張海燕,李思遠(yuǎn),王志堅,李 明,于 超,任爍金,孫 柯,李國祥,王建昕
?
多缸柴油機(jī)汽油均質(zhì)混合氣引燃的排放特性
張海燕1,李思遠(yuǎn)2,王志堅1,李 明1,于 超1,任爍金3,孫 柯2,李國祥2※,王建昕3
(1. 濰柴動力股份有限公司,濰坊261061;2. 山東大學(xué)能源與動力工程學(xué)院,濟(jì)南250061; 3. 清華大學(xué)汽車安全與節(jié)能國家重點實驗室,北京100084)
為探究均質(zhì)引燃技術(shù)對柴油機(jī)整機(jī)排放特性的影響,該文在某六缸柴油機(jī)上,實現(xiàn)了均質(zhì)引燃模式的多缸運行。試驗以轉(zhuǎn)速1 438 r/min、平均指示壓力0.7 MPa的工況為代表,通過分析該工況下汽油比例與廢氣再循環(huán)EGR(exhaust gas recirculation)率對多缸均質(zhì)引燃的影響,確立了汽油比例與EGR率優(yōu)化的基本原則,并以此為依據(jù)完成整機(jī)ESC(European steady state cycle)測試。汽油比例及EGR率的分析指出:汽油比例高達(dá)90%時燃燒相位仍可有效控制;增大汽油比例可以帶來NOx與炭煙(Soot)排放同時降低的顯著效應(yīng),但汽油比例過大會導(dǎo)致最大壓升率陡增;隨EGR率增大,作為燃油主體的汽油均質(zhì)混合氣燃燒改善,適量EGR的引入可以優(yōu)化缸內(nèi)燃燒;隨EGR率增大,NOx排放減少而Soot基本不變,可使用大比例EGR以進(jìn)一步降低NOx排放。ESC測試結(jié)果最終表明:在僅借助柴油氧化催化轉(zhuǎn)化器DOC(diesel oxidation catalyst)的情況下,NOx、一氧化碳CO(carbon monoxide)與總碳?xì)銽HC(total hydrocarbon)加權(quán)排放低至1.89、0.90、0.12 g/(kW·h),分別滿足國Ⅴ標(biāo)準(zhǔn)2.00、1.50、0.46 g/(kW·h)的限值,由各點不透光煙度與加權(quán)系數(shù)乘積之和計算的Soot加權(quán)值也處于0.034 m-1的極低水平。多缸均質(zhì)引燃對降低柴油機(jī)整機(jī)排放成效顯著,具備穩(wěn)態(tài)測試全面達(dá)到國Ⅴ排放標(biāo)準(zhǔn)的潛力。
柴油機(jī);排放控制;試驗;均質(zhì)引燃;多缸運行;ESC測試
傳統(tǒng)壓燃式柴油機(jī),受以擴(kuò)散燃燒為主的固有燃燒模式所限,NOx與Soot之間存在難以克服的相悖關(guān)系。為滿足排放法規(guī),僅通過機(jī)內(nèi)凈化技術(shù)已無法實現(xiàn)歐Ⅳ及以上階段要求,只能匹配復(fù)雜的后處理裝置[1-3],既增加了制造成本與使用成本,也造成了燃油、尿素等附加能源與物質(zhì)的消耗,一定程度上損壞了柴油機(jī)經(jīng)濟(jì)性好的固有優(yōu)勢。
HCCI(homogeneous charge compressed ignition)作為一種先進(jìn)的燃燒理念,同時具備高熱效率、低NOx、低Soot排放的優(yōu)勢,理論上可以解決上述問題。但其燃燒相位、燃燒速度難以控制,只能在較窄的工況范圍內(nèi)運行[4-6],因此并未得到實際應(yīng)用。為實現(xiàn)內(nèi)燃機(jī)可控的高效、清潔燃燒[7-8],各國學(xué)者圍繞均質(zhì)混合氣引燃做了大量研究,并取得了顯著成果。威斯康星大學(xué)活性可控壓縮著火燃燒模式(RCCI,reactivity controlled compressed ignition)[9-14],通過改變?nèi)加突钚钥刂迫紵辔唬ㄟ^燃油活性分層控制放熱規(guī)律,部分試驗工況下NOx排放量低于歐Ⅵ限值而Soot近零排放。清華大學(xué)汽油均質(zhì)混合氣柴油引燃燃燒模式(HCII,homogeneous charge induced ignition),通過引燃柴油噴射時刻控制燃燒始點,通過引燃柴油噴射量和分布形態(tài)控制燃燒速率,實現(xiàn)了對燃燒相位的有效控制,獲得了NOx與Soot排放同時降低而基本不出現(xiàn)相悖關(guān)系的效果,指示熱效率在部分工況下也超過傳統(tǒng)柴油機(jī)水平[15-17]。此外,美國西南研究院[18-19]、天津大學(xué)[20-22]、上海交通大學(xué)[23-24]、伯明翰大學(xué)[25]等,在試驗工況下也均取得了NOx與Soot排放同時大幅降低的顯著成果。但上述研究均局限在單缸機(jī)上進(jìn)行,或試驗單缸機(jī)由多缸機(jī)改造而成,在進(jìn)排氣狀況、EGR(exhaust gas recirculation)-增壓器耦合效應(yīng)、機(jī)械損失等方面與發(fā)動機(jī)實際工作狀態(tài)存在一定差異。
為反映均質(zhì)引燃技術(shù)的真實特性,本文在一臺產(chǎn)品化的六缸柴油機(jī)上實現(xiàn)了均質(zhì)引燃模式的多缸運行,通過典型工況探究了汽油比例與EGR率對多缸均質(zhì)引燃基本特性的影響,并據(jù)此進(jìn)行參數(shù)優(yōu)化完成整機(jī)ESC(European steady state cycle)測試。本文試驗條件更加接近多缸機(jī)實際工作狀況,以期為均質(zhì)引燃技術(shù)的產(chǎn)品化應(yīng)用提供參考。
試驗發(fā)動機(jī)由某六缸增壓柴油機(jī)改造而成,一至六缸進(jìn)氣歧管處加裝汽油噴嘴、使用ECKA公司開放式雙燃料電子控制單元ECU(electronic control unit)替代原機(jī)ECU,主要參數(shù)如表1所示。經(jīng)改造后,汽油噴射時刻、噴射脈寬,柴油噴射壓力、噴射次數(shù)、噴射時刻、噴射脈寬,增壓器渦輪流通截面,EGR閥開度等,均可通過雙燃料ECU靈活設(shè)定。
表1 試驗發(fā)動機(jī)主要參數(shù)
試驗系統(tǒng)如圖1所示。發(fā)動機(jī)第一、第六缸均裝有缸壓傳感器。燃燒特性分析,使用AVL公司INDICOM621型燃燒分析儀(采樣間隔0.1 °CA)。氣態(tài)排放物NOx、CO、THC及EGR率的測量,使用HORIBA公司MEXA-1600DEGR型排氣分析儀。Soot排放測量,使用AVL公司439型不透光式煙度計(分辨率2.5×10–3m–1)。
1. 汽油 2. 汽油油耗儀 3. 汽油噴油器 4. 柴油 5. 柴油油耗儀 6. 柴油噴油器 7. 測功機(jī) 8. 缸壓傳感器 9. 角度傳感器 10. 渦輪增壓器 11. EGR冷卻器 12. EGR閥 13. 空氣 14. 空氣質(zhì)量流量計 15. 中冷器 16. 排氣分析 17. 燃燒分析儀 18. 雙燃料ECU
所用主要參數(shù)定義如下:柴油主噴時刻SDMI(start of diesel main injection);CA10、CA50、CA90分別為10%、50%、90%累積放熱量所對應(yīng)的曲軸轉(zhuǎn)角;滯燃期,SDMI至CA10所經(jīng)歷的曲軸轉(zhuǎn)角;燃燒持續(xù)期,CA10至CA90所經(jīng)歷的曲軸轉(zhuǎn)角;最大壓升率,為缸壓曲線斜率的最大值。
汽油比例GR(gasoline ratio),為無量綱量,定義為燃油消耗量中汽油熱量與總?cè)加蜔崃恐?,?/p>
式中g(shù)、d分別為汽油與柴油的燃油消耗量,kg/h;ug、ud分別為汽油與柴油的低熱值,kJ/kg。
平均指示壓力IMEP(indicated mean effective pressure),Pa,計算公式為
式中為缸內(nèi)壓力,Pa;為氣缸容積,m3;s為單缸排量,m3。
平均指示壓力變動系數(shù)COV(coefficient of IMEP variation),計算公式為
式中e是發(fā)動機(jī)有效功率,kW。
試驗過程分兩步進(jìn)行,在=1 438 r/min、IMEP=0.7 MPa工況下驗證各缸工作一致性并完成汽油比例與EGR率探究;匹配DOC(diesel oxidation catalyst)完成整機(jī)ESC測試。由于CA50在燃燒相位中具有典型意義,因此汽油比例與EGR率探究過程中將保持CA50一定,發(fā)動機(jī)試驗參數(shù)設(shè)定如表2所示。
表2 發(fā)動機(jī)試驗參數(shù)設(shè)定(汽油比例與EGR率探究)
注:EGR表示廢氣再循環(huán),下同。
Note: EGR represents exhaust gas recirculation, the same below.
由圖2a可知各缸工作一致性較好,因此,下文基于缸壓傳感器及燃燒分析儀獲得的缸壓、放熱率、CA10、CA50、CA90、IMEP、COV、最大壓升率結(jié)果均取自第一缸數(shù)據(jù),各試驗數(shù)據(jù)如圖2所示。
注:試驗條件:轉(zhuǎn)速1 438 r·min–1、IMEP 0.7 MPa;圖2a中汽油比例為90%;SDMI表示柴油主噴時刻;CA10、CA50、CA90分別表示10%、50%、90%累積放熱量對應(yīng)的曲軸轉(zhuǎn)角,下同。
汽油比例對缸壓與放熱率的影響如圖2b所示。在70%汽油比例內(nèi),放熱率曲線呈現(xiàn)出典型的兩階段燃燒特征。第一階段為柴油在滯燃期內(nèi)形成的可燃混合氣及卷吸入的部分汽油快速燃燒所致,峰值較大但持續(xù)時間較短;第二階段視為柴油的擴(kuò)散燃燒,由于燃燒緩慢、持續(xù)時間較長,峰值小于第一階段。隨汽油比例增大,第一階段峰值位置后移,且第二階段持續(xù)時間縮短。第一階段峰值位置后移,是由于柴油噴射量減少導(dǎo)致引燃面積減小,初期放熱速率降低。第二階段持續(xù)時間縮短,則主要歸因于擴(kuò)散燃燒占比減小。汽油比例超過70%后,兩階段燃燒完全耦合,形成了一個以預(yù)混燃燒為主體的單峰放熱曲線,且峰值大小陡增。隨汽油比例增大,在70%汽油比例內(nèi),缸壓峰值逐步降低且峰值位置后移。超過70%后,由于兩階段燃燒耦合,缸壓峰值轉(zhuǎn)而上升,并超越純柴油水平。
汽油比例對燃燒相位的影響如圖2c所示。隨汽油比例增大,為保持CA50不變,SDMI推后,主噴時刻逐漸靠近上止點,柴油噴入時缸內(nèi)的溫度、壓力逐步升高,故滯燃期縮短。隨汽油比例增大,燃燒持續(xù)期縮短。若以CA50為界將燃燒劃分為前后兩部分,可以看出CA10- CA50變化較小,而CA50-CA90最大減小50.8%,是燃燒持續(xù)期縮短的主導(dǎo)因素,這也與放熱率曲線第二階段持續(xù)時間顯著縮短相一致。CA10-CA50變化較小,是由于雖然引燃面積減小導(dǎo)致初期放熱緩慢,但汽油當(dāng)量比增大又有利于提高引燃后汽油燃燒速度,二者綜合作用導(dǎo)致CA10-CA50變化不大。CA50-CA90大幅減小,則是由于擴(kuò)散燃燒占比減小且兩階段放熱逐步耦合,具有更快的燃燒速度。
汽油比例對有效熱效率與最大壓升率的影響如圖2d所示。隨汽油比例增大,有效熱效率先降低后升高。汽油比例較小時,由于汽油當(dāng)量比低,部分汽油燃燒惡化。一定范圍內(nèi),汽油比例的增大未能有效改善此種情況,反而帶來更多的未燃產(chǎn)物,導(dǎo)致有效熱效率降低。而當(dāng)汽油比例超過臨界點后,在汽油燃燒改善的條件下,隨著燃燒持續(xù)期縮短,有效熱效率增大,最終超越純柴油1.2個百分點。隨汽油比例增大,在70%汽油比例內(nèi),第一階段放熱率峰值位置后移,故最大壓升率降低。汽油比例超過70%后,由于兩階段燃燒完全耦合,最大壓升率陡增,最終達(dá)到0.63 MPa/°CA。
汽油比例對COV與排氣溫度的影響如圖2e所示。隨汽油比例增大,引燃面積減小導(dǎo)致著火不穩(wěn)定,故COV上升。但在0至90%的汽油比例范圍內(nèi),COV始終維持在2%以內(nèi),說明汽油比例高達(dá)90%時燃燒相位仍可有效控制。隨汽油比例增大,排氣溫度降低,發(fā)動機(jī)熱負(fù)荷下降。
汽油比例對NOx與Soot排放的影響如圖3a所示。隨汽油比例增大,NOx排放大幅降低,在90%汽油比例下NOx排放低至0.79 g/(kW·h),相比純柴油降低了78%。均質(zhì)引燃模式下,最高燃燒溫度出現(xiàn)在柴油油束區(qū)域,而NOx的生成也集中在該區(qū)域[26-28]。隨著柴油當(dāng)量比降低,由柴油引發(fā)的初期放熱減緩,此外汽油汽化吸熱進(jìn)氣溫度降低,均導(dǎo)致最高燃燒溫度下降,NOx排放減少。隨汽油比例增大,Soot排放初期小幅上升,超過30%汽油比例后轉(zhuǎn)而大幅降低,至90%汽油比例時達(dá)到0.023 m–1,僅為純柴油的32.3%。Soot排放初期上升,是由于滯燃期縮短加強了柴油因局部缺氧而生成Soot的條件。而汽油比例超過30%后,柴油的有效減少使得預(yù)混燃燒占據(jù)主導(dǎo),因此Soot排放降低。
汽油比例對CO與THC排放的影響如圖3b所示。隨汽油比例增大,CO排放先上升后下降。同有效熱效率的作用原理類似,僅當(dāng)汽油混合氣當(dāng)量比超過臨界點后,汽油比例增大才能有效改善汽油燃燒。隨汽油比例增大,THC排放一直上升。THC排放主要來源于狹隙效應(yīng)與容積淬熄。同點燃機(jī)類似,壓縮行程中被擠入燃燒室縫隙的汽油混合氣即成為THC排放的重要來源。同時,由于稀薄燃燒的特點,汽油混合氣易發(fā)生容積淬熄生成THC。總體而言,均質(zhì)引燃模式的CO與THC排放水平遠(yuǎn)高于傳統(tǒng)柴油機(jī),而由圖2e可知,渦后排氣溫度最低為535 K,滿足DOC起燃要求[29],因此均質(zhì)引燃模式的CO與THC排放問題可藉由DOC解決。
注:不透光式煙度計測量結(jié)果為光吸收系數(shù),m–1;THC表示總碳?xì)?;轉(zhuǎn)速為1 438 r·min–1;平均指示壓力為0.7 MPa,下同。
EGR率對燃燒相位的影響如圖4a所示。隨EGR率增大,滯燃期縮短,但在EGR率超過30%后轉(zhuǎn)而上升。EGR中冷后溫度顯著高于增壓空氣中冷后溫度,二者混合導(dǎo)致進(jìn)氣溫度提高,故滯燃期縮短。但在EGR率超過30%后,氧氣體積分?jǐn)?shù)降低的效應(yīng)對柴油影響顯著,滯燃期轉(zhuǎn)而增長。隨EGR率增大,CA10-CA50縮短,CA50-CA90增大。由于稀薄燃燒的特點,EGR的引入反而提高了汽油混合氣當(dāng)量比,汽油燃燒改善,因此CA10- CA50縮短。在汽油燃燒改善前期耗氧量增加的條件下,惰性氣體對柴油擴(kuò)散燃燒的稀釋作用進(jìn)一步加劇,CA50- CA90持續(xù)時間增長。隨EGR率增大,在30%EGR率內(nèi),燃燒持續(xù)期基本不變;至40%EGR率時,由于CA50-CA90增幅顯著,燃燒持續(xù)期略有增長。
EGR率對燃燒效率與有效熱效率的影響如圖4b所示。隨EGR率增大,作為燃油主體的汽油燃燒改善、燃燒速度加快,因此燃燒效率與有效熱效率上升。但在EGR率超過30%后,由于柴油擴(kuò)散燃燒減慢的效應(yīng)顯著,燃燒持續(xù)期增長導(dǎo)致有效熱效率降低,因此最大EGR率應(yīng)控制在30%左右。
EGR率對NOx與Soot排放的影響如圖5a所示。隨EGR率增大,NOx排放大幅降低,在40%EGR率下NOx排放低至1.42 g/(kW·h),較未引入EGR時降幅高達(dá)76%。EGR的引入減慢了柴油的燃燒速度,故最高燃燒溫度降低、NOx排放減少。隨EGR率增大,Soot排放基本不變,始終維持在0.035 m–1的極低水平。Soot的生成集中在柴油的擴(kuò)散燃燒階段,由于汽油比例高達(dá)70%,預(yù)混燃燒占據(jù)主導(dǎo)地位,故Soot排放始終處于極低水平。
EGR率對CO與THC排放的影響如圖5b所示。CO與THC排放主要來源于汽油混合氣的不完全燃燒,隨EGR率增大,汽油燃燒改善,二者同時降低,較未引入EGR時降幅均超過50%,這也是燃燒效率提高的直接證明。
注:汽油比例為70%。
圖5 EGR率對排放特性的影響
由前述分析可知,汽油比例與EGR率的設(shè)定應(yīng)在滿足最大壓升率及有效熱效率的前提下盡可能增大。本節(jié)將在最大壓升率不超過0.6 MPa/°CA、有效熱效率不低于純柴油模式的限制條件下,基于此兩項參數(shù)優(yōu)化完成整機(jī)ESC測試,測試過程依據(jù)GB17691-2005[30]進(jìn)行,兩參數(shù)取值如表3所示。同時,為解決CO與THC排放過高的問題,發(fā)動機(jī)將匹配DOC裝置。
ESC測試各工況主要參數(shù)如表3所示,各工況單點排放如圖6所示。為對表征Soot排放的不透光煙度進(jìn)行整體衡量,Soot加權(quán)值由式(7)計算
式中Soot與WF分別表示第工況的Soot排放值與加權(quán)系數(shù),S表示對ESC所有工況進(jìn)行求和,WF值見表3。
由ESC測試結(jié)果知,各工況單點排放基本位于國Ⅴ限值內(nèi),NOx、CO與THC加權(quán)排放分別低至1.89、0.90、0.12 g/(kW·h),均滿足國Ⅴ標(biāo)準(zhǔn),Soot加權(quán)值也處于0.034 m–1的極低水平??梢?,多缸均質(zhì)引燃對降低柴油機(jī)整機(jī)排放成效顯著。
表3 ESC測試各工況參數(shù)設(shè)定
注:1. ESC表示歐洲穩(wěn)態(tài)測試循環(huán),下同;2. A25表示A轉(zhuǎn)速下25%負(fù)荷點,其余含義相同。
Note: 1. ESC represents European steady state cycle, similarly hereinafter; 2. A25 represents the engine operation at 25% of full load and speed A. Others are the same.
注:怠速工況下發(fā)動機(jī)不輸出功率,因此圖中所示NOx、CO與THC的怠速排放為質(zhì)量流量。
1)汽油比例增大,預(yù)混燃燒占比增加,放熱率曲線由預(yù)混-擴(kuò)散燃燒分界明顯的雙峰放熱,變?yōu)橐灶A(yù)混燃燒為主體的單峰放熱。
2)汽油比例90%時燃燒相位仍可有效控制。增大汽油比例可以帶來NOx與Soot排放同時降低的成效,但汽油比例過大會導(dǎo)致最大壓升率陡增,汽油比例應(yīng)低于90%。
3)適量EGR(exhaust gas recirculation)的引入使得作為燃油主體的汽油均質(zhì)混合氣燃燒改善,燃燒效率與有效熱效率同時上升,但EGR率過大會導(dǎo)致柴油燃燒惡化的效應(yīng)凸顯,最大EGR率應(yīng)控制在30%左右。
4)隨EGR率增大,NOx排放大幅減少而Soot排放基本不變,多缸均質(zhì)引燃相比純柴油模式可使用較大比例EGR。
多缸均質(zhì)引燃對降低柴油機(jī)整機(jī)排放成效顯著,在僅借助DOC的情況下,整機(jī)ESC測試NOx、CO與THC加權(quán)排放分別達(dá)到1.89、0.90、0.12 g/(kW·h),Soot加權(quán)值也處于0.034 m–1的極低水平,具備穩(wěn)態(tài)測試全面達(dá)到國Ⅴ排放標(biāo)準(zhǔn)的潛力。
[1] 帥石金,唐韜,趙彥光,等. 柴油車排放法規(guī)及后處理技術(shù)的現(xiàn)狀與展望[J]. 汽車安全與節(jié)能學(xué)報,2012,3(3):200-217. Shuai Shijin, Tang Tao, Zhao Yanguang, et al. State of the art and outlook of diesel emission regulations and aftertreatment technologies[J]. Automotive Safety and Energy, 2012, 3(3): 200-217. (in Chinese with English abstract)
[2] Johnson T V. Diesel emission control in review[C]//SAE Paper. Michigan: SAE International, 2007.
[3] Johnson T V. Vehicle emissions review[C]//Directions in Engine-Efficiency and Emissions Research(DEER) Conf. Washington: U. S. Department of Energy, 2011.
[4] 堯命發(fā),劉海峰. 均質(zhì)壓燃與低溫燃燒的燃燒技術(shù)研究進(jìn)展與展望[J]. 汽車工程學(xué)報,2012,2(2):79-90. Yao Mingfa, Liu Haifeng. Review and prospect of the combustion technology of homogeneous charge compression ignition and low temperature combustion [J]. Chinese Journal of Automotive Engineering, 2012, 2(2): 79-90. (in Chinese with English abstract)
[5] 莫春蘭,盧正輝,許明疆,等. 乙醇柴油均質(zhì)壓縮燃燒反應(yīng)特點及邊界條件分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(12):291-296. Mo Chunlan, Lu Zhenghui, Xu Mingjiang, et al. Analysis of combustion characteristics and boundary condition effects on HCCI engine fueled with ethanol/diesel blends[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 291-296. (in Chinese with English abstract)
[6] Dec J, Hwang W. An investigation of thermal stratification in HCCI engines using chemiluminescence imaging[C]//SAE Paper. Michigan: SAE International, 2006.
[7] 王建昕. 高效車用汽油機(jī)的技術(shù)進(jìn)步[J]. 內(nèi)燃機(jī)學(xué)報,2008(1):83-89. Wang Jianxin. Technology progress in high efficiency gasoline engine for vehicle[J]. Transactions of CSICE, 2008(1): 83-89. (in Chinese with English abstract)
[8] 蘇萬華,趙華,王建盺. 均質(zhì)壓燃低溫燃燒發(fā)動機(jī)理論與技術(shù)[M]. 北京:科學(xué)出版社,2010:2-10.
[9] Benajes J, Molina S, Garcia A, et al. An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels[J]. Applied Thermal Engineering, 2014, 63: 66-76.
[10] Kokjohn S L, Hanson R M, Reitz R D, et al. Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion[J]. International Journal of Engine Research, 2011, 12: 209-226.
[11] Splitter D A, Reitz R D. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines[J]. Fuel, 2014, 118: 163-175.
[12] Reitz R D, Duraisamy G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines[J]. Progress in Energy and Combustion Science, 2015, 46: 12-71.
[13] Benajes J, Molina S, Garcia A, et al. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels[J]. Energy Conversion and Management, 2015, 99: 193-209.
[14] Bhagatwala A, Sankaran R, Kokjohn S, et al. Numerical investigation of spontaneous flame propagation under RCCI conditions[J]. Combustion and Flame, 2015, 162: 3412-3426.
[15] 王建昕,蔣恒飛,王燕軍,等. 汽油均質(zhì)混合氣柴油引燃(HCII)燃燒特性的研究[J]. 內(nèi)燃機(jī)學(xué)報,2004,22(5):391-396. Wang Jianxin, Jiang Hengfei, Wang Yanjun, et al. Study on the combustion characteristics of homogeneous charge induced ignition (HCII) for gasoline engine[J]. Transactions of CSICE, 2004, 22(5): 391-396. (in Chinese with English abstract)
[16] 于超,王建昕,王志,等. 均質(zhì)混合氣引燃發(fā)動機(jī)的燃燒與排放特性[J]. 汽車安全與節(jié)能學(xué)報,2011,2(3):263-270. Yu Chao, Wang Jianxin, Wang Zhi, et al. Combustion and emission characteristics of homogeneous charge induced ignition engines[J]. Automotive Safety and Energy, 2011, 2(3): 263-270. (in Chinese with English abstract)
[17] Jiang Hengfei, Wang Jianxin, Shuai Shijin. Visualization and performance analysis of gasoline homogeneous charge induced ignition by diesel[C]//SAE Paper. Michigan: SAE International, 2005.
[18] Alger T, Hanhe S, Roberts C E, et al. The heavy duty gasoline engine: A multi-cylinder study of a high efficiency, low emission technology[C]//SAE Paper. Michigan: SAE International, 2005.
[19] Charles E R, James C S, Chad S, et al. The heavy duty gasoline engine: An alternative to meet emissions standards of tomorrow[C]//SAE Paper. Michigan: SAE International, 2004.
[20] 堯命發(fā),馬帥營,童來會,等. 燃燒參數(shù)對汽油/柴油雙燃料HPCC性能和排放影響的試驗[J]. 內(nèi)燃機(jī)學(xué)報,2012,30(4):289-295. Yiao Mingfa, Ma Shuaiying, Tong Laihui, et al. An experiment on the effects of combustion parameters on HPCC combustion fuelled with gasoline/diesel dual fuel[J]. Transactions of CSICE, 2012, 30(4): 289-295. (in Chinese with English abstract)
[21] 馬帥營,堯命發(fā),童來會,等. 汽油/柴油雙燃料高比例預(yù)混壓燃燃燒與排放的試驗[J]. 內(nèi)燃機(jī)學(xué)報,2012,30(1):1-8. Ma Shuaiying, Yao Mingfa, Tong Laihui, et al. An experimental study on combustion and emissions of gasoline/ diesel dual fuel HPCC[J]. Transactions of CSICE, 2012, 30(1): 1-8. (in Chinese with English abstract)
[22] 馬帥營,陳貴升,鄭尊清,等. 汽油/柴油雙燃料HPCC在不同轉(zhuǎn)速下的高負(fù)荷研究[J]. 內(nèi)燃機(jī)學(xué)報,2013,31(4):289-295. Ma Shuaiying, Chen Guisheng, Zheng Zunqing, et al. Study on high load of HPCC fuelled with gasoline/diesel dual fuel at different engine speeds[J]. Transactions of CSICE, 2013, 31(4): 289-295. (in Chinese with English abstract)
[23] 馬駿駿,呂興才,吉麗斌,等. 辛烷值和預(yù)混合率對雙燃料發(fā)動機(jī)SCCI燃燒與爆震的影響[J]. 上海交通大學(xué)學(xué)報,2009,43(2):308-313. Ma Junjun, Lv Xingcai, Ji Libin, et al. Effects of octane number and premixed ratio on the knock and combustion characteristics of dual-fuel SCCI[J]. Journal of Shanghai Jiaotong University, 2009, 43(2): 308-313. (in Chinese with English abstract)
[24] Qian Yong, Ouyang Linqi, Wang Xiaole, et al. Experimental studies on combustion and emissions of RCCI fuled with n-heptane/alcohols fuels[J]. Fuel, 2015, 162: 239-250.
[25] Ma Xiao, Zhang Fan, Xu Hongming, et al. Throttleless and EGR-controlled stoichiometric combustion in a diesel- gasoline dual-fuel compression ignition engine[J]. Fuel, 2014, 115: 765-777.
[26] Li Yaopeng, Jia Ming, Chang Yachao, et al. Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel[J]. Energy,2014, 65: 319-332.
[27] Desantes J M, Benajes J, Garcia A, et al. The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency[J]. Energy, 2014, 78: 854-868.
[28] Molina S, Garcia A, Pastor J M, et al. Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine[J]. Applied Energy, 2015, 143: 211-227.
[29] 龔金科. 汽車排放及控制技術(shù)[M]. 北京:人民交通出版社,2011:129-132.
[30] 國家環(huán)境保護(hù)總局. 車用壓燃式、氣體燃料點燃式發(fā)動機(jī)與汽車排氣污染物排放限值及測量方法(中國Ⅲ、Ⅳ、Ⅴ階段):GB 17691—2005,[S]. 北京:中國環(huán)境出版社,2005.
張海燕,李思遠(yuǎn),王志堅,李 明,于 超,任爍金,孫 柯,李國祥,王建昕.多缸柴油機(jī)汽油均質(zhì)混合氣引燃的排放特性[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(19):108-114. doi:10.11975/j.issn.1002-6819.2017.19.014 http://www.tcsae.org
Zhang Haiyan, Li Siyuan, Wang Zhijian, Li Ming, Yu Chao, Ren Shuojin, Sun Ke, Li Guoxiang, Wang Jianxin. Emission performance of gasoline homogeneous charge induced ignition in multi-cylinder diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 108-114. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.014 http://www.tcsae.org
Emission performance of gasoline homogeneous charge induced ignition in multi-cylinder diesel engine
Zhang Haiyan1, Li Siyuan2, Wang Zhijian1, Li Ming1, Yu Chao1, Ren Shuojin3, Sun Ke2, Li Guoxiang2※, Wang Jianxin3
(1.261061,; 2.250061,; 3.100084,)
Homogeneous charge induced ignition (HCII) is an effective way to reduce NOx emission and soot emission simultaneously while keeping high thermal efficiency. However, the former research about it was limited to single cylinder engine which was original or modified by multi-cylinder engine. Usually, separate intake system, exhaust system and fuel supply system would be set up for the test cylinder, while fuel supply to the other cylinders was cut off. Thus, there was only the test cylinder working normally for the experimental engine. Besides, a fuel-free air compressor, as an external equipment not belonging to the engine body, was used to replace turbocharger. Therefore, the experimental condition of intake-exhaust, EGR (exhaust gas recirculation) - turbocharger coupling effect and mechanical loss was quite different from which engines actually worked in. To study the real emission performance of HCII, a six-cylinder turbocharged diesel engine was modified to achieve MHCII (multi-cylinder homogeneous charge induced ignition, which means all cylinders operate in HCII mode simultaneously) in this paper. The experimental engine incorporated an extra gasoline injection system, and the technology of intake port MFI (multi-point fuel injection) was used, while diesel injection kept the original high pressure common rail system without any change. Furthermore, a dual-fuel ECU (electronic control unit) that could be adjusted flexibly was equipped to control both of the fuels. The whole research in this paper included 2 aspects. Firstly, the influence of gasoline ratio and EGR ratio on MHCII was studied in a typical engine working condition, i.e. rotating speed of 1 438 r/min and IMEP (indicated mean effective pressure) of 0.7 MPa. Based on it, the basic principles of optimizing these 2 parameters were established. Secondly, DOC (diesel oxidation catalyst) device was matched to the experimental engine and the ESC (European steady state cycle) test was conducted under the guidance of those principles established in the first step. Test results of the first step showed that even 90% gasoline in total fuel energy could control the combustion phase sufficiently. With the gasoline ratio increasing, the percentage of pre-mixed combustion got larger and the shape of heat release rate curve changed from double peaks to one peak, in the meantime, NOx emission and soot emission both decreased dramatically. However, gasoline ratio could not get large indefinitely, or it would cause the problem of rise rate of maximum pressure increasing sharply. In the experimental condition, the maximum gasoline ratio should be less than 90%. With EGR ratio increasing, the combustion of lean gasoline homogeneous charge, as the major component of total fuel, was improved, in the meantime, combustion efficiency and effective thermal efficiency both got larger, so the combustion of MHCII could be optimized under suitable EGR ratio. However, similar to gasoline ratio, excessive EGR ratio would make the effect of diesel combustion deterioration prominent, so the maximum EGR ratio should still be controlled at around 30%. With EGR ratio increasing, the NOx emission decreased while soot emission remained nearly unchanged, and thus larger EGR ratio could be applied to inhibit NOx formation. Test results of ESC showed that the specific emissions of NOx, CO (carbon monoxide) and THC (total hydrocarbon) could reach 1.89, 0.90 and 0.12 g/(kW·h), meeting China Ⅴlimits of 2.00, 1.50, and 0.46 g/(kW·h) separately, only with the aid of DOC. In the meantime, the weighted value of soot, calculated from summing the product of soot emission and weighting coefficient at each ESC test point, was also at an extremely low level of 0.034 m–1. Therefore, MHCII can reduce the emission of whole diesel engine significantly and it is highly possible to meet all the requirements of China Ⅴ emission standard under steady state test.
diesel engines; emission control; experiments; homogeneous charge induced ignition; multi-cylinder operation; ESC test
10.11975/j.issn.1002-6819.2017.19.014
TK421+.1
A
1002-6819(2017)-19-0108-07
2017-04-28
2017-09-11
國家自然科學(xué)基金(51576116)
張海燕,工程師,主要從事柴油機(jī)前沿技術(shù)研究。 Email:zhanghaiyan@weichai.com
※通信作者:李國祥,教授,博士生導(dǎo)師,主要從事內(nèi)燃機(jī)可靠性與排放控制技術(shù)及汽車混合動力系統(tǒng)研究。Email:liguox@sdu.edu.cn