楊厚翔,雷國平,徐 秋
?
基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)方法
楊厚翔,雷國平※,徐 秋
(東北大學(xué)土地管理研究所,沈陽 110169)
為探尋耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)方法,解決現(xiàn)有監(jiān)測點(diǎn)空間布局不合理、針對性不強(qiáng),監(jiān)測精準(zhǔn)化程度差和監(jiān)測成本過高的問題。該文以耕地地力調(diào)查與質(zhì)量評價(jià)成果為數(shù)據(jù)源,在樣點(diǎn)數(shù)據(jù)分析基礎(chǔ)上,采用變異系數(shù)法、可視離散化法、克里格插值法、疊加法,以及誤差理論和抽樣理論,確定監(jiān)測控制區(qū)層級、層級劃分區(qū)間及與之對應(yīng)的監(jiān)測點(diǎn)位數(shù)量,形成監(jiān)測指標(biāo)復(fù)合式控制區(qū),布設(shè)監(jiān)測點(diǎn)位。以克山縣為例進(jìn)行技術(shù)應(yīng)用,將11個(gè)指標(biāo)200個(gè)監(jiān)測點(diǎn)位進(jìn)行2 200次測試化驗(yàn),110 kg土壤樣本消耗量、44萬元監(jiān)測費(fèi)用的方案,優(yōu)化至7個(gè)指標(biāo)30個(gè)監(jiān)測點(diǎn)位進(jìn)行81次測試化驗(yàn),4.05 kg土壤樣本消耗量、1.62萬元監(jiān)測費(fèi)用,增強(qiáng)了耕地質(zhì)量監(jiān)測的針對性,降低了監(jiān)測成本和資源消耗,且研究布設(shè)監(jiān)測點(diǎn)位數(shù)據(jù)對耕地地力調(diào)查與質(zhì)量評價(jià)數(shù)據(jù)具有較好的代表性。該方法切實(shí)可行,具有很好的應(yīng)用價(jià)值,可以通過較少的投入,獲取精準(zhǔn)、較大的信息量,可為耕地質(zhì)量監(jiān)測點(diǎn)位優(yōu)化提供方法借鑒。
土地利用;監(jiān)測;耕地質(zhì)量;土地信息;監(jiān)測布點(diǎn);復(fù)合式控制區(qū)
糧食安全關(guān)系國家長治久安[1-2],耕地是糧食生產(chǎn)的第一資源,其數(shù)量、質(zhì)量同等重要,不可偏廢[3-4]?!?8億畝耕地紅線”等政策的出臺與實(shí)施守住了耕地?cái)?shù)量[5],大規(guī)模的的墾殖行為[6],“高水、高肥”的投入方式[7-8],雖然使得中國糧食產(chǎn)量12連增[9-10],但是墾殖的盲目性、利用方式的不合理[5-7],加之“占補(bǔ)平衡”等政策執(zhí)行問題[11-12],導(dǎo)致耕地質(zhì)量持續(xù)下降[13-14],造成了巨大資源經(jīng)濟(jì)浪費(fèi)和生態(tài)環(huán)境問題[8-15],與高效集約、可持續(xù)的發(fā)展方式相悖,威脅中國的糧食安全[16-17]。國土資源部明確要求將耕地質(zhì)量監(jiān)測作為實(shí)現(xiàn)耕地?cái)?shù)量和質(zhì)量管理并重,加強(qiáng)耕地質(zhì)量建設(shè)和管理的重要舉措[18-19]。
耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)是實(shí)施監(jiān)測的重要環(huán)節(jié)[18-20]。上世紀(jì)80年來以來,全國各級農(nóng)業(yè)部門分層次建立了一批耕地質(zhì)量長期定位監(jiān)測點(diǎn),這些長期定位監(jiān)測點(diǎn)對于摸清中國耕地質(zhì)量底數(shù)和變化趨勢具有重要作用,但是監(jiān)測點(diǎn)位少[21],無法準(zhǔn)確反映各地區(qū)耕地質(zhì)量,為此農(nóng)業(yè)部出臺并實(shí)施《耕地地力調(diào)查與質(zhì)量評價(jià)技術(shù)規(guī)程 NY/T 1634-2008》,更為精確的掌握中國各區(qū)域耕地質(zhì)量總體情況,由于該體系出臺前未有較為全面系統(tǒng)的耕地質(zhì)量有關(guān)成果,因此其點(diǎn)位布設(shè)具有合乎邏輯的不合理性,即在不了解耕地質(zhì)量分布特點(diǎn)和規(guī)律的條件下,加密監(jiān)測點(diǎn)位,提高成果的準(zhǔn)確性,但會(huì)產(chǎn)生監(jiān)測點(diǎn)位冗余情況,導(dǎo)致監(jiān)測成本高、便捷性差、針對性不強(qiáng)的實(shí)際問題。因此,急需探索新的耕地質(zhì)量監(jiān)測布點(diǎn)方法,使其可以通過較少的投入,獲取精準(zhǔn)、較大的信息量。
目前,國內(nèi)學(xué)者圍繞耕地質(zhì)量監(jiān)測樣點(diǎn)布設(shè)開展了較為深入的研究,但總體上還不多。孫亞彬等基于潛力指數(shù)組合的方法在研究區(qū)布控監(jiān)測網(wǎng)絡(luò)[22],吳克寧等基于標(biāo)準(zhǔn)樣地國家級匯總成果選取耕地質(zhì)量動(dòng)態(tài)監(jiān)測點(diǎn)[20];張玉臻等基于標(biāo)準(zhǔn)樣地省級匯總成果對布設(shè)耕地質(zhì)量監(jiān)測點(diǎn)[9];王倩等采用地統(tǒng)計(jì)學(xué)的變異函數(shù)分析耕地質(zhì)量變異情況,依據(jù)變異分析結(jié)果布設(shè)監(jiān)測點(diǎn)[19];祝錦霞等引入半方差函數(shù)分析耕地質(zhì)量的變異情況,根據(jù)變異特征與規(guī)律布設(shè)監(jiān)測樣點(diǎn)[23]。以上研究豐富了監(jiān)測樣點(diǎn)布設(shè)方法體系,但是布設(shè)邏輯路徑均是通過相對宏觀評價(jià)結(jié)果的空間分布均質(zhì)性和異質(zhì)性確定布樣網(wǎng)格形態(tài)和尺寸,布設(shè)監(jiān)測樣點(diǎn),對所構(gòu)建的相對微觀指標(biāo)體系的所有指標(biāo)進(jìn)行監(jiān)測,該監(jiān)測點(diǎn)布設(shè)邏輯存在的問題在于無法保證所有監(jiān)測指標(biāo)的均質(zhì)化和異質(zhì)化程度與評價(jià)結(jié)果一致,因此以上研究在樣點(diǎn)布設(shè)空間合理性、精確性、針對性和成本控制方面沒有表現(xiàn)出良好的優(yōu)越性。
基于現(xiàn)有研究不足,本文提出了基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)方法,該方法從耕地質(zhì)量構(gòu)成要素出發(fā),通過分析樣點(diǎn)數(shù)據(jù),選取與之相適宜的方法確定各指標(biāo)有效監(jiān)測層級、層級劃分區(qū)間及監(jiān)測點(diǎn)位數(shù)量,并以此為依據(jù)進(jìn)行空間插值,以插值后指標(biāo)空間分布形態(tài)和尺寸為依據(jù),建立監(jiān)測指標(biāo)復(fù)合式控制區(qū),綜合布設(shè)監(jiān)測點(diǎn),確定與之對應(yīng)監(jiān)測指標(biāo)。該方案可以確保所布設(shè)的監(jiān)測點(diǎn)位符合研究區(qū)監(jiān)測指標(biāo)均質(zhì)化和異質(zhì)化程度,具有樣點(diǎn)布設(shè)空間合理性,通過較少的點(diǎn)位和與之對應(yīng)的監(jiān)測指標(biāo)數(shù)量,獲取更多、更精準(zhǔn)的信息。
克山縣位于黑龍江省西部、齊齊哈爾東北部,東至克東縣,南鄰拜泉縣,西與依安縣接壤,北隔訥謨爾河與訥河市境相望,東北同五大連池市毗鄰,地理坐標(biāo)125°10′57″E~126°8′18″E,47°50′51″N~48°33′47″N;地貌為丘陵漫崗平原,丘陵漫崗地占80%,平原區(qū)占14%,洼地占6%,地勢東北高、西南低,海拔在198.7~381.7 m之間,北部、中部地貌屬丘陵漫崗區(qū),南部為平原區(qū),丘陵漫崗區(qū)多為坡崗地,坡度大,耕層薄,表層疏松,溝壑縱橫;土壤以草甸土、黑土為主,土層較厚,耕地肥力較好,從土壤母質(zhì)上看,克山縣成土母質(zhì)多屬第四紀(jì)黃土狀亞粘土,土壤質(zhì)地黏重,空隙小,透水能力差,加之不合理的耕作造成耕層薄、障礙層厚,土壤板結(jié),不利于根系發(fā)育和有效養(yǎng)分轉(zhuǎn)化;轄15個(gè)鄉(xiāng)鎮(zhèn),122個(gè)行政村,土地總土地面積達(dá)31.86萬hm2,耕地面積20.13萬hm2。
數(shù)據(jù)來源為克山縣耕地地力調(diào)查與質(zhì)量評價(jià)成果,包括201個(gè)點(diǎn)位測試化驗(yàn)數(shù)據(jù)。樣本數(shù)據(jù)處理,主要包括樣本數(shù)據(jù)檢驗(yàn)和樣本數(shù)據(jù)異常值剔除,保證處理后樣本數(shù)據(jù)達(dá)到分析要求。經(jīng)分析克山縣測試化驗(yàn)點(diǎn)位數(shù)據(jù),有1處為異常值,經(jīng)剔除,保留200個(gè)測試化驗(yàn)點(diǎn)位。建立指標(biāo)含量數(shù)量分布直觀圖,直觀評判數(shù)據(jù)連續(xù)性,數(shù)據(jù)是否符合正態(tài)分布。各指標(biāo)含量分布情況見圖1。
圖1 指標(biāo)含量分布直觀圖
通過圖1可以看出,有機(jī)質(zhì)、全氮、速效鉀、有效磷正態(tài)分布曲線擬合度高,含量分布連續(xù);耕層厚度、障礙層厚度、土壤容重正態(tài)分布曲線擬合不好,含量分布斷續(xù)。
復(fù)合式控制區(qū)是兩個(gè)或者兩個(gè)以上簡單控制區(qū)組合起來對某一參數(shù)進(jìn)行控制,其具有開環(huán)控制系統(tǒng)的穩(wěn)定性,又具有閉環(huán)系統(tǒng)的精度。研究在數(shù)據(jù)分析處理基礎(chǔ)上,確定監(jiān)測層級、層級劃分區(qū)間,并依此劃分單指標(biāo)控制區(qū),進(jìn)而形成基于監(jiān)測指標(biāo)復(fù)合式控制區(qū),通過復(fù)合控制區(qū)空間分布形態(tài)及各指標(biāo)層級監(jiān)測點(diǎn)位數(shù)量,布設(shè)監(jiān)測點(diǎn),具體流程見圖2。
監(jiān)測層級及層級劃分區(qū)間設(shè)定科學(xué)與否尤為重要,直接關(guān)系到監(jiān)測結(jié)果準(zhǔn)確性和有效性,以及快速、便捷、經(jīng)濟(jì)等監(jiān)測性能。研究依據(jù)各指標(biāo)測試化驗(yàn)樣點(diǎn)數(shù)據(jù)均質(zhì)化程度和變異性而定。對于連續(xù)的、符合正態(tài)分布的樣點(diǎn)數(shù)據(jù),研究采用變異系數(shù)法確定監(jiān)測層級,均值(equal interval)法確定層級劃分區(qū)間;對連續(xù)、不符合正態(tài)分布的樣點(diǎn)數(shù)據(jù),需進(jìn)行正態(tài)化處理,使之符合正態(tài)分布,監(jiān)測層級劃分區(qū)間采用均值(equal interval)法確定;對斷續(xù)的數(shù)據(jù)采用變異系數(shù)法會(huì)形成無效監(jiān)測層級,為避免無效監(jiān)測層級的產(chǎn)生,采取可視離散化法分析指標(biāo)數(shù)值分布特征,確定監(jiān)測層級,自定義(manul)方式法確定監(jiān)測層級劃分區(qū)間。
2.1.1 變異系數(shù)法
變異系數(shù)法為探索區(qū)域化變量的空間異質(zhì)性提供了新的定量分析方法[6],變異系數(shù)越小,均質(zhì)化程度越高,監(jiān)測層級越少;變異系數(shù)越大,均質(zhì)化程度越差,監(jiān)測層級越多。變異系數(shù)公式如下
圖2 基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的點(diǎn)位布設(shè)流程
2.1.2 可視離散化法
可視離散化法是數(shù)據(jù)分析中常用的手段,可對數(shù)據(jù)進(jìn)行有限區(qū)間劃分,發(fā)現(xiàn)數(shù)據(jù)分布離散化程度,離散化程度越高監(jiān)測層級越多,離散化程度越低監(jiān)測層級越少。
耕地質(zhì)量監(jiān)測點(diǎn)分布是稀疏而不均勻的,因此在各個(gè)臺站觀測點(diǎn)數(shù)據(jù)基礎(chǔ)上,推算出空間面上耕地質(zhì)量監(jiān)測指標(biāo)的分布,空間插值方法是有力的工具[24]。研究采用Kriging方法對監(jiān)測數(shù)據(jù)進(jìn)行空間插值,依據(jù)監(jiān)測層級及層級劃分區(qū)間劃分監(jiān)測控制區(qū)。Kriging公式為
式中(x)(1,…,)為個(gè)樣本點(diǎn)的觀測值;(0)為待定點(diǎn)值;λ為權(quán)重,權(quán)重由克里格方程組決定
式中(x, y)為測站樣本點(diǎn)之間的協(xié)方差;(x,0)為測站樣本點(diǎn)與插值點(diǎn)之間的協(xié)方差;為拉格朗日乘子;插值數(shù)據(jù)的空間結(jié)構(gòu)特性由半變異函數(shù)()描述,其表達(dá)式為
式中()為被距離區(qū)段分割的樣本數(shù)據(jù)對數(shù)目,根據(jù)試驗(yàn)變異函數(shù)的特性,選取適當(dāng)?shù)睦碚撟儺惡瘮?shù)模型,根據(jù)試驗(yàn)半變異函數(shù)得到的試驗(yàn)變異函數(shù)圖,從而確定出合理的變異函數(shù)理論模型。
為了實(shí)現(xiàn)以有限的觀測值反應(yīng)區(qū)域總體情況,并有足夠的可靠性和精度,必須合理確定監(jiān)測點(diǎn)位[25-27]。
2.3.1 連續(xù)樣本數(shù)據(jù)監(jiān)測點(diǎn)位數(shù)量確定方法
若取,由式(7)和(8)可知,點(diǎn)位數(shù)為:
由式(10)可知,滿足式(7)的點(diǎn)位數(shù)為
在確定監(jiān)測點(diǎn)位數(shù)量時(shí),首先用樣本的單次標(biāo)準(zhǔn)差2代替2,由式(9)確定出點(diǎn)位數(shù)1,再由自由度1-1和顯著水平在值表查到值,帶入式(12),計(jì)算出2,再由2-1查值表,計(jì)算出3,反復(fù)計(jì)算直至求出與所用的值基本相對反復(fù)為止。在此基礎(chǔ)上結(jié)合各控制區(qū)面積比例,確定監(jiān)測指標(biāo)各層級監(jiān)測點(diǎn)數(shù)量。
2.3.2 斷續(xù)樣本數(shù)據(jù)監(jiān)測點(diǎn)位數(shù)量確定方法
斷續(xù)數(shù)據(jù)監(jiān)測點(diǎn)位數(shù)量依據(jù)具體指標(biāo)監(jiān)測控制區(qū)集中連片程度、分布形態(tài)、控制區(qū)之間空間位置關(guān)系,結(jié)合各控制區(qū)面積比例,綜合確定監(jiān)測點(diǎn)位數(shù)量及各監(jiān)測層級點(diǎn)位數(shù)量。
監(jiān)測指標(biāo)是監(jiān)測點(diǎn)布設(shè)的基礎(chǔ),關(guān)系到監(jiān)測點(diǎn)布設(shè)科學(xué)與否[9]。目前耕地質(zhì)量監(jiān)測指標(biāo)體系尚未統(tǒng)一,但主要有2種觀點(diǎn),一是耕地生產(chǎn)能力觀點(diǎn),二是土壤肥力觀點(diǎn)。本研究兼顧以上2種觀點(diǎn),生產(chǎn)能力側(cè)重在光、溫、水、土等自然條件下耕地能夠達(dá)到最大的產(chǎn)能,土壤肥力側(cè)重土壤提供作物生長所需的各種養(yǎng)分的能力。
3.1.1 生產(chǎn)能力指標(biāo)選取
生產(chǎn)能力指標(biāo)研究以業(yè)界較為認(rèn)可的農(nóng)用地分等規(guī)程為依據(jù),結(jié)合地方實(shí)際進(jìn)行優(yōu)化,并將長期穩(wěn)定不變的指標(biāo)作為背景指標(biāo)登記在冊,若人為因素導(dǎo)致背景指標(biāo)發(fā)生變化,視具體情況進(jìn)行增設(shè),包括氣候因素、地質(zhì)因素、地形地貌因素和部分穩(wěn)定的土壤條件??松娇h屬于山地丘陵(崗地)坡耕地類型,依據(jù)農(nóng)用地分等山地丘陵(崗地)坡耕地推薦監(jiān)測指標(biāo)為基礎(chǔ),在綜合性、主導(dǎo)性、區(qū)域性、最小數(shù)據(jù)集等原則指導(dǎo)下,剔除自然狀態(tài)難以改變部分土壤指標(biāo),即:剔除地形坡度、地表巖石露頭度2個(gè)指標(biāo)。由于地形地貌原因,且經(jīng)實(shí)地調(diào)研,克山縣存在水土流失問題,因此保留耕作層厚度、土壤有機(jī)質(zhì)指標(biāo),存在犁底層后耕層薄情況,且正在有序開展土壤改良等耕地質(zhì)量提升措施,因此保留障礙層厚度和土壤容重指標(biāo),區(qū)域無土壤酸堿化趨勢,灌溉條件較好,即剔除土壤pH值、灌溉保證率指標(biāo)。
3.1.2 土壤肥力指標(biāo)選取
土壤養(yǎng)分影響因素很多,但與植物生長關(guān)系最大的是碳、氮、磷、鉀[25],主要包括有機(jī)質(zhì)、全氮、堿解氮、全鉀、速效鉀、全磷和有效磷。參照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)南方地區(qū)耕地土壤肥力診斷與評價(jià)(NY/T 1749-2009)最小通用數(shù)據(jù)集以及現(xiàn)有文獻(xiàn),確定參評指標(biāo),包括有機(jī)質(zhì)、全氮、有效磷和速效鉀[27]?,F(xiàn)有文獻(xiàn)表明氮元素是蛋白質(zhì)、核酸、葉綠素、酶和一些激素重要構(gòu)成元素,直接影響作物的品質(zhì)和產(chǎn)量,主要包括全氮和堿解氮,全氮含量代表著土壤氮素的總貯量和供氮潛力,堿解氮反映土壤近期內(nèi)氮素供應(yīng)情況[28-29],但堿解氮易受土壤水熱條件和生物活動(dòng)影響而發(fā)生變化[30];磷元素是植物細(xì)胞核重要組成成分,對植物細(xì)胞分裂、器官組織分化發(fā)育和植物體內(nèi)生理代謝均具有重要作用,主要包括全磷和有效磷,全磷含量只表明土壤磷元素的儲備,并不能作為土壤磷素供應(yīng)的指標(biāo),植物直接或間接吸收利用的是有效磷部分[29];鉀元素可促進(jìn)碳水化合物的轉(zhuǎn)變、蛋白質(zhì)的合成和細(xì)胞的分裂,減少蒸騰作用,調(diào)節(jié)植物組織中的水分平衡,增強(qiáng)植物的抗性,主要包括全鉀和速效鉀,全鉀反映土壤鉀元素的總儲量,但因其90%~98%為無效態(tài)鉀[29]。
綜上,研究選取土壤有機(jī)質(zhì)、全氮、有效磷、速效鉀、耕作層厚度、障礙層厚度、土壤容重作為耕地質(zhì)量監(jiān)測指標(biāo)。
3.2.1 確定控制層級及劃分區(qū)間
1)連續(xù)樣本數(shù)據(jù)監(jiān)測層級及劃分區(qū)間
通過數(shù)據(jù)處理與分析結(jié)果可知,土壤有機(jī)質(zhì)、全氮、有效磷和速效鉀4個(gè)指標(biāo)樣本數(shù)據(jù)連續(xù)且符合正態(tài)分布,3.1.1部分方法,以5%的變異系數(shù)為跨度劃分監(jiān)測控制層級,采用均值(equal interval)方式確定監(jiān)測層級劃分區(qū)間,具體見表1。
表1 連續(xù)樣本數(shù)據(jù)監(jiān)測層級及劃分區(qū)間
由表1可以看出變異系數(shù)越大,監(jiān)測控制區(qū)層級越多,其中有效磷變異系數(shù)最大,為29.31%,監(jiān)測控制區(qū)劃分為6級;速效鉀變異系數(shù)為17.72,劃分為4級;全氮變異系數(shù)為14.29%,劃分為3級;土壤有機(jī)質(zhì)變異系數(shù)為14.13%,劃分為3級。
2)斷續(xù)樣本數(shù)據(jù)控制層級及劃分區(qū)間
通過數(shù)據(jù)處理與分析耕層厚度、土壤容重和障礙層厚度3個(gè)指標(biāo)樣本數(shù)據(jù)斷續(xù)分布,因此采用可視離散化法,剔除監(jiān)測指標(biāo)含量空白區(qū)產(chǎn)生的無效區(qū)間,將指標(biāo)含量集中分布區(qū)作為監(jiān)測控制區(qū),由于點(diǎn)位數(shù)據(jù)經(jīng)插值后為連續(xù)值,故取中間值作為層級劃分區(qū)間端點(diǎn)值。進(jìn)而確定控制層級及層級劃分區(qū)間,具體見表2。
表2 斷續(xù)樣本數(shù)據(jù)監(jiān)測層級及劃分區(qū)間
由表2可以看出耕層厚度監(jiān)測層級為5級,障礙層厚度和土壤容重監(jiān)測層級為4級。
3.2.2 基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)劃分
監(jiān)測控制區(qū)是在給定時(shí)空尺度下,監(jiān)測指標(biāo)在同一監(jiān)測控制區(qū)內(nèi)具有一致性的均質(zhì)區(qū)域,不同監(jiān)測控制區(qū)之間具有明顯區(qū)別。研究基于ARCGIS平臺的空間插值功能,依據(jù)所確定的控制層級及層級區(qū)間,劃分各指標(biāo)監(jiān)測控制區(qū),形成基于監(jiān)測指標(biāo)復(fù)合式控制區(qū),劃分結(jié)果見圖3。
由圖3可知,各指標(biāo)在空間表現(xiàn)為一定的均質(zhì)性和異質(zhì)性,且具有一定分布規(guī)律。有機(jī)質(zhì)含量由東南向西北逐漸增加;全氮含量由南向中上部遞增,由中上向北部遞減;有效磷、速效鉀含量高點(diǎn)值在縣西北部,并以此為中心向四周遞減;障礙層厚度由西南向東北逐漸變??;耕層厚度高點(diǎn)值分布在縣北部、中下部,低點(diǎn)值分布在縣南和中上部;土壤容重指標(biāo)值總體呈現(xiàn)由東北向西南逐漸減少。
圖3 基于監(jiān)測指標(biāo)的復(fù)合式控制區(qū)
3.2.3 確定監(jiān)測控制區(qū)點(diǎn)位數(shù)量
連續(xù)樣本數(shù)據(jù)監(jiān)測點(diǎn)位數(shù)量3.3.1部分研究方法,經(jīng)測算有機(jī)質(zhì)監(jiān)測點(diǎn)位為9個(gè),全氮為10個(gè),有效磷17個(gè),速效鉀為14個(gè)。其中有機(jī)質(zhì)3級控制區(qū)面積分別為615.22、953.75、929.82 km2,各層級理論監(jiān)測點(diǎn)位數(shù)量為2.22、3.44、3.35,經(jīng)取舍分別為2、4、3;全氮3級控制區(qū)面積分別為676.98、916.25、905.55 km2,理論監(jiān)測點(diǎn)數(shù)量為2.71、3.67、3.62,經(jīng)取舍分別為3、4、3;有效磷6級控制區(qū)面積分別為276.22、627.76、853.74、611.47、99.52、30.06 km2,各層級理論監(jiān)測點(diǎn)位數(shù)量為1.88、4.27、5.81、4.16、0.68、0.20,經(jīng)取舍分別為2、4、5、4、1、1;速效鉀4級控制區(qū)面積分別為304.58、792.94、1 154.85、246.43 km2,各層級理論監(jiān)測點(diǎn)位數(shù)量為1.71、4.44、6.47、1.38,經(jīng)取舍分別為2、4、7、1。斷續(xù)樣本數(shù)據(jù)監(jiān)測點(diǎn)位數(shù)量采用3.3.2部分方法,經(jīng)測算分析耕層厚度5級控制區(qū)監(jiān)測點(diǎn)數(shù)量分別為2、3、1、3、2,障礙層厚度4級控制點(diǎn)數(shù)量分別為4、2、3、2,土壤容重4級控制點(diǎn)數(shù)量分別為3、1、4、1,具體見表3。
由表3可以看出連續(xù)樣本數(shù)據(jù)中有效磷監(jiān)測點(diǎn)位數(shù)最多為17個(gè),其次依次為速效鉀為14個(gè),全氮為10個(gè),有機(jī)質(zhì)9個(gè);結(jié)合表1可以看出,對于連續(xù)樣本數(shù)據(jù)變異系數(shù)越大,監(jiān)測點(diǎn)位數(shù)量越多。斷續(xù)樣本數(shù)據(jù)耕層厚度和障礙層厚度均為11個(gè),土壤容重為9個(gè),結(jié)合表2、圖3可以看出,監(jiān)測層級越多、空間均質(zhì)化程度越大,監(jiān)測點(diǎn)位越多。
表3 監(jiān)測指標(biāo)控制區(qū)層級監(jiān)測點(diǎn)位數(shù)量
3.2.4 監(jiān)測點(diǎn)位布設(shè)、代表性檢驗(yàn)與對比分析
1)監(jiān)測點(diǎn)位布設(shè)
基于ARCGIS平臺,通過Arctoolbox工具箱的Analysis Tools模塊的Identity功能逐一疊加監(jiān)測指標(biāo)監(jiān)測控制區(qū)與耕地圖層,遵循代表性、最小數(shù)據(jù)集等原則,依據(jù)各監(jiān)測指標(biāo)控制區(qū)空間形態(tài)、層級點(diǎn)位數(shù)量布設(shè)監(jiān)測點(diǎn)位,具體見圖4、表4。
2)監(jiān)測點(diǎn)代表性檢驗(yàn)
借助SPSS統(tǒng)計(jì)軟件,以耕地地力調(diào)查與質(zhì)量評價(jià)數(shù)據(jù)為檢驗(yàn)對比對象,對所布設(shè)監(jiān)測點(diǎn)位數(shù)據(jù)進(jìn)行代表性檢驗(yàn),其中均值標(biāo)準(zhǔn)誤反應(yīng)數(shù)據(jù)離散程度,中值、偏度系數(shù)、峰度系數(shù)反應(yīng)數(shù)據(jù)分布情況,全距、最小值、最大值反應(yīng)數(shù)據(jù)范圍和跨度,結(jié)果如表5所示。
圖4 耕地質(zhì)量監(jiān)測點(diǎn)分布
由表5可以看出耕地地力調(diào)查與質(zhì)量評價(jià)數(shù)據(jù)和監(jiān)測指標(biāo)樣點(diǎn)數(shù)據(jù)有機(jī)質(zhì)、全氮、有效磷、速效鉀、耕層厚度、障礙層厚度、土壤容重指標(biāo)含量的最大值、最小值、全距較一致,表明數(shù)據(jù)范圍和跨度較一致;均值標(biāo)準(zhǔn)誤差別不大,表明數(shù)據(jù)離散程度較一致;中值、偏度系數(shù)、峰度系數(shù)差別不明顯,表明數(shù)據(jù)分布情況較一致,因此監(jiān)測指標(biāo)樣點(diǎn)對耕地地力調(diào)查與評價(jià)數(shù)據(jù)代表性較好,以該體系作為克山縣耕地質(zhì)量監(jiān)測點(diǎn)位比較合理。
表4 監(jiān)測指標(biāo)點(diǎn)位分布
表5 監(jiān)測點(diǎn)代表性檢驗(yàn)
3)優(yōu)化前后方案對比
研究從監(jiān)測指標(biāo)數(shù)量、點(diǎn)位數(shù)量、測試化驗(yàn)次數(shù)、費(fèi)用和土壤消耗量5個(gè)方面對優(yōu)化前后的監(jiān)測方案進(jìn)行對比,具體見表6。
表6 優(yōu)化前后方案比較
注:經(jīng)咨詢監(jiān)測費(fèi)用按照200元/指標(biāo)/次計(jì)算,測試化驗(yàn)土壤消耗量以50 g/次/指標(biāo)計(jì)算。
Note:The cost of consultation monitoring was calculated at 200 yuan/index/ number, and the soil consumption was calculated at 50g/time/index
由表6可以看出,基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的監(jiān)測點(diǎn)位布設(shè)方案實(shí)現(xiàn)了對有機(jī)質(zhì)、障礙層厚度、耕層厚度、全氮、有效磷、速效鉀、土壤容重、地形坡度、地表巖石露頭度、土壤pH值、灌溉保證率11個(gè)監(jiān)測指標(biāo)、200個(gè)點(diǎn)位、2 200次測試化驗(yàn),需消耗110 kg土壤樣本量,44萬元監(jiān)測費(fèi)用的耕地質(zhì)量監(jiān)測方案,優(yōu)化至需對有機(jī)質(zhì)、障礙層厚度、耕層厚度、全氮有效磷、速效鉀、土壤容重7個(gè)指標(biāo)、30個(gè)點(diǎn)位、81 次測試化驗(yàn)、4.05 kg土壤樣本消耗量、1.62萬元監(jiān)測費(fèi)用。
研究提出了基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)方法,與其他方法比較,該方法充分考慮到監(jiān)測點(diǎn)位相對于監(jiān)測指標(biāo)的下位關(guān)系,以具體指標(biāo)作為邏輯起點(diǎn),形成基于監(jiān)測指標(biāo)復(fù)合式控制區(qū),實(shí)現(xiàn)所布設(shè)的監(jiān)測點(diǎn)位與監(jiān)測指標(biāo)的均質(zhì)化和異質(zhì)化程度相符,從而保證所布設(shè)監(jiān)測點(diǎn)位空間布局合理,避免監(jiān)測點(diǎn)位、監(jiān)測點(diǎn)位對應(yīng)監(jiān)測指標(biāo)冗余的弊端。
本文以克山縣為例對基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的監(jiān)測點(diǎn)位布設(shè)方法進(jìn)行應(yīng)用,將全縣原需對有機(jī)質(zhì)、障礙層厚度、耕層厚度、全氮、有效磷、速效鉀、土壤容重、地形坡度、地表巖石露頭度、土壤pH值、灌溉保證率11個(gè)監(jiān)測指標(biāo)、200個(gè)點(diǎn)位、2 200次測試化驗(yàn),需消耗110 kg土壤樣本量,44萬元監(jiān)測費(fèi)用的耕地質(zhì)量監(jiān)測方案,優(yōu)化至需對有機(jī)質(zhì)、障礙層厚度、耕層厚度、全氮、有效磷、速效鉀、土壤容重7個(gè)指標(biāo)、30個(gè)點(diǎn)位、81次測試化驗(yàn)、4.05 kg土壤樣本消耗量、1.62萬元監(jiān)測費(fèi)用,且研究布設(shè)監(jiān)測點(diǎn)位數(shù)據(jù)對耕地地力調(diào)查與質(zhì)量評價(jià)數(shù)據(jù)具有較好的代表性,優(yōu)化后方案在監(jiān)測針對性、便捷性和監(jiān)測成本表現(xiàn)出明顯的優(yōu)越性,有效的提高了耕地質(zhì)量監(jiān)測效率。
克山縣未有長期監(jiān)測點(diǎn)位,因此研究僅依據(jù)各監(jiān)測指標(biāo)空間分布特性布設(shè)監(jiān)測點(diǎn)位,并未考慮時(shí)間維度指標(biāo)變化情況。后續(xù)應(yīng)對其開展長期監(jiān)測,并根據(jù)監(jiān)測指標(biāo)在時(shí)間序列上的變異情況,進(jìn)一步優(yōu)化監(jiān)測點(diǎn)位。
對于異常值該文選擇剔除,但是考慮到異常值可能為真實(shí)值的原因,下一步應(yīng)增加異常監(jiān)測信息,進(jìn)一步深入研究耕地質(zhì)量監(jiān)測體系。同時(shí),為保證監(jiān)測成果的精確性,建議將一次監(jiān)測方式變革為三次監(jiān)測取均值。此外,對于未有耕地質(zhì)量相關(guān)成果的地區(qū),該技術(shù)方法并不適用。
[1] 姚成勝,滕毅,黃琳.中國糧食安全評價(jià)指標(biāo)體系構(gòu)建及實(shí)證分析[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):1-10. Yao Chengsheng, Teng Yi, Huang Lin. Evaluation index system construction and empirical analysis on food security in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 1-10. (in Chinese with English abstract)
[2] 吳大放,董玉祥,劉艷艷,等.我國耕地?cái)?shù)量、質(zhì)量與空間變化研究綜述[J].熱帶地理,2010,30(2):108-113. Wu Dafang, Dong Yuxiang, Liu Yanyan, et al. Review on the research of quantity, quality and spatial change of cultivated land in China[J]. Tropical Geography, 2010, 30(2): 108-113. (in Chinese with English abstract)
[3] Brown Lester. Who Will Feed China Wake-Up Call for a Small Planet [M]. New York: Norton for the World Watch Institute, 1995.
[4] 相慧,孔祥斌,武兆坤,等.中國糧食主產(chǎn)區(qū)耕地生產(chǎn)能力空間分布特征[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):235-244. Xiang Hui, Kong Xiangbin, Wu Zhaokun, et al. Spatial distribution characteristics of potential productivity of arable land in main crop production area in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 235-244. (in Chinese with English abstract)
[5] Finger R. Food security: Close crop yield gap[J]. Nature, 2011, 480(7375): 39-39.
[6] 劉殿偉.過去50年三江平原土地利用/覆被變化的時(shí)空特征與環(huán)境效應(yīng)[D].長春:吉林大學(xué),2006. Liu Dianwei. Land Use/Cover Change and Its Environmental Effects in Sanjiang Plain in the Past 50 years[D]. Changchun: Jilin University, 2006. (in Chinese with English abstract)
[7] 李宇軒.中國化肥產(chǎn)業(yè)政策對糧食生產(chǎn)的影響研究[D].北京:中國農(nóng)業(yè)大學(xué),2014. Li Yuxuan. The Research on Effect of Fertilizer Industry Policy on Grain Production in China[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[8] 王玥.中國高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)研究[D].長沙:湖南農(nóng)業(yè)大學(xué),2014. Wang Yue. Study on Construction of the High Standard Farmland in China[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese with English abstract)
[9] 張玉臻,孔祥斌,劉炎,等.基于標(biāo)準(zhǔn)樣地的省級耕地質(zhì)量監(jiān)測樣地布設(shè)方法:以內(nèi)蒙古自治區(qū)為例[J].資源科學(xué),2016,38(11):2037-2048. Zhang Yuzhen, Kong Xiangbin, Liu Yan, et al. Layout method of monitoring samples of cultivated land at the provincial level based on standard plots in Inner Mongolia[J]. Resources Science, 2016, 38(11): 2037-2048. (in Chinese with English abstract)
[10] 肖建英,譚術(shù)魁.中國糧食產(chǎn)量省級尺度下的空間分異規(guī)律[J].中國土地科學(xué),2013,27(8):26-32. Xiao Jianying, Tan Shukui. Regularity of the spatial variation of grain yield at provincial scale in China [J]. China Land Sciences, 2013, 27(8): 26-32. (in Chinese with English abstract)
[11] 付國珍,擺萬奇.耕地質(zhì)量評價(jià)研究進(jìn)展及發(fā)展趨勢[J].資源科學(xué),2015,37(2):226-236. Fu Guozhen, Bai Wanqi. Advances and prospects of evaluating cultivated land quality[J]. Resources Science, 2015, 37(2): 226-236. (in Chinese with English abstract)
[12] 王婷,歐名豪,劉瓊,等.中國耕地有效供給評價(jià)及影響因素分析[J].中國?人口資源與環(huán)境,2011,21(11):73-78. Wang Ting, Ou Minghao, Liu Qiong, et al. Evaluation on effective supply and influencing factors of China’s cultivated land[J]. China Population, Resources and Environment, 2011, 21(11): 73-78. (in Chinese with English abstract)
[13] 封志.耕地與糧食安全戰(zhàn)略:藏糧于土,提高中國土地資源的綜合生產(chǎn)能力[J].地理學(xué)與國土研究,2000,16(3):1-5. Feng Zhi. The stratagem of cultivated land and food supplies security: Storing food in land-raising the comprehensive productivity of land resource of China[J]. Geography and Territorial Research, 2000, 16(3): 1-5. (in Chinese with English abstract)
[14] 陳印軍,王晉臣,肖碧林,等.我國耕地質(zhì)量變化態(tài)勢分析[J].中國農(nóng)業(yè)資源與區(qū)劃,2011,32(2):1-5. Chen Yinjun, Wang Jinchen, Xiao Bilin, et al. Trends in the change of cultivated land quality of China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2011,32 (2): 1-5. (in Chinese with English abstract)
[15] 陳百明,王秀芬.耕地質(zhì)量建設(shè)的生態(tài)與環(huán)境理念[J].中國農(nóng)業(yè)資源與區(qū)劃,2013,34(1):1-4. Chen Baiming, Wang Xiufen. The ecological and environmental idea of cultivated land quality construction[J]. Chinese Journal of Agricultural Resources and Regional Planning. 2013, 34(1): 1-4. (in Chinese with English abstract)
[16] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616-620.
[17] 孫宏嶺,韓國山.我國糧食安全的主要指標(biāo)與保障途徑研究[J].糧食科技與經(jīng)濟(jì),2015,40(1):5-7. Sun Hongling, Han Guoshan. The main indicators and guarantee of food security in China[J]. Food Echnology and Economy, 2015, 40(1): 5-7. (in Chinese with English abstract)
[18] 胡曉濤,吳克寧,馬建輝,等.北京市大興區(qū)耕地質(zhì)量等級監(jiān)測控制點(diǎn)布設(shè)[J].資源科學(xué),2012,34(10):1891-1897. Hu Xiaotao, Wu Kening, Ma Jianhui, et al. Control points for quality of arable land quality monitoring in Daxing district Beijing[J]. Resources Science, 2012, 34(10): 1891-1897. (in Chinese with English abstract)
[19] 王倩,尚月敏,馮銳,等.基于變異函數(shù)的耕地質(zhì)量等別監(jiān)測點(diǎn)布設(shè)分析:以四川省中江縣和北京市大興區(qū)為例[J].中國土地科學(xué),2012(8):80-86. Wang Qian, Shang Yuemin, Feng Rui, et al. Study on location sampling for monitoring the quality of arable land based on variation functions: Case studies in Zhongjiang County and Daxing district[J]. China Land Sciences, 2012(8): 80-86. (in Chinese with English abstract)
[20] 吳克寧,焦雪瑾,梁思源,等.基于標(biāo)準(zhǔn)樣地國家級匯總的耕地質(zhì)量動(dòng)態(tài)監(jiān)測點(diǎn)構(gòu)架研究[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):74-79. Wu Kening, Jiao Xuejin, Liang Siyuan,et al. Framework of the arable-land quality dynamic monitoring sites through national gathering of standard farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 74-79. (in Chinese with English abstract)
[21] 徐明崗.耕地質(zhì)量調(diào)查監(jiān)測與評價(jià)意義重大[N].農(nóng)民日報(bào),2016-07-28(003).
[22] 孫亞彬,吳克寧,胡曉濤,等.基于潛力指數(shù)組合的耕地質(zhì)量等級監(jiān)測布點(diǎn)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):245-254, 302. Sun Yabin, Wu Kening, Hu Xiaotao, et al. Layout method for monitoring quality level of arable land based on combination of potential index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 245-254, 302. (in Chinese with English abstract)
[23] 祝錦霞,徐保根,章琳云.基于半方差函數(shù)與等別的耕地質(zhì)量監(jiān)測樣點(diǎn)優(yōu)化布設(shè)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):254-261. Zhu Jinxia, Xu Baogen, Zhang Linyun. Optimization layout method of monitoring sample points of cultivated land quality based on semi-variance analysis and grade combination[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 254-261. (in Chinese with English abstract)
[24] 史文嬌,岳天祥,石曉麗,等.土壤連續(xù)屬性空間插值方法及其精度的研究進(jìn)展[J].自然資源學(xué)報(bào),2012,27(1):163-175. Shi Wenjiao, Yue Tianxiang, Shi Xiaoli, et al. Research progress in soil property interpolators and their accuracy[J]. Journal of Natural Resources, 2012, 27(1): 163-175. (in Chinese with English abstract)
[25] 錢樂祥,許叔明,秦奮,等.GIS支持的土壤貧瘠化區(qū)域分異研究:以福建為例[J].地理科學(xué),2002,22(1):85-90. Qian Lexiang, Xu Shuming, Qin Fen, et al. Regional differences of soil impoverishment supported by GIS: A case study of Fujian province[J]. Scientia Geogaphica Sinica, 2002, 22(1):85-90. (in Chinese with English abstract)
[26] 曾鋒,張金池,朱麗珺.下蜀櫟林土壤空間變異性及其樣本容量的確定[J].南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2005,29(2):51-53. Zeng Feng, Zhang Jinchi, Zhu Lijun. Research on spatial variability of quercus variabilis forest soil on Xiashu loess and determining number of sample[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2005, 29(2): 51-53. (in Chinese with English abstract)
[27] 李世清,高亞軍,李生秀.土壤養(yǎng)分的空間變異性及確定樣本容量的研究[J].土壤與環(huán)境,2000,9(1):56-59. Li Shiqing, Gao Yajun, Li Shengxiu. Study on spatial variability of soil nutrient and determining number of sample[J]. Soil and Environmental Sciences, 2000, 9(1): 56-59. (in Chinese with English abstract)
[28] 中國人民共和國農(nóng)業(yè)部.NY/T 1749-2009南方地區(qū)耕地土壤肥力診斷與評價(jià)[S].
[29] 毛朝明,蔣靈華,吳恒祝,等.松陽縣毛竹林土壤養(yǎng)分貧瘠化評價(jià)[J].浙江林業(yè)科技,2016,36(1):59-63.
[30] 賴陽丹. 基于三種有機(jī)物料施用的宅基地復(fù)墾土壤氮素組分動(dòng)態(tài)變化研究[D].雅安:四川農(nóng)業(yè)大學(xué),2016. Lai Yangdan. Research on Dynamic Changes of Nitrogen Components in Reclaimed Soil Based on Three Organic Materials Fertilized Homesteads[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese with English abstract)
楊厚翔,雷國平,徐 秋. 基于監(jiān)測指標(biāo)復(fù)合式控制區(qū)的耕地質(zhì)量監(jiān)測點(diǎn)布設(shè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):278-286. doi:10.11975/j.issn.1002-6819.2017.19.036 http://www.tcsae.org
Yang Houxiang, Lei Guoping, Xu Qiu. Farmland quality monitoring point layout method based on compound control zone of monitoring index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 278-286. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.036 http://www.tcsae.org
Farmland quality monitoring point layout method based on compound control zone of monitoring index
Yang Houxiang, Lei Guoping※, Xu Qiu
(110169,)
The purpose of this research was to explore the layout method of the quality monitoring points of cultivated land, and to solve the unreasonable problem of monitoring point space layout. In this paper, the data source of the research was from the results of farmland productivity survey and quality evaluation. The SPSS software was used to establish a histogram of the number of indicators, and whether the data were continuous and were in a normal distribution was intuitively evaluated. The continuous sample data were used to determine the level and hierarchy of the monitored control area by the variation coefficient method, and according to the error theory, combined with the area control principle, the total number of monitoring points was determined and allocated into different zones according to the monitoring control zone area. For discontinuous data, if it was determined that the variation coefficient method in the monitoring control area would result in an invalid monitoring control zone level, in order to avoid this situation, visual discretization method was used to determine the level of monitoring control. The area of concentration of the target concentration was used as the monitoring control area; the data of the monitoring points after interpolation were continuous, therefore, the intermediate value was used as the endpoint value of the interval of monitoring control zone. The compound control area based on the monitoring index was divided by the space interpolation method of Kriging. The locations of the quality monitoring points of cultivated land were based on the spatial form of the control area of the compound monitoring index. The sampling theory was used to carry out a representative analysis of the monitoring points. 1) The research puts forward farmland quality monitoring point layout method based on compound control zone of monitoring index. Compared with other methods, the method takes full account of the lower relationship of the monitoring points; with specific indicators as a logical starting point, a composite control area was formed based on monitoring indicators; the degrees of homogenization and heterogeneity of the monitoring points were consistent with the monitoring indicators, which ensured that the space layout of the monitoring points was reasonable and avoided the disadvantage of redundancy for the monitoring point positions and the corresponding monitoring indices at monitoring point positions. 2) This paper takes Keshan County as an example to apply the method of monitoring point. The original program needs 11 monitoring indicators including organic matter, barrier layer thickness, plough thickness, total nitrogen, available phosphorus, available potassium, soil bulk density, slope, surface rock outcrop, soil pH value, and irrigation guarantee rate, as well as a total of 200 monitoring points and 2 200 tests, in which 110 kg soil sample and the cost of 440 000 yuan will be consumed. But after the optimization with this method, only 7 monitoring indicators are needed, including organic matter, total nitrogen, available phosphorus, available potassium, plough thickness, barrier thickness, and soil bulk density, and during the investigation process, 30 monitoring points and 81 tests are involved, along with only 4.05 kg soil sample and 16 200 yuan which will be consumed. And the monitoring point data in the layout have a good representation for the data of farmland productivity survey and quality evaluation of cultivated land. The optimized plan shows obvious advantages in monitoring pertinence, convenience and monitoring cost, and effectively improves the quality monitoring efficiency of cultivated land. This method is feasible and has good application value. It can obtain precise and a large amount of information by means of less input, which can be used for the reference for the optimization of land quality monitoring points.
land use; monitoring; land quality; land information; monitoring point layout; compound control area
10.11975/j.issn.1002-6819.2017.19.036
F301.21
A
1002-6819(2017)-19-0278-09
2017-06-23
2017-09-12
國家自然科學(xué)基金項(xiàng)目(41671520);黑龍江省國土資源科研項(xiàng)目(201411);黑龍江省國土資源科研項(xiàng)目(201414)
楊厚翔,黑龍江哈爾濱人,博士研究生,主要研究方向?yàn)橥恋乩门c規(guī)劃。Email:634548011@qq.com
※通信作者:雷國平,黑龍江青岡人,教授,博士生導(dǎo)師,主要研究方向?yàn)橥恋乩靡?guī)劃與土地管理。Email:guopinglei@126.com