• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The wave absorption efficiency of multi-layer vertical perforated thin plates *

    2018-10-27 09:11:06BaoleiGeng耿寶磊RongquanWang王榮泉DezhiNing寧德志
    水動力學研究與進展 B輯 2018年5期
    關(guān)鍵詞:寧德

    Bao-lei Geng (耿寶磊), Rong-quan Wang (王榮泉), De-zhi Ning (寧德志)

    1. National Engineering Laboratory for Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transportation Engineering, Tianjin 300456, China

    2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024,China

    Abstract: This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory.The influence of the thickness, the porosity and the layout form of the plates on the wave absorptivity is studied on the assumption that all perforated plates are composed of the same materials and have the same thickness and porosity.The calculation results indicate that the larger the number of layers of the perforated plate set, the better the wave absorption efficiency,however, when the layer number exceeds a certain value, the efficiency of the plates is not significantly increased.For the case of porosity ε=0.2, thickness b = 0.07m and 4 layers of perforated plates with a distance l=1.0m between the layers, 90% of the energy of the wave within the incident wave period between 1.6 s and 4.4 s can be absorbed.

    Key words: Wave absorptivity, multi-layer vertical plate, porous structure, analytic method

    Introduction

    To reduce the wave reflection and the wave force,a perforated structure is adopted in coastal engineering,this problem was studied over the past several decades by a large number of researchers by experiments,theoretical analyses and numerical simulations.

    Ma[1]studied the reflection coefficient of vertical perforated breakwater structures with and without a top plate on a wave and its main influencing factors and proposed a formula for calculating the reflection coefficient and the phase difference.Koraimet al.[2]experimentally studied the hydrodynamic efficiency of a new type porous seawall by using physical models.The seawall consists of front steel screen,back solid wall and filled rock-core.Chyonet al.[3]performed experiments to investigate the interaction between wave and horizontal slotted submerged breakwater to find out the effective size and porosity of the structure for the reduction of wave height.Fang et al.[4]experimentally investigated a submerged breakwater with four-layer horizontal porous plates.In the design of the breakwater's geometrical parameters(i.e., plate submergence, porosity and width), the vertical velocity distribution of fluid particles and suggestions from previous studies were considered.The wave-dissipating characteristics, i.e., the wave reflection, transmission, energy dissipation, and vertical force coefficients, were examined in a series of experiments.The effects of layer number, breakwater width, porosity of the upper plate and incident wave height were investigated in their experimental study.

    In the field of theoretical analyses, Yu and Chwang (1994) studied the water oscillation situation inside semi-circular perforated breakwaters based on the linear potential flow theory and obtained the amplitude when the perforation resistance can effectively reduce the resonance within the harbor.Subsequently, Yu (1995) calculated the diffraction action on the permeable semi-infinite breakwaters also based on the linear potential flow theory.Chwang and Chan (1998) analyzed the action between the wave and the perforated structure based on the Darcy Law and found that the perforated structure could reduce the wave generation and the resonance within the harbor.They discussed the application of this finding in engineering practice.Tenget al.[5], Liet al.[6]studied systematically the wave action using a partially porous double-wall cylinder and analyzed the influencing factors for reducing the wave surface height and the wave load.Twu and Chieu[7]developed an offshore breakwater composed of multiple layers of porous materials based on the eigenfunction expansion method.Liu and Li[8]presented an alternative analytical solution approach for water wave motion over a submerged horizontal porous plate using matched eigenfunction expansion approach.Later, Liu and Li[9]developed a new analytical solution for water wave motion through a surface-piercing porous breakwater.Karmakar and Guedes Soares[10]analyzed the multiple bottom-standing flexible porous barriers with different edge conditions to determine the performance of the wave interaction with multiple submerged barriers as breakwaters in the coastal region based on the eigenfunction expansion method.Kaligatlaet al.[11]investigated the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths by assuming that the flexible plate to be thin.Beheraet al.[12]investigated the trapping of oblique wave by porous barrier located near a rigid wall in the presence of a step type bottom bed.The physical problem is solved by using the eigenfunction expansion method and multi-mode approximation associated with modified mild-slope equation.Meng and Lu[13]studied the porous rectangular barrier on a seabed based on the linear potential flow theory and the matched eigenfunction expansion method.Manam and Sivanesan[14]studied scattering of deep water waves by a submerged or a surface piercing vertical porous barrier.Manam and Sivanesan[15]establish a new type of connection between the solutions of wave scattering problems involving vertical porous and solid barriers of same configuration.Behera and Ng[16]analyzed the performance of multiple bottom-standing flexible porous barriers in the presence of a rigid vertical wall and a step-type bottom on the basis of linearized water wave theory.Zhao et al.[17]investigated the oblique wave motion over multiple submerged porous bars in front of a vertical wall based on linear potential theory matched eigenfunction expansion method.Singla et al.[18]studied the role of partial permeable vertical barriers on the reduction of wave-induced hydroelastic response on a very large floating structure in a finite depth of water based on eigenfunction matching technique.

    In the field of numerical simulations, Li and Jiang[19]studied a perforated structure in a numerical wave flume to dissipate the reflection wave with considerations of the influence of the porosity, the number of perforations, the total length of the device,and other factors on the wave dissipation efficiency.Zhanet al.[20]used the energy-dissipating property of porous media to tackle the problem of wave reflections from computational domain in the numerical wave tank.Chenet al.[21]calculated the point pressure of the wave action on the perforated plate and the reflection coefficient by utilizing a numerical wave flume based on the VOF method and thek-εturbulent model and analyzed the influencing factors for the reflection coefficient and the point pressure distribution, especially, the influence of the porosity.

    Previous researches primarily focused on the correlation between the reflection coefficient, the wave force and the influencing factors under the wave action for the perforated structure, without much consideration of the influences of the porosity, the thickness and the layout form of the perforated plates on the wave absorption efficiency.The present study focuses on the influence of the porosity, the thickness and the layout form of such plates on the wave absorptivity.The proper porosity value, thickness value and layout form are proposed to improve the wave-absorbing ability of the multi-layer vertical perforated thin plates.

    1.Fundamental theory and calculation method

    For the wave action on a uniformly perforated plate with incident waves propagating along thex-direction at the water depthh, a plane-coordinate systemOxzis established with the originOon the static water surface and the axisOzmeasured vertically upward, as shown in Fig.1.The present study is based on the potential flow theory, and it is assumed that the perforated plates are composed of the same materials with the same thickness and porosity.In the analysis, the waveward side of the plate is set to coincide with the axisOz.

    Fig.1 Schematic diagram of the action of a wave and uniformly perforated thin plates

    For an ideal fluid, there is a velocity potentialφthat satisfies the Laplace equation in the whole domain.

    where

    is the two-dimensional Laplacian.

    The bottom of the flume satisfies the condition that the water cannot permeate the boundary of the rigid walls, that is, the normal derivative of the velocity potentialφis 0.

    In the interior of uniformly perforated thin plates(i.e.,b|λ?1, wherebis the thickness of the plate andλis the incident wave length), the fluid flow satisfies the continuity equation

    and the Euler equation, with the convective term ignored

    whereUis the fluid velocity,ρis the fluid density,pis the intensity of the pressure of the fluid,fis the resistance coefficient,ωis the frequency of the incident wave,Cmandεare the added mass and the porosity of the thin plate, respectively.

    The time term is separated from the velocityUand the intensity of the pressurePas

    The equations for the complex variableuandpare:

    where

    The real and imaginary parts correspond to the resistance and inertia force influences of the medium,respectively.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference is as follows

    where the subscripts 0 andbare the physical values in the two sides of the thin plate.

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have

    Under different circumstances, for the velocity potentials to satisfy the boundary conditions, we have the theoretical expressions of the reflection coefficient,the transmission coefficient, the energy loss coefficient and the wave absorptivity of the wave absorbing structure model of one-layer and multi-layer vertical perforated plates.Finally, comparisons, selections and optimizations are made with regard to the thickness,the porosity and the distance of the multi-layer perforated plates, based on the wave elements and other factors.

    2.Modeling

    2.1 Action between wave and two-layer perforated plates

    Consider the two-layer perforated plates shown in Fig.2.A rectangular coordinate systemoxzis established, in which theozaxis coincides with the wave side of the first layer plate and theoxaxis is on the surface of the still water.For convenience, the computational domain is divided into 5 parts, among which1Ω,2Ωand3Ωare the external domains of the perforated plate andΩ4and5Ωare the internal domains of the 1# plate and the 2# plate, respectively.

    The action between the waves and the two uniformly perforated thin plates with a thickness ofbis shownin Fig.2.The velocity potentials1φ,2φand3φwithin the areas of1Ω,2Ωand3Ωshould satisfy the following conditions:

    Free water surface condition

    Water bottom condition

    Infinity condition

    in which0φis the incident potential.

    Fig.2 Schematic diagram of a wave absorbing structure with dual-layer vertical perforated plates

    The object surface condition on the straight wall is

    wherelmnis the distance between the No.nplate and the No.n+1 plate, the subscriptmrepresents the number of the layers of the perforated plates.

    Provided that the water penetrates the thin plates only crosswise and the vertical component of the fluid is ignored, the relationship between the horizontal velocity and the pressure difference can be derived as:

    Converting the flow velocity in the perforations to the flow velocity in the whole plate, for the velocity to match with the external velocity, we have:

    where

    Equation (16) can be expressed as:

    In view of the fact that the wavelength is much greater than the thickness of the perforated plates, the thickness of the thin plate is ignored, the velocity continuity condition in the thin wall can be expressed as:

    φ1,φ2,φ3exclude the evanescent-wave component,thus, they can be expressed as:

    in whichR1and1Tare the reflection coefficient and the transmission coefficient of the first perforated plate, respectively,R2is the reflection coefficient of the second perforated plate, andT2is the transmission coefficient of the second perforated plate, as well as the reflection coefficient of the impermeable straight wall under the total reflection condition.

    Substituting the velocity potentials1φ,2φ,3φinto Formula (17) and Formula (18), we have:

    where

    Regarding all perforated plates as an entire wave absorbing structure.the reflection coefficientKrand the transmission coefficientKtof the structure can be written as:

    The energy loss coefficient is

    The wave energy absorbed by the wave absorbing structure is defined as the sum of the loss and transmission energies, and the absorptivity is

    2.2 Action between the wave and different perforated plates

    The reflection coefficient and the transmission coefficient of the incident wave when one layer, three layers and four layers of perforated plates are used can be obtained by using the same method.Figure 3 shows the schematic diagrams of the action between the wave and different-layer perforated plates, and the relevant formulas for describing the coefficients are as follows:

    (1) When we have one layer of perforated plate

    Fig.3 Schematic diagrams of different-layer perforated plate layouts

    The reflection coefficientKrand the transmission coefficientKtare:

    (2) When we have three layers of perforated plates

    where

    The reflection coefficientKrand the transmission coefficientKtof the wave absorbing structure are:

    (3) When we have four layers of perforated plates

    in which

    The reflection coefficientKrand the transmission coefficientKtof the absorbing structure to the

    wave are:

    For the action between the wave and differentlayer perforated plates, the expressions of the system energy loss coefficient and the absorptivity are the same as shown in Formulas (22), (23).

    3.Examples

    3.1 Influences of the number of layers of the perforated plates on the wave dissipation efficiency

    Consider multilayer plates, with each plate of the same characteristics, i.e., of the same material, thickness and porosity.The depth of the water is 2.5 m and the maximum width (i.e., the total width of the wave absorbing structure) for setting the perforated plate is 12 m.

    To study the influences of the number of layers of the perforated plates on the wave dissipation efficiency, calculations are performed to determine the wave dissipation efficiency when different layers of the perforated plates have different values of porosityεand thicknessb.According to Yu (1995), the resistance coefficient and the added mass aref=2.0 andCm=0, respectively.For the optimal positions of the perforated plates with an equal distance in the 12 m wave dissipation area when the incident period is 3.5 s,Fig.4 shows the reflection coefficientKrand the absorptivityKaagainst the porosityεand the thicknessbof the perforated plates.

    From Figs.3(a), 3(c), we can see that when the incident wave period is 3.5 s, the reflection coefficientKrdecreases and then increases with the increase of the porosityε.Such behavior is due to the fact that when the porosity of the perforated plate is small,much of the wave is reflected, whereas when the porosity of the perforated plate is large enough, the perforated plate is equivalent to a permeable structure and all waves are reflected by the vertical wall behind the perforated plate.The variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases with the increase of the porosityε.The reflection of the structure will decrease with the increase of the number of perforated plates; however,the absorptivity will increase, indicating that multilayer perforated plates have a better wave dissipation efficiency.The wave absorption efficiency is best when the number of plates is four and the porosity is approximately 0.2, as shown in Figs.3(a), 3(c).

    Fig.4 Effects of the porosity and thickness of the plate on the absorptivity efficiency of the plates

    The reflection coefficientKrdecreases and then increases with the increase of the thickness of the perforated plates, whereas the variation of the absorptivityKais opposite to that of the reflection coefficientKr, i.e., the absorptivityKaincreases and then decreases.Overall, when the thicknessbremains unchanged, the reflection coefficient will decrease and the absorptivity will increase with the increase of the number of layers of the perforated plates, indicating that multilayer perforated plates have a better wave dissipation efficiency.A slight reduction of the reflection coefficient of the multilayer perforated plates of four layers is observed compared with that of three layers, indicating that more layers of plates have a very small influence on the reduction of the reflection coefficient when the number of layers reaches three.

    3.2 Influence of the thickness of the perforated plates on the wave absorptivity

    We now consider the influence of the perforated plates with different parameters (thickness, porosity and spacing) on the wave absorption efficiency with an incident period between 0.5 s and 5.0 s when four layers of perforated plates are considered.The resistance coefficient and the added mass are stillf=2.0 andCm=0, respectively (Yu (1995)).

    Fig.5 Influence of the thickness of the perforated plates on the wave absorptivity

    Assume that the four layers of perforated plates are with an equal spacing,l=1.0m, and the porosity of the perforated plates isε=0.2.The influence of the thickness of the perforated plates on the wave absorptivity with the incident periods from 0.5-5.0 s is shown in Fig.5.The wave absorptivity decreases with the increase of the thickness in the short wave region,whereas in the long wave region the trend is opposite.It is found that when the thickness is 0.07 m (i.e.,b= 0.07m), the perforated plate structure has a good wave absorption efficiency in a relative long wave period region; in addition, the absorptivity of the wave with an incident period between 1.6 s and 4.4 s will reach and exceed 90%, among which the highest absorptivity is over 95%.

    Fig.6 Influence of porosity and plate spacing on wave absorptivity (b=0.05m)

    3.3 Influence of porosity and plate spacing on wave absorptivity

    The influence of the porosity and the plate spacing on the wave absorptivity is considered in this subsection for perforated plates of four layers.Figures 6, 7 show the variations of the absorptivity versus the incident wave period at a plate thickness of 0.05 m and 0.07 m (b= 0.05m ,b=0.07m) for different values of the porosity and the plate spacing.

    We can see that the relation curves see a left-ward shift overally with the increase of the porosity.For the short period waves, the larger the porosity, the better the wave absorption efficiency, in contrast, for the long period waves, the absorptivity decreases with the increase of the porosity.The wave absorption efficiency of the structure is best when the porosity is 0.2, i.e.,ε=0.2, for which the period of an incident wave with an absorptivity over 90%reaches the maximum.

    Among plates with different spacings, the wave absorption efficiency of the structure is the best when the plate spacing is 1.0 m (i.e.,l=1.0m), in other words, the period range of an incident wave with an absorptivity over 90% reaches the maximum.The period range of an incident wave with an absorptivity over 90% will decrease when the plate spacing increases or decreases.

    Moreover, from Figs.6, 7, we can see that the structure will satisfy the design requirements better and reach a larger period range of the effective incident wave as indicated by the wave absorption requirements when the plate spacing is 1.0 m and the thickness is 0.07 m (i.e.,l=1.0m,b= 0.07m).Whenb=0.05m ,T∈ ( 1.4s,2.4s), whenb=0.07m,T∈ ( 1.6s,4.4s).

    Fig.7 Influence of porosity and plate spacing on wave absorptivity (b=0.07m)

    4.Conclusions

    Based on the analytical studies, it is found that the absorptivityKaincreases with the increase of the number of layers of perforated plates.However, the increase of the wave absorption efficiency is not significant when the number of layers of plates increases from 3-4.Thus, we consider 4 layers of perforated plates.

    For incident waves with a short period, the absorptivityKais found to decrease with the incincrease of the plate thicknessb,and increase with the increase of the porosityε.For incident waves with a long period, the absorptivityKais found to increase with the increase of the plate thicknessb,but decrease with the increase of the porosityε.It is shown that when the porosity is 0.2, the plate thickness is 0.07 m, and the adjacent spacing between the four layers of the perforated plates is 1.0 (i.e.,the wave absorption efficiency for a wave with an incident period of (1.6 s, 4.4 s) will reach 90% (even exceeding 95% for some incident wave periods).

    Acknowledgement

    This work was supported by the Central Commonwealth Research Institute Basic R&D Special Foundation of TIWTE (Grant No.TKS160107).

    猜你喜歡
    寧德
    寧德時代凈利潤下跌
    寧德市婦聯(lián)舉辦“傳承好家風·建設(shè)新寧德”主題活動
    海峽姐妹(2020年10期)2020-10-28 08:08:06
    寧德:撐起脫貧攻堅“半邊天”
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    守正創(chuàng)新 春風化雨 寧德基層婦女思想政治引領(lǐng)亮點多
    海峽姐妹(2019年12期)2020-01-14 03:24:40
    寧德核電站火災事故的情景構(gòu)建
    勞動保護(2019年3期)2019-05-16 02:37:40
    寧德時代價值幾何
    能源(2018年7期)2018-09-21 07:56:24
    上汽與寧德時代合作回收動力電池
    寧德迎來大黃魚豐收季
    Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter *
    以扶貧開發(fā)“寧德模式”引領(lǐng)老區(qū)精準扶貧
    紅土地(2017年1期)2017-06-05 09:37:28
    热99re8久久精品国产| 亚洲专区字幕在线| 久久精品91无色码中文字幕| 一个人免费在线观看的高清视频| 亚洲av电影在线进入| 18禁美女被吸乳视频| 日韩大码丰满熟妇| 欧美大码av| 国产精品一区二区精品视频观看| 99re在线观看精品视频| 电影成人av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲精品一区二区精品久久久| 久久影院123| 久久精品国产99精品国产亚洲性色 | 久久ye,这里只有精品| 少妇被粗大的猛进出69影院| 久久亚洲真实| 狂野欧美激情性xxxx| 咕卡用的链子| 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 十八禁人妻一区二区| 欧美中文综合在线视频| 九色亚洲精品在线播放| 欧美老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 国产高清videossex| 久久久久网色| 久久精品国产亚洲av香蕉五月 | 操出白浆在线播放| 男男h啪啪无遮挡| 久久婷婷成人综合色麻豆| 午夜福利一区二区在线看| 亚洲国产精品一区二区三区在线| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 性色av乱码一区二区三区2| 美女主播在线视频| www.熟女人妻精品国产| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 91九色精品人成在线观看| 国产在线一区二区三区精| 成人免费观看视频高清| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 日本精品一区二区三区蜜桃| 青草久久国产| 黑人欧美特级aaaaaa片| 中文字幕制服av| 成年人免费黄色播放视频| 后天国语完整版免费观看| 国产成人av激情在线播放| 国产精品98久久久久久宅男小说| 人人妻人人爽人人添夜夜欢视频| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 免费在线观看影片大全网站| 亚洲av日韩精品久久久久久密| 99热国产这里只有精品6| 久久 成人 亚洲| 三上悠亚av全集在线观看| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到| 青青草视频在线视频观看| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 久久性视频一级片| 亚洲成人手机| 天天影视国产精品| 电影成人av| 久久ye,这里只有精品| 亚洲成人免费电影在线观看| 国产在线视频一区二区| aaaaa片日本免费| 9191精品国产免费久久| 日韩视频在线欧美| 大香蕉久久成人网| 99国产精品99久久久久| 国产在线观看jvid| 纵有疾风起免费观看全集完整版| 免费av中文字幕在线| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线 | 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 国产成人精品无人区| 视频区图区小说| 精品国产一区二区久久| 国产一区二区在线观看av| 成人国产av品久久久| 亚洲一区中文字幕在线| 成年人午夜在线观看视频| 国产精品免费视频内射| 麻豆成人av在线观看| 超碰97精品在线观看| 丝袜喷水一区| 一本一本久久a久久精品综合妖精| 亚洲九九香蕉| av又黄又爽大尺度在线免费看| 757午夜福利合集在线观看| 亚洲国产毛片av蜜桃av| 精品福利永久在线观看| 人人澡人人妻人| 不卡一级毛片| 老司机影院毛片| 在线观看免费午夜福利视频| 黄色丝袜av网址大全| 最新美女视频免费是黄的| 午夜激情久久久久久久| 午夜福利视频精品| 黄色 视频免费看| 一进一出好大好爽视频| 女性生殖器流出的白浆| av网站免费在线观看视频| 国产精品秋霞免费鲁丝片| 老司机午夜福利在线观看视频 | 午夜免费鲁丝| 亚洲专区字幕在线| 老司机靠b影院| kizo精华| 18禁黄网站禁片午夜丰满| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av | 国产精品久久久久久精品电影小说| 少妇精品久久久久久久| 亚洲精华国产精华精| 亚洲欧洲日产国产| 丝袜美足系列| 一本大道久久a久久精品| 一个人免费在线观看的高清视频| 少妇被粗大的猛进出69影院| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 日韩大片免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区av网在线观看 | 另类精品久久| 国产真人三级小视频在线观看| 捣出白浆h1v1| 男女边摸边吃奶| 桃花免费在线播放| 国产99久久九九免费精品| 国产精品98久久久久久宅男小说| 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 大陆偷拍与自拍| 超色免费av| 色综合欧美亚洲国产小说| 咕卡用的链子| 国产精品98久久久久久宅男小说| 美女视频免费永久观看网站| 男人舔女人的私密视频| 91精品国产国语对白视频| 欧美 亚洲 国产 日韩一| 精品少妇一区二区三区视频日本电影| 亚洲专区中文字幕在线| 一个人免费看片子| 捣出白浆h1v1| 中文欧美无线码| 99精品久久久久人妻精品| 亚洲免费av在线视频| 亚洲精品国产一区二区精华液| 色尼玛亚洲综合影院| 成人精品一区二区免费| 妹子高潮喷水视频| 日韩欧美一区视频在线观看| 啦啦啦 在线观看视频| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 婷婷丁香在线五月| 王馨瑶露胸无遮挡在线观看| 大型黄色视频在线免费观看| 国产福利在线免费观看视频| 免费在线观看日本一区| 国产又爽黄色视频| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 精品一区二区三卡| 美女主播在线视频| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产 | 男女免费视频国产| 国精品久久久久久国模美| 国产精品麻豆人妻色哟哟久久| 久久免费观看电影| 91九色精品人成在线观看| 久久精品熟女亚洲av麻豆精品| 99riav亚洲国产免费| 看免费av毛片| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲| 亚洲精品在线美女| 巨乳人妻的诱惑在线观看| 国产不卡av网站在线观看| 亚洲九九香蕉| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 亚洲精品一卡2卡三卡4卡5卡| 国产精品二区激情视频| 色婷婷av一区二区三区视频| 亚洲va日本ⅴa欧美va伊人久久| 他把我摸到了高潮在线观看 | 国产男靠女视频免费网站| 久久99一区二区三区| 国产一区二区 视频在线| 成人国产一区最新在线观看| 高清黄色对白视频在线免费看| 久久影院123| www.自偷自拍.com| 1024视频免费在线观看| 黑人操中国人逼视频| 无遮挡黄片免费观看| 夜夜爽天天搞| 免费一级毛片在线播放高清视频 | 男女高潮啪啪啪动态图| 亚洲精品在线观看二区| 在线观看免费日韩欧美大片| 国产精品熟女久久久久浪| 亚洲伊人色综图| 亚洲视频免费观看视频| 国产欧美亚洲国产| 在线观看免费日韩欧美大片| 国产aⅴ精品一区二区三区波| 亚洲熟女毛片儿| 一区二区日韩欧美中文字幕| 久久亚洲真实| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 午夜福利视频在线观看免费| 国产有黄有色有爽视频| 操美女的视频在线观看| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 久久午夜亚洲精品久久| 精品一区二区三区av网在线观看 | 黄色视频不卡| 桃红色精品国产亚洲av| 午夜久久久在线观看| 国产精品国产高清国产av | 国产主播在线观看一区二区| 纵有疾风起免费观看全集完整版| 一级片'在线观看视频| 久久久久网色| 久久狼人影院| 高清黄色对白视频在线免费看| 成人三级做爰电影| 超碰成人久久| 精品一品国产午夜福利视频| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 国产色视频综合| xxxhd国产人妻xxx| 亚洲全国av大片| 女人久久www免费人成看片| 99久久国产精品久久久| 91精品国产国语对白视频| 成人国产一区最新在线观看| 亚洲人成77777在线视频| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 国产在线观看jvid| cao死你这个sao货| www.熟女人妻精品国产| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 精品国产一区二区久久| 香蕉久久夜色| 午夜福利欧美成人| 一级,二级,三级黄色视频| 国产aⅴ精品一区二区三区波| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕 | 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 妹子高潮喷水视频| 亚洲第一青青草原| 欧美成狂野欧美在线观看| 男女高潮啪啪啪动态图| 麻豆乱淫一区二区| 日本精品一区二区三区蜜桃| 99精品久久久久人妻精品| 9色porny在线观看| 欧美日韩黄片免| 亚洲男人天堂网一区| 久9热在线精品视频| 啦啦啦中文免费视频观看日本| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 国产97色在线日韩免费| 真人做人爱边吃奶动态| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 高清av免费在线| av免费在线观看网站| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 久久香蕉激情| 在线亚洲精品国产二区图片欧美| 欧美亚洲 丝袜 人妻 在线| 激情在线观看视频在线高清 | 免费观看a级毛片全部| 少妇 在线观看| 天堂中文最新版在线下载| 午夜福利视频精品| 午夜福利,免费看| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 免费不卡黄色视频| videos熟女内射| 在线观看免费午夜福利视频| 999精品在线视频| a级毛片在线看网站| 超碰成人久久| 18禁美女被吸乳视频| 亚洲精品av麻豆狂野| tube8黄色片| av网站免费在线观看视频| 制服人妻中文乱码| 美女视频免费永久观看网站| 一个人免费在线观看的高清视频| 少妇的丰满在线观看| 精品福利观看| 99国产精品免费福利视频| 久久久精品国产亚洲av高清涩受| 国产老妇伦熟女老妇高清| 亚洲第一青青草原| 久久这里只有精品19| 手机成人av网站| 久久av网站| 亚洲国产av新网站| 国产精品久久久久久精品电影小说| 日本精品一区二区三区蜜桃| 国产熟女午夜一区二区三区| 午夜91福利影院| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 国产高清激情床上av| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免费看| 欧美乱妇无乱码| 咕卡用的链子| 91麻豆精品激情在线观看国产 | 欧美在线黄色| 久久性视频一级片| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 欧美在线黄色| 麻豆国产av国片精品| 我要看黄色一级片免费的| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 精品福利观看| av有码第一页| 国产男女内射视频| 自线自在国产av| 久久久久久久久久久久大奶| 一级毛片精品| 午夜福利欧美成人| 免费观看a级毛片全部| av国产精品久久久久影院| 丁香欧美五月| 99riav亚洲国产免费| 99九九在线精品视频| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 性高湖久久久久久久久免费观看| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 热99re8久久精品国产| 水蜜桃什么品种好| 在线天堂中文资源库| 国产精品久久电影中文字幕 | 热99国产精品久久久久久7| 人人妻人人爽人人添夜夜欢视频| 久久精品国产99精品国产亚洲性色 | 他把我摸到了高潮在线观看 | 午夜福利免费观看在线| 亚洲欧美一区二区三区久久| 少妇裸体淫交视频免费看高清 | 亚洲欧洲日产国产| 91麻豆精品激情在线观看国产 | 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 亚洲欧洲日产国产| 一本一本久久a久久精品综合妖精| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 在线观看免费高清a一片| 国产亚洲欧美在线一区二区| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 亚洲色图av天堂| 色精品久久人妻99蜜桃| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 欧美日韩亚洲高清精品| 操出白浆在线播放| 丝袜喷水一区| www.精华液| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| 国产一区二区三区在线臀色熟女 | 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 丰满饥渴人妻一区二区三| 久久香蕉激情| 女人高潮潮喷娇喘18禁视频| 少妇的丰满在线观看| 午夜福利乱码中文字幕| av天堂久久9| 美女主播在线视频| 国产成+人综合+亚洲专区| 久久毛片免费看一区二区三区| 中文字幕制服av| 国产精品av久久久久免费| 精品第一国产精品| 日本欧美视频一区| 精品熟女少妇八av免费久了| 久久国产精品影院| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 亚洲av日韩在线播放| 日日摸夜夜添夜夜添小说| 黄片小视频在线播放| 国产精品欧美亚洲77777| av线在线观看网站| 午夜精品久久久久久毛片777| 水蜜桃什么品种好| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费视频日本深夜| 国内毛片毛片毛片毛片毛片| 脱女人内裤的视频| 蜜桃在线观看..| 黑人猛操日本美女一级片| 精品乱码久久久久久99久播| 黄色毛片三级朝国网站| 亚洲精品中文字幕一二三四区 | 亚洲熟女精品中文字幕| 十八禁高潮呻吟视频| 人妻久久中文字幕网| 人妻 亚洲 视频| 色视频在线一区二区三区| 色94色欧美一区二区| 久久久久网色| 青草久久国产| av天堂在线播放| 久久精品国产99精品国产亚洲性色 | 久久99一区二区三区| 一边摸一边做爽爽视频免费| 国产极品粉嫩免费观看在线| 日韩 欧美 亚洲 中文字幕| 搡老乐熟女国产| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 麻豆av在线久日| 12—13女人毛片做爰片一| 亚洲免费av在线视频| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 制服诱惑二区| 日本五十路高清| 高清av免费在线| 亚洲男人天堂网一区| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 激情视频va一区二区三区| 国产麻豆69| 一区福利在线观看| 我的亚洲天堂| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 国产欧美日韩一区二区精品| 精品亚洲成国产av| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 久久精品亚洲精品国产色婷小说| 中亚洲国语对白在线视频| 久久婷婷成人综合色麻豆| 国产区一区二久久| 18禁国产床啪视频网站| 午夜日韩欧美国产| 电影成人av| 女人被躁到高潮嗷嗷叫费观| 老司机午夜福利在线观看视频 | 免费久久久久久久精品成人欧美视频| 亚洲久久久国产精品| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 国产在线一区二区三区精| 欧美成人免费av一区二区三区 | 久久中文字幕一级| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 精品一品国产午夜福利视频| av国产精品久久久久影院| 18禁美女被吸乳视频| 亚洲熟女毛片儿| 日本vs欧美在线观看视频| 国产不卡av网站在线观看| 少妇猛男粗大的猛烈进出视频| 高清黄色对白视频在线免费看| 超碰97精品在线观看| 亚洲精品乱久久久久久| 亚洲,欧美精品.| 王馨瑶露胸无遮挡在线观看| 男女边摸边吃奶| av线在线观看网站| 国产精品一区二区在线不卡| 99精国产麻豆久久婷婷| 日韩中文字幕欧美一区二区| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 久久国产亚洲av麻豆专区| 69av精品久久久久久 | 十分钟在线观看高清视频www| 在线永久观看黄色视频| 精品高清国产在线一区| 国产黄色免费在线视频| 女人高潮潮喷娇喘18禁视频| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址 | 热99国产精品久久久久久7| 亚洲色图 男人天堂 中文字幕| 国产又爽黄色视频| 国产99久久九九免费精品| 亚洲精品中文字幕一二三四区 | 一本—道久久a久久精品蜜桃钙片| 国产精品免费一区二区三区在线 | 国产日韩欧美视频二区| 亚洲伊人久久精品综合| 亚洲第一青青草原| 无限看片的www在线观看| 两性夫妻黄色片| 国产在线观看jvid| av一本久久久久| 精品少妇黑人巨大在线播放| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频| cao死你这个sao货| 又紧又爽又黄一区二区| 欧美亚洲 丝袜 人妻 在线| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区 | 18禁观看日本| e午夜精品久久久久久久| 日韩 欧美 亚洲 中文字幕| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 亚洲情色 制服丝袜| 黄色视频不卡| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 高清毛片免费观看视频网站 | 国产精品成人在线| 老汉色∧v一级毛片| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 大片电影免费在线观看免费| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 久久精品人人爽人人爽视色| 国产亚洲精品一区二区www | 欧美精品人与动牲交sv欧美| 麻豆成人av在线观看| 香蕉国产在线看| 国产日韩欧美视频二区| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 精品国产一区二区久久| 十八禁高潮呻吟视频| 久久久久视频综合| 欧美黑人精品巨大| 人人澡人人妻人| 美女高潮喷水抽搐中文字幕| 精品国内亚洲2022精品成人 | 午夜免费成人在线视频|