 全区人妻精品视频| 欧美日韩中文字幕国产精品一区二区三区| 国产69精品久久久久777片| 国产精品1区2区在线观看.| 天堂动漫精品| 成年免费大片在线观看| 在线观看66精品国产| 男女边吃奶边做爰视频| 国产精品伦人一区二区| 亚洲成人免费电影在线观看| 亚洲精品国产成人久久av| 色av中文字幕| 国产免费一级a男人的天堂| 亚洲性夜色夜夜综合| 日本在线视频免费播放| 久久热精品热| 久久6这里有精品| 又黄又爽又刺激的免费视频.| 午夜免费成人在线视频| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 久久精品久久久久久噜噜老黄 | 亚洲欧美清纯卡通| 国产亚洲精品av在线| 一进一出好大好爽视频| 少妇人妻精品综合一区二区 | 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 老司机深夜福利视频在线观看| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 国产三级中文精品| www.www免费av| 尾随美女入室| 国产精品国产三级国产av玫瑰| 夜夜夜夜夜久久久久| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 又爽又黄a免费视频| 免费看a级黄色片| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 亚洲自偷自拍三级| 女人被狂操c到高潮| 永久网站在线| 久久久久久久精品吃奶| 国产欧美日韩精品一区二区| 日本 av在线| 在线免费观看不下载黄p国产 | 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 亚洲性夜色夜夜综合| 国产成人a区在线观看| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 成年版毛片免费区| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 美女大奶头视频| 能在线免费观看的黄片| 又紧又爽又黄一区二区| 观看美女的网站| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 日本黄色片子视频| 日韩欧美 国产精品| videossex国产| 伊人久久精品亚洲午夜| 欧美性猛交黑人性爽| 九色国产91popny在线| 婷婷色综合大香蕉| 一级黄片播放器| 三级国产精品欧美在线观看| 真人一进一出gif抽搐免费| 亚洲中文字幕日韩| 亚洲狠狠婷婷综合久久图片| 黄色欧美视频在线观看| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 亚洲 国产 在线| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| 色综合亚洲欧美另类图片| 特大巨黑吊av在线直播| 日日啪夜夜撸| 简卡轻食公司| 免费观看在线日韩| 精品久久久久久久末码| 国产精品乱码一区二三区的特点| 我要看日韩黄色一级片| 成人欧美大片| 国产一区二区三区av在线 | 中文字幕免费在线视频6| av天堂在线播放| 18禁黄网站禁片午夜丰满| 国产极品精品免费视频能看的| 成人精品一区二区免费| 婷婷六月久久综合丁香| 91精品国产九色| 村上凉子中文字幕在线| 精品无人区乱码1区二区| 一区二区三区高清视频在线| 99久久精品国产国产毛片| 在线a可以看的网站| 色播亚洲综合网| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩精品一区二区| 国产成年人精品一区二区| 国产精品永久免费网站| 91av网一区二区| 国产单亲对白刺激| 亚洲美女黄片视频| 久久99热6这里只有精品| 国产精品久久久久久亚洲av鲁大| 简卡轻食公司| 国产精品综合久久久久久久免费| 午夜精品在线福利| 永久网站在线| 久久九九热精品免费| 国产午夜福利久久久久久| 春色校园在线视频观看| 免费观看在线日韩| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 老司机午夜福利在线观看视频| 无遮挡黄片免费观看| 国产69精品久久久久777片| 亚洲美女黄片视频| 免费看av在线观看网站| 精品久久久久久,| 极品教师在线视频| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片 | 国产视频内射| 无遮挡黄片免费观看| 久久草成人影院| 欧美bdsm另类| 亚洲图色成人| 99久久中文字幕三级久久日本| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 精品久久久噜噜| 国产精品三级大全| 欧美高清成人免费视频www| 嫩草影院精品99|