• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The wave absorption efficiency of multi-layer vertical perforated thin plates *

    2018-10-27 09:11:06BaoleiGeng耿寶磊RongquanWang王榮泉DezhiNing寧德志
    水動力學研究與進展 B輯 2018年5期
    關(guān)鍵詞:寧德

    Bao-lei Geng (耿寶磊), Rong-quan Wang (王榮泉), De-zhi Ning (寧德志)

    1. National Engineering Laboratory for Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transportation Engineering, Tianjin 300456, China

    2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024,China

    Abstract: This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory.The influence of the thickness, the porosity and the layout form of the plates on the wave absorptivity is studied on the assumption that all perforated plates are composed of the same materials and have the same thickness and porosity.The calculation results indicate that the larger the number of layers of the perforated plate set, the better the wave absorption efficiency,however, when the layer number exceeds a certain value, the efficiency of the plates is not significantly increased.For the case of porosity ε=0.2, thickness b = 0.07m and 4 layers of perforated plates with a distance l=1.0m between the layers, 90% of the energy of the wave within the incident wave period between 1.6 s and 4.4 s can be absorbed.

    Key words: Wave absorptivity, multi-layer vertical plate, porous structure, analytic method

    Introduction

    To reduce the wave reflection and the wave force,a perforated structure is adopted in coastal engineering,this problem was studied over the past several decades by a large number of researchers by experiments,theoretical analyses and numerical simulations.

    Ma[1]studied the reflection coefficient of vertical perforated breakwater structures with and without a top plate on a wave and its main influencing factors and proposed a formula for calculating the reflection coefficient and the phase difference.Koraimet al.[2]experimentally studied the hydrodynamic efficiency of a new type porous seawall by using physical models.The seawall consists of front steel screen,back solid wall and filled rock-core.Chyonet al.[3]performed experiments to investigate the interaction between wave and horizontal slotted submerged breakwater to find out the effective size and porosity of the structure for the reduction of wave height.Fang et al.[4]experimentally investigated a submerged breakwater with four-layer horizontal porous plates.In the design of the breakwater's geometrical parameters(i.e., plate submergence, porosity and width), the vertical velocity distribution of fluid particles and suggestions from previous studies were considered.The wave-dissipating characteristics, i.e., the wave reflection, transmission, energy dissipation, and vertical force coefficients, were examined in a series of experiments.The effects of layer number, breakwater width, porosity of the upper plate and incident wave height were investigated in their experimental study.

    In the field of theoretical analyses, Yu and Chwang (1994) studied the water oscillation situation inside semi-circular perforated breakwaters based on the linear potential flow theory and obtained the amplitude when the perforation resistance can effectively reduce the resonance within the harbor.Subsequently, Yu (1995) calculated the diffraction action on the permeable semi-infinite breakwaters also based on the linear potential flow theory.Chwang and Chan (1998) analyzed the action between the wave and the perforated structure based on the Darcy Law and found that the perforated structure could reduce the wave generation and the resonance within the harbor.They discussed the application of this finding in engineering practice.Tenget al.[5], Liet al.[6]studied systematically the wave action using a partially porous double-wall cylinder and analyzed the influencing factors for reducing the wave surface height and the wave load.Twu and Chieu[7]developed an offshore breakwater composed of multiple layers of porous materials based on the eigenfunction expansion method.Liu and Li[8]presented an alternative analytical solution approach for water wave motion over a submerged horizontal porous plate using matched eigenfunction expansion approach.Later, Liu and Li[9]developed a new analytical solution for water wave motion through a surface-piercing porous breakwater.Karmakar and Guedes Soares[10]analyzed the multiple bottom-standing flexible porous barriers with different edge conditions to determine the performance of the wave interaction with multiple submerged barriers as breakwaters in the coastal region based on the eigenfunction expansion method.Kaligatlaet al.[11]investigated the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths by assuming that the flexible plate to be thin.Beheraet al.[12]investigated the trapping of oblique wave by porous barrier located near a rigid wall in the presence of a step type bottom bed.The physical problem is solved by using the eigenfunction expansion method and multi-mode approximation associated with modified mild-slope equation.Meng and Lu[13]studied the porous rectangular barrier on a seabed based on the linear potential flow theory and the matched eigenfunction expansion method.Manam and Sivanesan[14]studied scattering of deep water waves by a submerged or a surface piercing vertical porous barrier.Manam and Sivanesan[15]establish a new type of connection between the solutions of wave scattering problems involving vertical porous and solid barriers of same configuration.Behera and Ng[16]analyzed the performance of multiple bottom-standing flexible porous barriers in the presence of a rigid vertical wall and a step-type bottom on the basis of linearized water wave theory.Zhao et al.[17]investigated the oblique wave motion over multiple submerged porous bars in front of a vertical wall based on linear potential theory matched eigenfunction expansion method.Singla et al.[18]studied the role of partial permeable vertical barriers on the reduction of wave-induced hydroelastic response on a very large floating structure in a finite depth of water based on eigenfunction matching technique.

    In the field of numerical simulations, Li and Jiang[19]studied a perforated structure in a numerical wave flume to dissipate the reflection wave with considerations of the influence of the porosity, the number of perforations, the total length of the device,and other factors on the wave dissipation efficiency.Zhanet al.[20]used the energy-dissipating property of porous media to tackle the problem of wave reflections from computational domain in the numerical wave tank.Chenet al.[21]calculated the point pressure of the wave action on the perforated plate and the reflection coefficient by utilizing a numerical wave flume based on the VOF method and thek-εturbulent model and analyzed the influencing factors for the reflection coefficient and the point pressure distribution, especially, the influence of the porosity.

    Previous researches primarily focused on the correlation between the reflection coefficient, the wave force and the influencing factors under the wave action for the perforated structure, without much consideration of the influences of the porosity, the thickness and the layout form of the perforated plates on the wave absorption efficiency.The present study focuses on the influence of the porosity, the thickness and the layout form of such plates on the wave absorptivity.The proper porosity value, thickness value and layout form are proposed to improve the wave-absorbing ability of the multi-layer vertical perforated thin plates.

    1.Fundamental theory and calculation method

    For the wave action on a uniformly perforated plate with incident waves propagating along thex-direction at the water depthh, a plane-coordinate systemOxzis established with the originOon the static water surface and the axisOzmeasured vertically upward, as shown in Fig.1.The present study is based on the potential flow theory, and it is assumed that the perforated plates are composed of the same materials with the same thickness and porosity.In the analysis, the waveward side of the plate is set to coincide with the axisOz.

    Fig.1 Schematic diagram of the action of a wave and uniformly perforated thin plates

    For an ideal fluid, there is a velocity potentialφthat satisfies the Laplace equation in the whole domain.

    where

    is the two-dimensional Laplacian.

    The bottom of the flume satisfies the condition that the water cannot permeate the boundary of the rigid walls, that is, the normal derivative of the velocity potentialφis 0.

    In the interior of uniformly perforated thin plates(i.e.,b|λ?1, wherebis the thickness of the plate andλis the incident wave length), the fluid flow satisfies the continuity equation

    and the Euler equation, with the convective term ignored

    whereUis the fluid velocity,ρis the fluid density,pis the intensity of the pressure of the fluid,fis the resistance coefficient,ωis the frequency of the incident wave,Cmandεare the added mass and the porosity of the thin plate, respectively.

    The time term is separated from the velocityUand the intensity of the pressurePas

    The equations for the complex variableuandpare:

    where

    The real and imaginary parts correspond to the resistance and inertia force influences of the medium,respectively.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference is as follows

    where the subscripts 0 andbare the physical values in the two sides of the thin plate.

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have

    Under different circumstances, for the velocity potentials to satisfy the boundary conditions, we have the theoretical expressions of the reflection coefficient,the transmission coefficient, the energy loss coefficient and the wave absorptivity of the wave absorbing structure model of one-layer and multi-layer vertical perforated plates.Finally, comparisons, selections and optimizations are made with regard to the thickness,the porosity and the distance of the multi-layer perforated plates, based on the wave elements and other factors.

    2.Modeling

    2.1 Action between wave and two-layer perforated plates

    Consider the two-layer perforated plates shown in Fig.2.A rectangular coordinate systemoxzis established, in which theozaxis coincides with the wave side of the first layer plate and theoxaxis is on the surface of the still water.For convenience, the computational domain is divided into 5 parts, among which1Ω,2Ωand3Ωare the external domains of the perforated plate andΩ4and5Ωare the internal domains of the 1# plate and the 2# plate, respectively.

    The action between the waves and the two uniformly perforated thin plates with a thickness ofbis shownin Fig.2.The velocity potentials1φ,2φand3φwithin the areas of1Ω,2Ωand3Ωshould satisfy the following conditions:

    Free water surface condition

    Water bottom condition

    Infinity condition

    in which0φis the incident potential.

    Fig.2 Schematic diagram of a wave absorbing structure with dual-layer vertical perforated plates

    The object surface condition on the straight wall is

    wherelmnis the distance between the No.nplate and the No.n+1 plate, the subscriptmrepresents the number of the layers of the perforated plates.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference can be derived as:

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have:

    where

    Equation (16) can be expressed as:

    In view of the fact that the wavelength is much greater than the thickness of the perforated plates, the thickness of the thin plate is ignored, the velocity continuity condition in the thin wall can be expressed as:

    φ1,φ2,φ3exclude the evanescent-wave component,thus, they can be expressed as:

    in whichR1and1Tare the reflection coefficient and the transmission coefficient of the first perforated plate, respectively,R2is the reflection coefficient of the second perforated plate, andT2is the transmission coefficient of the second perforated plate, as well as the reflection coefficient of the impermeable straight wall under the total reflection condition.

    Substituting the velocity potentials1φ,2φ,3φinto Formula (17) and Formula (18), we have:

    where

    Regarding all perforated plates as an entire wave absorbing structure.the reflection coefficientKrand the transmission coefficientKtof the structure can be written as:

    The energy loss coefficient is

    The wave energy absorbed by the wave absorbing structure is defined as the sum of the loss and transmission energies, and the absorptivity is

    2.2 Action between the wave and different perforated plates

    The reflection coefficient and the transmission coefficient of the incident wave when one layer, three layers and four layers of perforated plates are used can be obtained by using the same method.Figure 3 shows the schematic diagrams of the action between the wave and different-layer perforated plates, and the relevant formulas for describing the coefficients are as follows:

    (1) When we have one layer of perforated plate

    Fig.3 Schematic diagrams of different-layer perforated plate layouts

    The reflection coefficientKrand the transmission coefficientKtare:

    (2) When we have three layers of perforated plates

    where

    The reflection coefficientKrand the transmission coefficientKtof the wave absorbing structure are:

    (3) When we have four layers of perforated plates

    in which

    The reflection coefficientKrand the transmission coefficientKtof the absorbing structure to the

    wave are:

    For the action between the wave and differentlayer perforated plates, the expressions of the system energy loss coefficient and the absorptivity are the same as shown in Formulas (22), (23).

    3.Examples

    3.1 Influences of the number of layers of the perforated plates on the wave dissipation efficiency

    Consider multilayer plates, with each plate of the same characteristics, i.e., of the same material, thickness and porosity.The depth of the water is 2.5 m and the maximum width (i.e., the total width of the wave absorbing structure) for setting the perforated plate is 12 m.

    To study the influences of the number of layers of the perforated plates on the wave dissipation efficiency, calculations are performed to determine the wave dissipation efficiency when different layers of the perforated plates have different values of porosityεand thicknessb.According to Yu (1995), the resistance coefficient and the added mass aref=2.0 andCm=0, respectively.For the optimal positions of the perforated plates with an equal distance in the 12 m wave dissipation area when the incident period is 3.5 s,Fig.4 shows the reflection coefficientKrand the absorptivityKaagainst the porosityεand the thicknessbof the perforated plates.

    From Figs.3(a), 3(c), we can see that when the incident wave period is 3.5 s, the reflection coefficientKrdecreases and then increases with the increase of the porosityε.Such behavior is due to the fact that when the porosity of the perforated plate is small,much of the wave is reflected, whereas when the porosity of the perforated plate is large enough, the perforated plate is equivalent to a permeable structure and all waves are reflected by the vertical wall behind the perforated plate.The variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases with the increase of the porosityε.The reflection of the structure will decrease with the increase of the number of perforated plates; however,the absorptivity will increase, indicating that multilayer perforated plates have a better wave dissipation efficiency.The wave absorption efficiency is best when the number of plates is four and the porosity is approximately 0.2, as shown in Figs.3(a), 3(c).

    Fig.4 Effects of the porosity and thickness of the plate on the absorptivity efficiency of the plates

    The reflection coefficientKrdecreases and then increases with the increase of the thickness of the perforated plates, whereas the variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases.Overall, when the thicknessbremains unchanged, the reflection coefficient will decrease and the absorptivity will increase with the increase of the number of layers of the perforated plates, indicating that multilayer perforated plates have a better wave dissipation efficiency.A slight reduction of the reflection coefficient of the multilayer perforated plates of four layers is observed compared with that of three layers, indicating that more layers of plates have a very small influence on the reduction of the reflection coefficient when the number of layers reaches three.

    3.2 Influence of the thickness of the perforated plates on the wave absorptivity

    We now consider the influence of the perforated plates with different parameters (thickness, porosity and spacing) on the wave absorption efficiency with an incident period between 0.5 s and 5.0 s when four layers of perforated plates are considered.The resistance coefficient and the added mass are stillf=2.0 andCm=0, respectively (Yu (1995)).

    Fig.5 Influence of the thickness of the perforated plates on the wave absorptivity

    Assume that the four layers of perforated plates are with an equal spacing,l=1.0m, and the porosity of the perforated plates isε=0.2.The influence of the thickness of the perforated plates on the wave absorptivity with the incident periods from 0.5-5.0 s is shown in Fig.5.The wave absorptivity decreases with the increase of the thickness in the short wave region,whereas in the long wave region the trend is opposite.It is found that when the thickness is 0.07 m (i.e.,b= 0.07m), the perforated plate structure has a good wave absorption efficiency in a relative long wave period region; in addition, the absorptivity of the wave with an incident period between 1.6 s and 4.4 s will reach and exceed 90%, among which the highest absorptivity is over 95%.

    Fig.6 Influence of porosity and plate spacing on wave absorptivity (b=0.05m)

    3.3 Influence of porosity and plate spacing on wave absorptivity

    The influence of the porosity and the plate spacing on the wave absorptivity is considered in this subsection for perforated plates of four layers.Figures 6, 7 show the variations of the absorptivity versus the incident wave period at a plate thickness of 0.05 m and 0.07 m (b= 0.05m ,b=0.07m) for different values of the porosity and the plate spacing.

    We can see that the relation curves see a left-ward shift overally with the increase of the porosity.For the short period waves, the larger the porosity, the better the wave absorption efficiency, in contrast, for the long period waves, the absorptivity decreases with the increase of the porosity.The wave absorption efficiency of the structure is best when the porosity is 0.2, i.e.,ε=0.2, for which the period of an incident wave with an absorptivity over 90%reaches the maximum.

    Among plates with different spacings, the wave absorption efficiency of the structure is the best when the plate spacing is 1.0 m (i.e.,l=1.0m), in other words, the period range of an incident wave with an absorptivity over 90% reaches the maximum.The period range of an incident wave with an absorptivity over 90% will decrease when the plate spacing increases or decreases.

    Moreover, from Figs.6, 7, we can see that the structure will satisfy the design requirements better and reach a larger period range of the effective incident wave as indicated by the wave absorption requirements when the plate spacing is 1.0 m and the thickness is 0.07 m (i.e.,l=1.0m,b= 0.07m).Whenb=0.05m ,T∈ ( 1.4s,2.4s), whenb=0.07m,T∈ ( 1.6s,4.4s).

    Fig.7 Influence of porosity and plate spacing on wave absorptivity (b=0.07m)

    4.Conclusions

    Based on the analytical studies, it is found that the absorptivityKaincreases with the increase of the number of layers of perforated plates.However, the increase of the wave absorption efficiency is not significant when the number of layers of plates increases from 3-4.Thus, we consider 4 layers of perforated plates.

    For incident waves with a short period, the absorptivityKais found to decrease with the incincrease of the plate thicknessb,and increase with the increase of the porosityε.For incident waves with a long period, the absorptivityKais found to increase with the increase of the plate thicknessb,but decrease with the increase of the porosityε.It is shown that when the porosity is 0.2, the plate thickness is 0.07 m, and the adjacent spacing between the four layers of the perforated plates is 1.0 (i.e.,the wave absorption efficiency for a wave with an incident period of (1.6 s, 4.4 s) will reach 90% (even exceeding 95% for some incident wave periods).

    Acknowledgement

    This work was supported by the Central Commonwealth Research Institute Basic R&D Special Foundation of TIWTE (Grant No.TKS160107).

    猜你喜歡
    寧德
    寧德時代凈利潤下跌
    寧德市婦聯(lián)舉辦“傳承好家風·建設(shè)新寧德”主題活動
    海峽姐妹(2020年10期)2020-10-28 08:08:06
    寧德:撐起脫貧攻堅“半邊天”
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    守正創(chuàng)新 春風化雨 寧德基層婦女思想政治引領(lǐng)亮點多
    海峽姐妹(2019年12期)2020-01-14 03:24:40
    寧德核電站火災事故的情景構(gòu)建
    勞動保護(2019年3期)2019-05-16 02:37:40
    寧德時代價值幾何
    能源(2018年7期)2018-09-21 07:56:24
    上汽與寧德時代合作回收動力電池
    寧德迎來大黃魚豐收季
    Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter *
    以扶貧開發(fā)“寧德模式”引領(lǐng)老區(qū)精準扶貧
    紅土地(2017年1期)2017-06-05 09:37:28
    国产免费一级a男人的天堂| 天堂俺去俺来也www色官网| 高清午夜精品一区二区三区| 亚洲精品av麻豆狂野| 久久久久久久久久人人人人人人| 久久久久国产精品人妻一区二区| 国产在视频线精品| 91精品伊人久久大香线蕉| 色视频在线一区二区三区| 亚洲综合色网址| 亚洲欧洲国产日韩| 欧美日韩在线观看h| 日本色播在线视频| 蜜臀久久99精品久久宅男| 亚洲激情五月婷婷啪啪| 免费观看在线日韩| 成人亚洲欧美一区二区av| 亚洲经典国产精华液单| 中国美白少妇内射xxxbb| 午夜影院在线不卡| 亚洲国产毛片av蜜桃av| 特大巨黑吊av在线直播| 成年av动漫网址| 亚洲成人一二三区av| 亚洲欧美日韩另类电影网站| 丝袜脚勾引网站| 美女国产高潮福利片在线看| 成年人午夜在线观看视频| 亚洲av免费高清在线观看| 久久国内精品自在自线图片| 夜夜骑夜夜射夜夜干| 亚洲婷婷狠狠爱综合网| 91精品国产九色| 欧美日韩av久久| 99久国产av精品国产电影| 大香蕉97超碰在线| 国产亚洲精品久久久com| 99久久精品国产国产毛片| 王馨瑶露胸无遮挡在线观看| 最近手机中文字幕大全| 国产免费一区二区三区四区乱码| 啦啦啦视频在线资源免费观看| 精品少妇内射三级| 最近中文字幕高清免费大全6| 黑人欧美特级aaaaaa片| 中国国产av一级| 久久青草综合色| 综合色丁香网| 久久久久人妻精品一区果冻| 欧美国产精品一级二级三级| 97在线视频观看| 九色成人免费人妻av| 一级片'在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 国产一区二区在线观看av| 一区二区av电影网| 久久久久久伊人网av| 99热国产这里只有精品6| 日韩伦理黄色片| 国产精品秋霞免费鲁丝片| av免费观看日本| 精品久久久久久久久亚洲| 观看av在线不卡| 中文欧美无线码| 免费播放大片免费观看视频在线观看| 精品国产乱码久久久久久小说| 26uuu在线亚洲综合色| 精品久久久久久久久亚洲| 国产极品粉嫩免费观看在线 | 成人国产av品久久久| 香蕉精品网在线| 三级国产精品片| 婷婷成人精品国产| 免费黄网站久久成人精品| 乱人伦中国视频| 亚洲av成人精品一区久久| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 亚洲欧美成人精品一区二区| 黄色一级大片看看| 久久人妻熟女aⅴ| 亚洲av欧美aⅴ国产| 最新的欧美精品一区二区| 亚洲av中文av极速乱| av播播在线观看一区| 久久久久精品久久久久真实原创| freevideosex欧美| 国产一区二区三区av在线| 日韩中字成人| www.色视频.com| 99久久中文字幕三级久久日本| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品专区欧美| 又粗又硬又长又爽又黄的视频| 一边亲一边摸免费视频| 青青草视频在线视频观看| 国模一区二区三区四区视频| 性高湖久久久久久久久免费观看| 丝袜喷水一区| 一级爰片在线观看| 久久久精品免费免费高清| 亚洲,欧美,日韩| 岛国毛片在线播放| 久久久久久久久久人人人人人人| 天天操日日干夜夜撸| 久久99精品国语久久久| 人人妻人人澡人人看| 国产成人免费观看mmmm| 黑人猛操日本美女一级片| 制服人妻中文乱码| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 亚洲精品中文字幕在线视频| 久久久久久久亚洲中文字幕| 欧美激情 高清一区二区三区| 成人亚洲精品一区在线观看| 天堂中文最新版在线下载| 欧美精品人与动牲交sv欧美| 日本av免费视频播放| 亚洲精品日韩av片在线观看| 一区二区av电影网| 日本猛色少妇xxxxx猛交久久| av天堂久久9| 国产精品久久久久久av不卡| 少妇 在线观看| 蜜桃久久精品国产亚洲av| 青春草视频在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99一区二区三区| 亚洲精品乱码久久久久久按摩| 亚洲色图 男人天堂 中文字幕 | 久久久国产精品麻豆| 成年美女黄网站色视频大全免费 | 国产精品嫩草影院av在线观看| a级毛色黄片| 亚洲精品一区蜜桃| 国产av一区二区精品久久| videosex国产| 2022亚洲国产成人精品| 女人精品久久久久毛片| √禁漫天堂资源中文www| 天堂8中文在线网| 王馨瑶露胸无遮挡在线观看| 国产成人aa在线观看| 在线亚洲精品国产二区图片欧美 | 七月丁香在线播放| 国产精品三级大全| 日日爽夜夜爽网站| 老司机影院成人| 欧美3d第一页| av黄色大香蕉| 97超碰精品成人国产| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 日韩制服骚丝袜av| 成人影院久久| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品古装| 精品亚洲成国产av| 亚洲国产精品999| 在线天堂最新版资源| 欧美精品一区二区免费开放| xxx大片免费视频| 日本爱情动作片www.在线观看| av不卡在线播放| 国产精品久久久久久久久免| 又黄又爽又刺激的免费视频.| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av播播在线观看一区| 久久久久视频综合| 视频中文字幕在线观看| 最近的中文字幕免费完整| 热re99久久精品国产66热6| 女的被弄到高潮叫床怎么办| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区 | 寂寞人妻少妇视频99o| 国产熟女午夜一区二区三区 | 老熟女久久久| 国产不卡av网站在线观看| 国产成人精品久久久久久| 日韩精品有码人妻一区| 国产精品欧美亚洲77777| 卡戴珊不雅视频在线播放| 亚洲精品第二区| 亚洲国产毛片av蜜桃av| 亚洲在久久综合| 在线看a的网站| 看非洲黑人一级黄片| xxx大片免费视频| 亚洲,一卡二卡三卡| 国产亚洲精品久久久com| 午夜精品国产一区二区电影| 免费人成在线观看视频色| 成年人免费黄色播放视频| 三级国产精品欧美在线观看| 日韩中字成人| 亚洲内射少妇av| videossex国产| 婷婷成人精品国产| 午夜视频国产福利| 能在线免费看毛片的网站| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 男女免费视频国产| 亚洲av成人精品一二三区| 一级二级三级毛片免费看| 中文乱码字字幕精品一区二区三区| 91精品国产九色| 国产淫语在线视频| 国产白丝娇喘喷水9色精品| 交换朋友夫妻互换小说| 国产一区二区在线观看日韩| 18禁在线播放成人免费| a 毛片基地| 久久久国产欧美日韩av| 欧美激情国产日韩精品一区| 插逼视频在线观看| 黄片无遮挡物在线观看| 大码成人一级视频| 免费观看无遮挡的男女| 久热久热在线精品观看| 久久久精品免费免费高清| 精品熟女少妇av免费看| 亚洲美女视频黄频| 国产高清国产精品国产三级| 最近2019中文字幕mv第一页| 亚洲第一av免费看| 熟女电影av网| 少妇人妻 视频| 男女国产视频网站| 最近手机中文字幕大全| 18禁观看日本| 久久精品国产亚洲av涩爱| 亚洲精品乱码久久久久久按摩| 一本色道久久久久久精品综合| 国产免费视频播放在线视频| 丰满饥渴人妻一区二区三| 久久久国产欧美日韩av| 免费大片黄手机在线观看| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| 亚洲综合精品二区| 99热这里只有精品一区| 国产不卡av网站在线观看| 人成视频在线观看免费观看| 国产成人免费观看mmmm| 免费观看无遮挡的男女| 久久人人爽人人片av| av专区在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 在线观看免费视频网站a站| 久久精品人人爽人人爽视色| 男人操女人黄网站| 9色porny在线观看| 97精品久久久久久久久久精品| 男女无遮挡免费网站观看| 男女免费视频国产| 亚洲伊人久久精品综合| videossex国产| 18禁观看日本| 免费av不卡在线播放| 日本vs欧美在线观看视频| 黄色怎么调成土黄色| 亚洲欧美一区二区三区国产| 亚洲欧美日韩另类电影网站| 免费人成在线观看视频色| 日日摸夜夜添夜夜添av毛片| av.在线天堂| 一级毛片 在线播放| 丝袜美足系列| 精品99又大又爽又粗少妇毛片| 国产精品99久久久久久久久| 91国产中文字幕| av天堂久久9| 晚上一个人看的免费电影| kizo精华| 午夜日本视频在线| 多毛熟女@视频| 国产成人aa在线观看| 人妻 亚洲 视频| freevideosex欧美| 青春草亚洲视频在线观看| 亚洲精品第二区| 国产午夜精品一二区理论片| 纵有疾风起免费观看全集完整版| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 亚洲精品色激情综合| 99久久精品国产国产毛片| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 久久久久久久久大av| 18禁在线无遮挡免费观看视频| 国产亚洲精品第一综合不卡 | 国产精品.久久久| 亚洲综合色惰| 春色校园在线视频观看| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 精品一区在线观看国产| 国产视频内射| 黄色配什么色好看| 国产精品秋霞免费鲁丝片| 午夜91福利影院| 欧美精品高潮呻吟av久久| 国产永久视频网站| 国产精品欧美亚洲77777| 午夜激情福利司机影院| 国产毛片在线视频| 国产精品一国产av| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 精品熟女少妇av免费看| 国产男女内射视频| 韩国av在线不卡| 免费大片黄手机在线观看| 精品久久久久久电影网| 高清欧美精品videossex| 国产色婷婷99| 国产黄色免费在线视频| 亚洲内射少妇av| 在线观看免费视频网站a站| 亚洲精品亚洲一区二区| 亚洲情色 制服丝袜| 18禁动态无遮挡网站| 国产成人精品在线电影| 97超视频在线观看视频| 免费日韩欧美在线观看| 日韩一区二区视频免费看| 超色免费av| 国产av国产精品国产| 精品亚洲乱码少妇综合久久| 国产成人精品无人区| 中文字幕最新亚洲高清| 午夜精品国产一区二区电影| 九九在线视频观看精品| 有码 亚洲区| 在线观看www视频免费| 国产一区二区三区综合在线观看 | 极品人妻少妇av视频| 亚洲综合精品二区| 赤兔流量卡办理| 日韩伦理黄色片| 春色校园在线视频观看| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品| 亚洲精品视频女| 人人澡人人妻人| 久久精品国产亚洲av天美| 久久99一区二区三区| 久久久久人妻精品一区果冻| 18禁动态无遮挡网站| 亚洲成人av在线免费| 高清av免费在线| 青春草国产在线视频| 免费看光身美女| 色吧在线观看| 午夜激情福利司机影院| 黄色配什么色好看| 美女国产视频在线观看| 国产成人aa在线观看| 欧美激情极品国产一区二区三区 | 日韩不卡一区二区三区视频在线| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 欧美bdsm另类| 亚洲av免费高清在线观看| 熟女av电影| 亚洲国产精品专区欧美| 男人爽女人下面视频在线观看| 欧美人与善性xxx| 亚洲伊人久久精品综合| 国产成人aa在线观看| 在线精品无人区一区二区三| 草草在线视频免费看| 热99国产精品久久久久久7| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区| 久久99热这里只频精品6学生| 精品亚洲成a人片在线观看| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 精品一区二区三卡| 91aial.com中文字幕在线观看| 一本久久精品| 人妻一区二区av| 日韩大片免费观看网站| 国产乱来视频区| 人体艺术视频欧美日本| 国产片内射在线| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久| 91久久精品电影网| 高清不卡的av网站| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 亚洲欧美成人精品一区二区| 一区二区av电影网| 狂野欧美白嫩少妇大欣赏| 免费高清在线观看日韩| 狂野欧美激情性xxxx在线观看| 老熟女久久久| 蜜臀久久99精品久久宅男| 99九九在线精品视频| 蜜桃在线观看..| 美女国产视频在线观看| 人妻系列 视频| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| av在线app专区| 只有这里有精品99| 一级毛片我不卡| 国产精品不卡视频一区二区| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 久久久国产欧美日韩av| 亚洲三级黄色毛片| 国产精品99久久久久久久久| 18+在线观看网站| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 爱豆传媒免费全集在线观看| 久久韩国三级中文字幕| 久久人人爽人人片av| 国产av一区二区精品久久| 精品久久久久久久久亚洲| 丝袜脚勾引网站| 亚洲精品一二三| 亚洲精品色激情综合| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 久久青草综合色| h视频一区二区三区| 国产国语露脸激情在线看| 狂野欧美激情性bbbbbb| 亚洲中文av在线| 伦理电影免费视频| tube8黄色片| 亚洲熟女精品中文字幕| 久久久久网色| 国产成人精品在线电影| 在线观看国产h片| 亚洲第一av免费看| 五月伊人婷婷丁香| 在线 av 中文字幕| 国产免费现黄频在线看| 久久精品久久久久久噜噜老黄| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区 | 大香蕉久久网| 大片电影免费在线观看免费| 亚洲av不卡在线观看| av网站免费在线观看视频| 在线观看免费高清a一片| 国产精品不卡视频一区二区| xxx大片免费视频| 亚洲国产成人一精品久久久| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 九九爱精品视频在线观看| 黄片无遮挡物在线观看| 久久久久网色| 九九在线视频观看精品| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线 | av专区在线播放| 久久久久久久久大av| 国产欧美日韩一区二区三区在线 | 国产成人aa在线观看| 精品熟女少妇av免费看| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 色哟哟·www| tube8黄色片| 精品一区二区免费观看| 中文字幕制服av| 亚洲熟女精品中文字幕| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 一本久久精品| 成人亚洲精品一区在线观看| 国产黄片视频在线免费观看| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 一区二区三区免费毛片| 看免费成人av毛片| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 日本wwww免费看| 纯流量卡能插随身wifi吗| 国产午夜精品久久久久久一区二区三区| a级毛片黄视频| 免费观看在线日韩| 午夜老司机福利剧场| 五月开心婷婷网| 热re99久久国产66热| 九草在线视频观看| 精品少妇久久久久久888优播| 久久av网站| 久久影院123| 18+在线观看网站| 丰满乱子伦码专区| av专区在线播放| 色哟哟·www| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 日韩精品有码人妻一区| 国产欧美日韩一区二区三区在线 | 建设人人有责人人尽责人人享有的| 久久久久久久久久久久大奶| 最近手机中文字幕大全| 全区人妻精品视频| 夜夜骑夜夜射夜夜干| 在线天堂最新版资源| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 一级毛片我不卡| 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 国产探花极品一区二区| 国产成人av激情在线播放 | 国产 一区精品| 超碰97精品在线观看| 久久99蜜桃精品久久| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 亚洲欧美日韩另类电影网站| 午夜福利网站1000一区二区三区| 五月天丁香电影| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 亚洲综合色惰| 亚洲国产精品国产精品| 人人妻人人澡人人看| 高清毛片免费看| www.色视频.com| av在线app专区| 国产精品国产三级国产av玫瑰| 国产色爽女视频免费观看| 黑人高潮一二区| 久久狼人影院| 亚洲欧洲日产国产| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 亚洲性久久影院| 久久99热这里只频精品6学生| 黄色一级大片看看| av在线播放精品| .国产精品久久| 我要看黄色一级片免费的| 国产免费福利视频在线观看| 老司机亚洲免费影院| 国产永久视频网站| 久久99热6这里只有精品| 欧美日韩视频精品一区| 99热这里只有精品一区| 少妇人妻久久综合中文| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| 九九在线视频观看精品| 老司机亚洲免费影院| 视频在线观看一区二区三区| 99热6这里只有精品| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 蜜桃在线观看..| 久久99热这里只频精品6学生| 久久久久久久久久久免费av| 99久国产av精品国产电影| 91久久精品电影网| 一边摸一边做爽爽视频免费| 黄片无遮挡物在线观看| 99热这里只有精品一区| 最近最新中文字幕免费大全7| 免费少妇av软件| 中文字幕最新亚洲高清| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 18在线观看网站| 亚洲精品第二区| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 国产精品久久久久久久久免|