李翊寧,周 偉,宋樹杰,瞿濟(jì)偉,周福陽,郭康權(quán),3※
?
溫室作業(yè)用柔性底盤試驗(yàn)樣機(jī)的設(shè)計(jì)
李翊寧1,周 偉1,宋樹杰2,瞿濟(jì)偉1,周福陽1,郭康權(quán)1,3※
(1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2. 西北農(nóng)林科技大學(xué)食品科學(xué)與工程學(xué)院,楊凌 712100; 3. 陜西省農(nóng)業(yè)裝備工程技術(shù)研究中心,楊凌 712100)
結(jié)合設(shè)施農(nóng)業(yè)實(shí)際作業(yè)要求,研制了基于四輪獨(dú)立驅(qū)動(dòng)與四輪獨(dú)立轉(zhuǎn)向原理的柔性底盤試驗(yàn)樣機(jī)。試驗(yàn)樣機(jī)輪距1 320 mm,軸距1 200 mm,最小離地間隙235 mm,整機(jī)質(zhì)量750 kg。底盤設(shè)計(jì)額定牽引力2 400 N,額定功率8 kW,最高設(shè)計(jì)時(shí)速28 km/h,犁耕作業(yè)速度5 km/h,連續(xù)犁耕作業(yè)時(shí)間大于1 h。設(shè)計(jì)并搭建了采用CAN總線通信的模塊化分層控制系統(tǒng),其中單輪行走系控制子系統(tǒng)采用自適應(yīng)模糊PID控制算法來協(xié)調(diào)控制。相對于理論樣機(jī),柔性底盤試驗(yàn)樣機(jī)在整機(jī)動(dòng)力、機(jī)械結(jié)構(gòu)和控制系統(tǒng)等方面做出了多項(xiàng)改進(jìn)。進(jìn)行了單輪行走系轉(zhuǎn)向響應(yīng)試驗(yàn)和底盤基本運(yùn)行姿態(tài)試驗(yàn),得到各輪行走系平均轉(zhuǎn)向角度為89.84°~90.11°,平均轉(zhuǎn)向響應(yīng)時(shí)間為4.24~4.28 s;在各基本運(yùn)行姿態(tài)下,底盤質(zhì)心加速度跳動(dòng)值均小于0.007。表明柔性底盤試驗(yàn)樣機(jī)能夠在硬化路面上有效穩(wěn)定運(yùn)行。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);控制;柔性底盤;設(shè)施農(nóng)業(yè);四輪獨(dú)立驅(qū)動(dòng);四輪獨(dú)立轉(zhuǎn)向;偏置轉(zhuǎn)向軸
設(shè)施農(nóng)業(yè)是實(shí)現(xiàn)中國農(nóng)業(yè)現(xiàn)代化這一戰(zhàn)略任務(wù)的重要內(nèi)容和途徑[1]。截止2010年底,中國設(shè)施蔬菜年種植面積已占中國設(shè)施栽培總面積的95%,已成為世界上設(shè)施面積最大的國家[2]。相對于中國設(shè)施蔬菜種植面積逐年增長的趨勢,中國設(shè)施機(jī)械化作業(yè)為32.45%,處于較低水平[3]。
為適應(yīng)設(shè)施農(nóng)業(yè)作業(yè)環(huán)境的要求,中國對傳統(tǒng)大田農(nóng)機(jī)具的結(jié)構(gòu)和功能上進(jìn)行相應(yīng)的優(yōu)化的嘗試,一定程度上實(shí)現(xiàn)了單一或局部作業(yè)環(huán)節(jié)的機(jī)械化[4]。在結(jié)構(gòu)上,針對設(shè)施農(nóng)業(yè)有限作業(yè)空間特點(diǎn),進(jìn)行了設(shè)備的小型化。但是在小型化的過程中,主要采用減少作業(yè)機(jī)具的結(jié)構(gòu)尺寸與整備質(zhì)量的方式,并未改變其傳統(tǒng)的機(jī)械結(jié)構(gòu),導(dǎo)致小型化后的農(nóng)機(jī)具能量利用率較低,作業(yè)效率下降。同時(shí),小型化必然帶來機(jī)具作業(yè)功能上的刪減,這主要體現(xiàn)在,在設(shè)施農(nóng)業(yè)生產(chǎn)作業(yè)中,以微耕機(jī)為代表的小型單一化自有動(dòng)力作業(yè)機(jī)具的數(shù)量,遠(yuǎn)遠(yuǎn)大于可掛接多種作業(yè)機(jī)具并提供動(dòng)力輸出的微小型拖拉機(jī)的數(shù)量[5]。
由于傳統(tǒng)機(jī)械結(jié)構(gòu)的限制,微小型拖拉機(jī)的性能不能達(dá)到使用者的期望值。故相關(guān)科研人員通過借鑒其他工程領(lǐng)域的研究成果,在農(nóng)用車輛底盤系統(tǒng)方面,做出了一些新的嘗試。如王友權(quán)等[6]設(shè)計(jì)了一款基于自主導(dǎo)航和全方位轉(zhuǎn)向的農(nóng)用機(jī)器人,其驅(qū)動(dòng)力為4個(gè)配備了減速器的微型永磁直流電機(jī),并通過4個(gè)轉(zhuǎn)向電機(jī)來保證每個(gè)輪胎的全方位轉(zhuǎn)動(dòng),以實(shí)現(xiàn)機(jī)器人的差速轉(zhuǎn)向、后輪差速運(yùn)動(dòng)前輪轉(zhuǎn)向、四輪阿克曼轉(zhuǎn)向等;張春龍等[7]設(shè)計(jì)的智能鋤草機(jī)器人平臺(tái),采用四輪驅(qū)動(dòng)與四輪獨(dú)立轉(zhuǎn)向控制,可實(shí)現(xiàn)運(yùn)動(dòng)速度在0~1.5 m/s內(nèi)的連續(xù)可調(diào),每組轉(zhuǎn)臂可繞其自身軸360°自由旋轉(zhuǎn),并可根據(jù)不同工作需求調(diào)整平臺(tái)的底盤間隙、前后軸距和左右輪距;劉濤等[8]研制了一款溫室自動(dòng)導(dǎo)航農(nóng)業(yè)機(jī)器人,其采用前后轉(zhuǎn)向立軸與四輪獨(dú)立驅(qū)動(dòng)設(shè)計(jì),并可根據(jù)預(yù)設(shè)的誘導(dǎo)線實(shí)現(xiàn)自動(dòng)導(dǎo)航;張鐵民等[9]設(shè)計(jì)的電動(dòng)輪式移動(dòng)小車,使用四臺(tái)無刷直流輪轂電機(jī)來實(shí)現(xiàn)底盤的四輪獨(dú)立驅(qū)動(dòng),并配合2臺(tái)轉(zhuǎn)向直流電機(jī)和2臺(tái)制動(dòng)用直流電機(jī)來完成小車的直線行駛、轉(zhuǎn)向和原地轉(zhuǎn)向;吳紅雷等[10]研發(fā)的滑移式升降可調(diào)通用底盤前、中、后部均可懸掛農(nóng)機(jī)具,并通過一種液壓滑軌升降調(diào)節(jié)機(jī)構(gòu)來實(shí)現(xiàn)底盤的直線行駛、滑移轉(zhuǎn)向等運(yùn)動(dòng);張京等[11]研制的農(nóng)用輪式機(jī)器人,采用行走電機(jī)和轉(zhuǎn)向電機(jī)相配合的方式實(shí)現(xiàn)底盤的四輪獨(dú)立轉(zhuǎn)向驅(qū)動(dòng)行走方式,其轉(zhuǎn)角控制最大平均絕對誤差為0.1°,且對應(yīng)標(biāo)準(zhǔn)差最大不超過0.03°,控制效果穩(wěn)定。
與此同時(shí),本項(xiàng)目組對基于偏置轉(zhuǎn)向軸的四輪獨(dú)立驅(qū)動(dòng)、獨(dú)立轉(zhuǎn)向動(dòng)力底盤系統(tǒng)做了探索性研究。提出了將傳統(tǒng)底盤驅(qū)動(dòng)系和轉(zhuǎn)向系合二為一的柔性底盤概念,并給出了底盤機(jī)械結(jié)構(gòu)和基礎(chǔ)控制系統(tǒng)[12];在此基礎(chǔ)上,設(shè)計(jì)了柔性底盤理論樣機(jī),提出了柔性底盤的轉(zhuǎn)向運(yùn)動(dòng)模型[13];此后,建了基于電橋電路的柔性底盤轉(zhuǎn)向控制系統(tǒng),采用電橋電路來協(xié)調(diào)方向盤信號和車輪位置信號,并通過電橋輸出來調(diào)節(jié)車輪速度,以實(shí)現(xiàn)車輪對平衡位置的自動(dòng)跟蹤[14];為了獲取柔性底盤理論樣機(jī)的協(xié)調(diào)控制參數(shù),研究運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)特性,設(shè)計(jì)并搭建了理論樣機(jī)的試驗(yàn)臺(tái)及測量系統(tǒng),對在不同載荷下理論樣機(jī)的速度穩(wěn)定性進(jìn)行了分析,并進(jìn)行了基礎(chǔ)運(yùn)行姿態(tài)的模擬試驗(yàn)[15]。
為了便于分析研究柔性底盤的運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)特性,在設(shè)計(jì)其理論樣機(jī)時(shí),對整機(jī)系統(tǒng)進(jìn)行了必要的簡化,以排除非底盤固有特性的影響。然而,在掌握了柔性底盤基本運(yùn)行特性參數(shù)后,前期試制的理論樣機(jī)在動(dòng)力上不能滿足實(shí)際作業(yè)需求。故在不改變?nèi)嵝缘妆P基本設(shè)計(jì)理念和工作原理的基礎(chǔ)上,有必要結(jié)合設(shè)施農(nóng)業(yè)實(shí)際作業(yè)要求,對整個(gè)底盤系統(tǒng)進(jìn)行二次設(shè)計(jì),稱之為柔性底盤試驗(yàn)樣機(jī),以期為柔性底盤的推廣應(yīng)用提供參考。
作為一款農(nóng)業(yè)車輛通用動(dòng)力底盤系統(tǒng),柔性底盤采用四輪獨(dú)立驅(qū)動(dòng)與四輪獨(dú)立轉(zhuǎn)向技術(shù),并通過輪轂電機(jī)、偏置轉(zhuǎn)向軸和電磁摩擦鎖來實(shí)現(xiàn)其功能。柔性底盤可用于設(shè)施農(nóng)業(yè)等狹小室內(nèi)空間的運(yùn)輸作業(yè),并可在配置了動(dòng)力輸出源和相應(yīng)模塊后,掛載各種農(nóng)機(jī)具以實(shí)現(xiàn)田間作業(yè)。
1.1.1 柔性底盤整機(jī)系統(tǒng)
柔性底盤基本結(jié)構(gòu)如圖1所示。4個(gè)獨(dú)立的單輪行走系對稱分布于底盤車架兩側(cè),為底盤的行駛與轉(zhuǎn)向提供動(dòng)力。免維護(hù)鉛酸蓄電池構(gòu)成的動(dòng)力電池組以十字形分布放置于底盤車架內(nèi)部,有利于減小柔性底盤整機(jī)結(jié)構(gòu)尺寸并防止與單輪行走系形成干涉。單輪行走系控制子系統(tǒng)和底盤中央控制系統(tǒng)布置于底盤車架頂部,便于控制系統(tǒng)的調(diào)試與維護(hù)。
1.1.2 單輪行走系
不同于傳統(tǒng)的車輛底盤的結(jié)構(gòu)形式,柔性底盤是基于偏置轉(zhuǎn)向軸結(jié)構(gòu),集成輪轂電機(jī)、偏置轉(zhuǎn)向軸、制動(dòng)器和電磁摩擦裝置,將驅(qū)動(dòng)系和轉(zhuǎn)向系合二為一,稱之為單輪行走系。通過對輪轂電機(jī)相對轉(zhuǎn)速的改變,來實(shí)現(xiàn)驅(qū)動(dòng)和轉(zhuǎn)向,并結(jié)合電磁摩擦鎖的鎖緊力配合,進(jìn)而實(shí)現(xiàn)對柔性底盤整機(jī)運(yùn)行姿態(tài)的調(diào)整和控制,其具體結(jié)構(gòu)如圖2所示。
柔性底盤應(yīng)在保證傳統(tǒng)拖拉機(jī)作業(yè)功能的基礎(chǔ)上,通過對4個(gè)單輪行走系動(dòng)力輸出的協(xié)調(diào)控制,來實(shí)時(shí)調(diào)節(jié)各單輪行走系與底盤車架和地面的相互作用力,進(jìn)而實(shí)現(xiàn)其在設(shè)施農(nóng)業(yè)有限密閉空間內(nèi),行駛的靈活性和可靠的通過性。
1. 單輪行走系控制子系統(tǒng) 2. 底盤中央控制子系統(tǒng) 3. 底盤車架 4. 單輪行走系 5. 動(dòng)力電池組
1. 電磁鎖緊裝置 2. 輪胎3. 輪轂電機(jī) 4. 制動(dòng)器 5. 雙橫臂懸架 6. 減震器7. 偏置軸
1.2.1 行走狀態(tài)描述
在柔性底盤的運(yùn)行過程中,通過對4個(gè)單輪行走系于水平面的轉(zhuǎn)角位置的不斷調(diào)整,實(shí)現(xiàn)了整機(jī)各行駛姿態(tài)的穩(wěn)定運(yùn)行與相互轉(zhuǎn)換。圖3顯示了左前輪單輪行走系在回轉(zhuǎn)平面內(nèi)的角度范圍,以車輪平行于軸為基準(zhǔn)位置,車輪轉(zhuǎn)角以順時(shí)針為正方向,則左前輪的轉(zhuǎn)動(dòng)區(qū)間為[-45°, 90°],總共135°的轉(zhuǎn)角范圍保證了柔性底盤各行駛姿態(tài)的實(shí)現(xiàn)。
圖3 左前輪單輪行走系水平面回轉(zhuǎn)角度
1.2.2 柔性底盤行駛姿態(tài)
根據(jù)柔性底盤運(yùn)動(dòng)模式的特殊性,其行駛姿態(tài)可分為基本運(yùn)行姿態(tài)和轉(zhuǎn)向運(yùn)行姿態(tài)?;具\(yùn)行姿態(tài)包括了3種直線運(yùn)動(dòng)和回轉(zhuǎn)運(yùn)動(dòng),具體如圖4所示。
a. 縱向直線往復(fù)運(yùn)動(dòng) a. Lengthways linear reciprocating movementb. 橫向直線往復(fù)運(yùn)動(dòng) b. Horizontal linear reciprocating movement c. 斜向直線往復(fù)運(yùn)動(dòng) c. Slant linear reciprocating movementd. 回轉(zhuǎn)運(yùn)動(dòng) d. Revolving movement
轉(zhuǎn)向運(yùn)行姿態(tài)包括了行駛中的底盤轉(zhuǎn)向運(yùn)動(dòng)和基本運(yùn)行姿態(tài)間的變換運(yùn)動(dòng)。前者基本等同于傳統(tǒng)車輛底盤的轉(zhuǎn)向運(yùn)動(dòng),其示意圖如圖5所示。后者為在底盤整機(jī)相對于地面靜止的狀態(tài)下,各基本運(yùn)行姿態(tài)之間進(jìn)行的相互變換。
a. 兩輪轉(zhuǎn)向運(yùn)動(dòng) b. 四輪轉(zhuǎn)向運(yùn)動(dòng)
1.2.3 柔性底盤工作狀態(tài)
當(dāng)柔性底盤工作在基本運(yùn)行姿態(tài)時(shí),4個(gè)單輪行走系的電磁鎖緊裝置為通電鎖緊模式,此時(shí)偏置轉(zhuǎn)向軸僅為底盤車架和各單輪行走系之間的剛性連接部件。當(dāng)柔性底盤工作在轉(zhuǎn)向運(yùn)行姿態(tài)時(shí),電磁鎖緊裝置根據(jù)實(shí)際情況實(shí)時(shí)調(diào)整鎖緊力矩大小,此時(shí)車輪轉(zhuǎn)角相對于底盤車架在其回轉(zhuǎn)平面內(nèi)需要不斷變化,由于單輪行走系并沒有安裝轉(zhuǎn)向電機(jī)等動(dòng)力源來為其提供轉(zhuǎn)向力矩,因此必須借助輪胎與地面之間的相互作用力來完成車輪轉(zhuǎn)角的變化,而其轉(zhuǎn)向力臂則由偏置轉(zhuǎn)向軸提供,從而可以認(rèn)為,在轉(zhuǎn)向運(yùn)行姿態(tài)下,偏置轉(zhuǎn)向軸為底盤車架和各單輪行走系之間的柔性連接部件。
2.1.1 柔性底盤額定牽引力
從具體應(yīng)用來考慮,柔性底盤首先應(yīng)和傳統(tǒng)拖拉機(jī)的功能基本一致,因此其額定牽引力應(yīng)滿足基本的犁耕作業(yè)要求。同時(shí)為適應(yīng)設(shè)施農(nóng)業(yè)內(nèi)的狹小空間,柔性底盤應(yīng)采用單鏵翻轉(zhuǎn)犁來作為整機(jī)配套機(jī)具,其具體參數(shù)如下:犁體質(zhì)量為74 kg,最大耕深18 cm,犁體耕作幅寬20 cm。
除動(dòng)力輸出源采用單獨(dú)的動(dòng)力輸出電機(jī)外,柔性底盤與農(nóng)機(jī)具的配套連接直接套用拖拉機(jī)的標(biāo)準(zhǔn)配置,故其額定牽引力的計(jì)算方式等同于拖拉機(jī)[16]。即:
式中F為柔性底盤額定牽引力,N;為土壤比阻,設(shè)施所用土壤一般為中等土壤,取60 kPa;為犁鏵數(shù),此處為單鏵翻轉(zhuǎn)犁;b為犁體耕作寬幅,其實(shí)測值為20 cm;為耕深,其實(shí)測值18 cm。
將以上相關(guān)參數(shù)帶入式(1),經(jīng)計(jì)算得到其范圍為F≥2 376~2 592 N,則柔性底盤的額定牽引力取值為F=2 400 N。
2.1.2 柔性底盤額定牽引功率
柔性底盤采用4個(gè)獨(dú)立的輪轂電機(jī)來為整機(jī)行進(jìn)提供動(dòng)力,考慮到實(shí)際作業(yè)情況下,每個(gè)單輪行走系因與其相互作用的地面狀況不同,所受到的滾動(dòng)阻力等必然有一定的差異性,所以存在4個(gè)輪轂電機(jī)輸出功率大小不一、四輪動(dòng)力協(xié)調(diào)時(shí)某一單輪功率偏大或偏小的問題[17-19]。因此,在依據(jù)柔性底盤額定牽引力來計(jì)算其牽引功率時(shí),需要添加一個(gè)柔性底盤四輪協(xié)調(diào)儲(chǔ)備系數(shù),以防止某單輪動(dòng)力不足而造成整機(jī)跑偏等問題。調(diào)整后的額定牽引功率計(jì)算式如下:
式中P為柔性底盤額定牽引功率,kW;v為柔性底盤基本牽引工作速度,此處取5 km/h;為柔性底盤牽引效率,其值參考四輪驅(qū)動(dòng)拖拉機(jī),取0.6;為柔性底盤四輪協(xié)調(diào)儲(chǔ)備系數(shù),取1.4。
將以上相關(guān)參數(shù)帶入式(2),得到P≥7.78 kW,則柔性底盤的額定牽引功率取值為P=8 kW。
2.1.3 柔性底盤主要技術(shù)性能指標(biāo)
作為用于設(shè)施農(nóng)業(yè)的農(nóng)業(yè)車輛通用動(dòng)力底盤系統(tǒng),柔性底盤的結(jié)構(gòu)尺寸能應(yīng)滿足實(shí)際作業(yè)要求,其中整機(jī)尺寸為1 715 mm′1 475 mm′1 135 mm,犁耕作業(yè)速度為5 km/h,底盤最高時(shí)速為28 km/h,整機(jī)質(zhì)量750 kg,軸距為1 200 mm,輪距為1 320 mm,離地間隙為235 mm。
柔性底盤的整機(jī)性能由4個(gè)獨(dú)立單輪行走系協(xié)調(diào)決定,而單輪行走系則通過同步控制以輪轂電機(jī)為主的驅(qū)動(dòng)輪和以電磁摩擦鎖為主的電磁鎖緊裝置來實(shí)現(xiàn)其功能。另外,動(dòng)力電池組是保證柔性底盤整機(jī)正常運(yùn)行的唯一動(dòng)力源。故有必要將三者進(jìn)行討論。
2.2.1 輪轂電機(jī)
設(shè)施農(nóng)業(yè)中的狹小環(huán)境要求柔性底盤應(yīng)具有較高的靈活性和便捷的可操控性,而這些主要通過對輪轂電機(jī)轉(zhuǎn)速與轉(zhuǎn)矩的控制來實(shí)現(xiàn)。綜合考慮各驅(qū)動(dòng)電機(jī)的優(yōu)缺點(diǎn)后,選擇了永磁無刷直流型輪轂電機(jī),其具有較高的功率密度和效率,較小的重量和體積,較寬的調(diào)速范圍,較大的啟動(dòng)扭矩等特點(diǎn),能夠滿足柔性底盤的作業(yè)需求[20-22]。
柔性底盤整機(jī)的額定牽引功率為P=8 kW,前面的計(jì)算中,已經(jīng)引入了一個(gè)四輪協(xié)調(diào)儲(chǔ)備系數(shù)來保證整機(jī)的功率上限。因此,可采用平均分配的原則,將整機(jī)額定牽引功率分配到每個(gè)單輪行走系上,則輪轂電機(jī)的額定功率為P=2 kW。
柔性底盤主要用來代替?zhèn)鹘y(tǒng)微小型拖拉機(jī)在設(shè)施農(nóng)業(yè)內(nèi)部的各項(xiàng)作業(yè),因此其輪轂電機(jī)通常工作在低速重載的條件下。為此有必要定制一款專用電機(jī)來滿足其實(shí)際需求,輪轂電機(jī)具體參數(shù)見表1。
表1 永磁無刷直流型輪轂電機(jī)參數(shù)
2.2.2 電磁摩擦鎖
電磁鎖緊裝置控制著柔性底盤單輪行走系轉(zhuǎn)向角的保持與改變,通過改變其內(nèi)部電磁制動(dòng)器的工作電流來調(diào)整鎖緊力矩的大小,進(jìn)而實(shí)現(xiàn)偏置轉(zhuǎn)向軸是隨車輪行進(jìn)轉(zhuǎn)動(dòng)還是保持原位固定不動(dòng)。作為其核心部件的電磁摩擦鎖,具有制動(dòng)迅速、靈敏度高、安裝簡單、結(jié)構(gòu)可靠等優(yōu)點(diǎn),適合于柔性底盤的集成化與小型化[23-25]。柔性底盤在保持某一基本運(yùn)行姿態(tài)時(shí),電磁摩擦鎖處于通電鎖緊狀態(tài)。此時(shí)應(yīng)保證鎖緊力矩T足夠抵消單輪行走系輪胎和地面作用所產(chǎn)生的滾動(dòng)阻力矩T,即:
柔性底盤所受的滾動(dòng)阻力的計(jì)算參考輪式拖拉機(jī)驅(qū)動(dòng)力計(jì)算式[26],即:
式中P為柔性底盤所受的滾動(dòng)阻力,N;為柔性底盤的滾動(dòng)阻力系數(shù),此處應(yīng)取較大值以保證鎖緊力矩的可靠,因此參考輪式拖拉機(jī)在沼泥地的數(shù)值,取0.22;為柔性底盤的整機(jī)質(zhì)量,kg;為重力加速度,9.8 N/kg。
柔性底盤由4個(gè)單輪行走系組成,因此每個(gè)單輪行走系所受到的滾動(dòng)阻力應(yīng)為柔性底盤整機(jī)受力的1/4,這里同樣引入柔性底盤四輪協(xié)調(diào)儲(chǔ)備系數(shù)來保證特殊情況下某單輪行走系所受滾動(dòng)阻力偏大的問題,則單輪行走系所受滾動(dòng)阻力矩T計(jì)算式為:
式中為偏執(zhí)轉(zhuǎn)向軸長度,為0.33 m。聯(lián)立式(3)、(4)、(5),計(jì)算得出T>195 N·m。
同時(shí),考慮到柔性底盤在直線運(yùn)動(dòng)中,有搭載單鏵犁作業(yè)的需求,因此也需要根據(jù)整機(jī)額定牽引力F來計(jì)算出的電磁摩擦鎖的鎖緊力矩T。根據(jù)式(6),計(jì)算結(jié)果為T> 198 N·m,因此,電磁摩擦鎖技術(shù)參數(shù)如下:使用FBD20型電磁制動(dòng)器,靜摩擦轉(zhuǎn)矩200 N·m,功率[DC24V] 45 W,質(zhì)量5.9 kg,最高轉(zhuǎn)速2 500 r/min。
2.2.3 動(dòng)力電池組
柔性底盤采用免維護(hù)鉛酸蓄電池來組成其動(dòng)力電池組。該電池雖然對環(huán)境有一定程度的污染,但其技術(shù)成熟,因此有著較高的性價(jià)比、較大的輸出電流和較強(qiáng)的氣候適應(yīng)性等,這些都有利于農(nóng)業(yè)生產(chǎn)作業(yè)活動(dòng)[27-31]。鉛酸蓄電池額定容量與柔性底盤整機(jī)最短作業(yè)時(shí)間的關(guān)系式為[32]:
式中為電池的實(shí)際放電能量,kW·h;為柔性底盤以犁耕作業(yè)速度作業(yè)時(shí)的牽引功率,W;為鉛酸蓄電池個(gè)數(shù),4;C為單塊電池的額定容量,Ah;0為單塊電池的初始電動(dòng)勢,12 V;D為電池組的放電深度,75%;I為電池組的額定放電電流120 A,為電池組的恒流放電電流,167 A;為電池組的放電指數(shù),1.347;min為柔性底盤整機(jī)最短作業(yè)時(shí)間,此處應(yīng)保證下限為1 h。
將以上相關(guān)參數(shù)帶入式(7),得單塊電池的額定容量C≥245.4 Ah。這里選擇4塊GH250-12鉛酸蓄電池組成整機(jī)的動(dòng)力電池組,其中電池型號為GH250-12,額定電壓為12 V,額定放電電流為120 A,長×寬×高為522 mm× 240 mm×218 mm,額定容量為250 Ah,質(zhì)量為64 kg,內(nèi)阻為18 mΩ。
如圖6所示,柔性底盤控制系統(tǒng)采用模塊化分層布置,主要分為一個(gè)底盤中央控制子系統(tǒng)和4個(gè)架構(gòu)相同的單輪行走系控制子系統(tǒng),各子系統(tǒng)之間通過CAN總線進(jìn)行通信。其中底盤中央控制子系統(tǒng)主要由控制手柄、核心數(shù)據(jù)處理模塊和底盤姿態(tài)監(jiān)測模塊組成;而單輪行走系控制子系統(tǒng)主要由控制模塊、執(zhí)行機(jī)構(gòu)和狀態(tài)監(jiān)測模塊組成。
柔性底盤啟動(dòng)后,核心數(shù)據(jù)處理模塊開始接收并分析底盤整機(jī)姿態(tài)和各子系統(tǒng)狀態(tài)監(jiān)測模塊反饋回的傳感器實(shí)時(shí)數(shù)據(jù),解算出底盤當(dāng)前狀態(tài)參量;同時(shí)根據(jù)控制手柄所發(fā)送的控制信號,計(jì)算底盤完成預(yù)定運(yùn)行任務(wù)時(shí),各單輪行走系所需的狀態(tài)參量并傳遞給各單輪控制子系統(tǒng)。各單輪控制子系統(tǒng)的控制模塊,通過對所需狀態(tài)參量的分析,計(jì)算并輸出相應(yīng)控制信號至各執(zhí)行機(jī)構(gòu)。各執(zhí)行機(jī)構(gòu)通過控制信號來實(shí)時(shí)調(diào)整輪轂電機(jī)的輸出轉(zhuǎn)矩和電磁鎖的鎖緊力矩,以實(shí)現(xiàn)各單輪行走系所需的狀態(tài),進(jìn)而控制整機(jī)姿態(tài)來完成對柔性底盤的操作。
圖6 柔性底盤基本控制流程框圖
如圖7所示,柔性底盤的單輪行走系采用自適應(yīng)模糊PID控制原理,通過對系統(tǒng)的實(shí)時(shí)非線性調(diào)節(jié),保證了控制系統(tǒng)穩(wěn)定性、可靠性和快速性[33-35]。單輪行走系的控制模塊分為數(shù)據(jù)預(yù)處理和Fuzzy-PID控制2個(gè)子模塊,前者主要是接收柔性底盤中央控制系統(tǒng)給定的單輪行走系理論狀態(tài)參量,并將其與單輪行走系狀態(tài)監(jiān)測模塊反饋回的輪轂電機(jī)驅(qū)動(dòng)電流信號I和電磁鎖緊裝置轉(zhuǎn)角位置信號進(jìn)行對比,從而為模糊PID控制模塊解算單輪行走系執(zhí)行機(jī)構(gòu)所需的輪轂電機(jī)輸出轉(zhuǎn)矩T和電磁鎖緊裝置鎖緊力矩T提供數(shù)據(jù)支持。
注:Tm為輪轂電機(jī)輸出轉(zhuǎn)矩設(shè)定值;Tl為電磁鎖鎖緊力矩設(shè)定值;If為輪轂電機(jī)驅(qū)動(dòng)電流測量值;Ff為單輪行走系車輪轉(zhuǎn)角測量值,下同。
柔性底盤理論樣機(jī)設(shè)計(jì)標(biāo)準(zhǔn)為:空載狀態(tài)下的柔性底盤能夠在實(shí)驗(yàn)室環(huán)境下實(shí)現(xiàn)其各行駛姿態(tài)的穩(wěn)定運(yùn)行,并盡可能的簡化整個(gè)底盤系統(tǒng)。柔性底盤理論樣機(jī)在整機(jī)動(dòng)力、機(jī)械結(jié)構(gòu)和控制系統(tǒng)等方面,都無法滿足柔性底盤的實(shí)際作業(yè)需求。故在研制柔性底盤試驗(yàn)樣機(jī)時(shí),主要做了以下改進(jìn)。
整機(jī)動(dòng)力方面,理論樣機(jī)的額定功率僅為2 kW,只能滿足其自身于平直硬化路面上的基本行駛需求,因此需要將試驗(yàn)樣機(jī)的額定功率提升至8 kW,來保證柔性底盤能夠掛載單鏵翻轉(zhuǎn)犁進(jìn)行田間犁耕作業(yè)。同時(shí),理論樣機(jī)采用ZXD2400型直流可調(diào)電源作為柔性底盤的能量來源,保證了其在實(shí)驗(yàn)室環(huán)境下供電的可持續(xù)性、便捷性和可靠性,但此設(shè)置卻無法應(yīng)用在實(shí)際作業(yè)環(huán)境中,因此采用四塊GH250-12型免維護(hù)鉛酸蓄電池組成的動(dòng)力電池組來代替有線電源,并內(nèi)置于底盤車架中。
機(jī)械結(jié)構(gòu)方面,理論樣機(jī)的車架僅為連接4個(gè)單輪行走系的簡易矩形平面框架,其結(jié)構(gòu)形式、強(qiáng)度和剛度等都無法滿足柔性底盤的實(shí)際作業(yè)要求,因此需要結(jié)合輪距、軸距和離地間隙等實(shí)際作業(yè)需求,并考慮到動(dòng)力電池組和單輪行走系的布置等要求,柔性底盤試驗(yàn)樣機(jī)的車架采用了可內(nèi)置動(dòng)力電池組的十字形框架結(jié)構(gòu)。理論樣機(jī)的單輪行走系中,其動(dòng)力源為WX-WS4846型電動(dòng)自行車用輪轂電機(jī),除去之前所提及的功率不足的問題外,其越障能力和載荷能力等也都不能滿足柔性底盤的使用需求;并且由于輪轂電機(jī)雙邊軸的結(jié)構(gòu),理論樣機(jī)的避震裝置只能采用摩托車的通用前叉來實(shí)現(xiàn),其只具備較小的強(qiáng)度、剛度和垂直載荷能力,并缺乏抵抗扭轉(zhuǎn)變形的能力;同時(shí)理論樣機(jī)采用電磁鎖緊裝置作為連接車架和偏置軸的中間節(jié)點(diǎn),當(dāng)柔性底盤在重載或非平直硬化路面等狀況下運(yùn)行時(shí),電磁鎖緊裝置會(huì)因無法抵抗過大彎矩而造成結(jié)構(gòu)損壞。故在試驗(yàn)樣機(jī)上,重新設(shè)計(jì)了柔性底盤單輪行走系的總體結(jié)構(gòu),采用205型汽車用輪轂電機(jī)作為柔性底盤的動(dòng)力輸出與載荷支撐,并通過雙橫臂獨(dú)立懸架將其與電磁鎖緊裝置相連接;同時(shí)采用偏置軸與底盤車架直接固定的方式,將作用于電磁鎖緊裝置的彎矩轉(zhuǎn)移至由偏置軸所構(gòu)成的懸臂梁上,使其只受車輪轉(zhuǎn)向時(shí)的扭轉(zhuǎn)作用影響。
控制系統(tǒng)方面,柔性底盤理論樣機(jī)采用外置式的上位機(jī)控制方式,其內(nèi)置STM32單片機(jī)只是作為連接驅(qū)動(dòng)器、傳感器和上位機(jī)等的中間節(jié)點(diǎn),僅僅用于各模塊間的通信連接。然而在實(shí)際作業(yè)環(huán)境下,除去能夠遠(yuǎn)程操作的控制手柄,其他所有控制模塊都應(yīng)集成在柔性底盤內(nèi)部,以提高控制系統(tǒng)的有效性和穩(wěn)定性。故柔性底盤物理樣機(jī)采用多STM32單片機(jī)內(nèi)置,并通過CAN總線相互協(xié)作的方式,基于-COS Ⅱ嵌入式實(shí)時(shí)操作系統(tǒng)完成了柔性底盤控制系統(tǒng)的模塊化分層布置。
為檢測柔性底盤運(yùn)行時(shí)的可靠性和穩(wěn)定性,需要對單輪行走系的轉(zhuǎn)向響應(yīng)和底盤基本運(yùn)行姿態(tài)進(jìn)行試驗(yàn)分析。試驗(yàn)所用傳感器模塊分別為:用于測量車輪轉(zhuǎn)角響應(yīng)時(shí)間的由意法半導(dǎo)體有限公司生產(chǎn)的STM32F103CET6型MCU,用于測量車輪轉(zhuǎn)向角度的由上海盤卓自動(dòng)化科技有限公司生產(chǎn)的P3022-V1-CW360型霍爾式角度傳感器,以及用于測量整機(jī)狀態(tài)參數(shù)的深圳君悅智控科技有限公司生產(chǎn)的JY-901型高精度慣性導(dǎo)航模塊。其中MCU的通用定時(shí)器包含了16位自動(dòng)裝載計(jì)數(shù)器和16位可編程預(yù)分頻器,可進(jìn)行微秒級的時(shí)間采集;霍爾式轉(zhuǎn)角傳感器電氣行程為0~360°,分辨率可達(dá)0.088°,精度為±0.3%FS;而高精度慣性導(dǎo)航模塊的主要技術(shù)參數(shù)如表2。
表2 JY-901型高精度慣性導(dǎo)航模塊主要技術(shù)性能參數(shù)
采用路況良好的干燥平直水泥地面對柔性底盤進(jìn)行試驗(yàn)測試。在單輪行走系轉(zhuǎn)向響應(yīng)試驗(yàn)中,輪轂電機(jī)采用穩(wěn)定低轉(zhuǎn)速行進(jìn),采樣頻率設(shè)定為1 kHz。在底盤基本運(yùn)行姿態(tài)試驗(yàn)中,其運(yùn)行速度采用基本牽引工作速度v=5 km/h,采樣頻率設(shè)定為5 Hz。柔性底盤試實(shí)際運(yùn)行狀況如圖8所示。
1. 底盤中央控制子系統(tǒng) 2. 控制手柄 3. 單輪行走系控制子系統(tǒng)4. 動(dòng)力電池組 5. 底盤車架 6. 單輪行走系
柔性底盤各運(yùn)行姿態(tài)的實(shí)現(xiàn),都建立在4個(gè)單輪行走系的功率輸出和角度匹配上。因此,有必要對各車輪轉(zhuǎn)角特性進(jìn)行研究。底盤默認(rèn)初始姿態(tài)即為縱向直線往復(fù)運(yùn)動(dòng),而相對于其初始姿態(tài),每個(gè)單輪行走系中車輪轉(zhuǎn)角最大偏轉(zhuǎn)角度的絕對值為90°,此時(shí)底盤姿態(tài)為橫向往復(fù)直線運(yùn)動(dòng)。圖9顯示了底盤實(shí)際運(yùn)行中,各單輪行走系車輪轉(zhuǎn)角變化時(shí)的相關(guān)試驗(yàn)結(jié)果,為10次重復(fù)試驗(yàn)的平均值。試驗(yàn)結(jié)果表明,各單輪行走系的平均轉(zhuǎn)向角度穩(wěn)定在89.84°~90.11°之間,其中單次最大轉(zhuǎn)向角度為90.88°,單次最小轉(zhuǎn)向響度為89.21°;各單輪行走系的平均轉(zhuǎn)向響應(yīng)時(shí)間穩(wěn)定在4.24~4.28 s之間,其中單次最大轉(zhuǎn)向響應(yīng)時(shí)間為4.50 s,單次最小轉(zhuǎn)向響應(yīng)時(shí)間為4.05 s。
注:LF為左前輪;LR為左后輪;RF為右前輪;RR為右后輪,下同。
柔性底盤基本運(yùn)行姿態(tài)分為縱向、橫向和斜向3種直線往復(fù)運(yùn)動(dòng)和回轉(zhuǎn)運(yùn)動(dòng)。其默認(rèn)姿態(tài)即為縱向直線往復(fù)運(yùn)動(dòng)的初始姿態(tài),如1.2.1節(jié)圖3所示,采用順時(shí)針方向確定其繞坐標(biāo)軸的轉(zhuǎn)角,此時(shí)4個(gè)單輪行走系的轉(zhuǎn)向角歸0,即α=α=α=α=0°;在橫向直線往復(fù)運(yùn)動(dòng)下,其轉(zhuǎn)向角分別為α=α=90°,α=α=-90°;在斜向直線往復(fù)運(yùn)動(dòng)下,其質(zhì)心最大斜向行進(jìn)角度為α=±45°,試驗(yàn)采用柔性底盤右向偏轉(zhuǎn)的斜向線往復(fù)運(yùn)動(dòng),則各單輪行走系的轉(zhuǎn)向角相同,即α=α=α=α=45°;在回轉(zhuǎn)運(yùn)動(dòng)中,各轉(zhuǎn)向角分別為α=α=62.3°,α=α=-62.3°。α,α,α,α分別代表左前輪、左后輪、右前輪、右后輪4個(gè)單輪行走系的轉(zhuǎn)向角度?;具\(yùn)行姿態(tài)試驗(yàn)結(jié)果如圖10、11、12所示。
圖10 縱向和橫向直線往復(fù)運(yùn)動(dòng)中的底盤質(zhì)心加速度跳動(dòng)
試驗(yàn)結(jié)果表明,柔性底盤控制系統(tǒng)能夠根據(jù)實(shí)際工況不斷協(xié)調(diào)四輪轉(zhuǎn)矩,使底盤質(zhì)心位置始終在期望路徑的附近上下波動(dòng),以維持其運(yùn)行姿態(tài)。柔性底盤在各基本運(yùn)行姿態(tài)下的加速度跳動(dòng)最大值見表3,代表縱向加速度,代表橫向加速度。
圖11 斜向直線往復(fù)運(yùn)動(dòng)中的底盤質(zhì)心加速度
圖12 回轉(zhuǎn)運(yùn)動(dòng)中的底盤質(zhì)心加速度跳動(dòng)
表3 底盤質(zhì)心加速度跳動(dòng)最大值
注:代表縱向加速度,代表橫向加速度。
Note:is longitudinal acceleration,is lateral acceleration.
1)針對柔性底盤理論樣機(jī)存在動(dòng)力輸出不足等問題,結(jié)合柔性底盤在設(shè)施農(nóng)業(yè)中的實(shí)際作業(yè)需求,研制了柔性底盤試驗(yàn)樣機(jī),其總設(shè)計(jì)功率為8 kW,可帶動(dòng)單鏵翻轉(zhuǎn)犁進(jìn)行1 h以上的連續(xù)作業(yè)。
2)柔性底盤試驗(yàn)樣機(jī)基于四輪獨(dú)立驅(qū)動(dòng)與獨(dú)立轉(zhuǎn)向原理,并通過對4個(gè)單輪行走系的協(xié)同控制,來實(shí)現(xiàn)其各行駛姿態(tài)的穩(wěn)定運(yùn)行和相互轉(zhuǎn)化。
3)柔性底盤整機(jī)控制系統(tǒng)采用模塊化分層布置,各控制子系統(tǒng)之間通過CAN總線相互通信。其中單輪行走系控制子系統(tǒng)基于自適應(yīng)模糊PID控制原理,通過對輪轂電機(jī)的輸出轉(zhuǎn)矩和電磁鎖緊裝置的鎖緊力矩的實(shí)時(shí)調(diào)節(jié),來實(shí)現(xiàn)對各單輪行走系的有效控制。
4)進(jìn)行了柔性底盤基礎(chǔ)運(yùn)行試驗(yàn),其中單輪行走系轉(zhuǎn)向響應(yīng)試驗(yàn)結(jié)果:各單輪行走系平均轉(zhuǎn)向角度穩(wěn)定在89.84°~90.11°之間,平均轉(zhuǎn)向響應(yīng)時(shí)間穩(wěn)定在4.24~ 4.28 s之間;而底盤基本運(yùn)行姿態(tài)試驗(yàn)為,各基本運(yùn)行姿態(tài)下,底盤質(zhì)心加速度跳動(dòng)值均小于0.007,底盤質(zhì)心始終在期望路徑的附近上下波動(dòng)。結(jié)果表明,在干燥平直的水泥路面上,各單輪行走系轉(zhuǎn)向響應(yīng)趨于一致,且能夠有效保持在期望值附近;在基本牽引工作速度為5 km/h時(shí),底盤可在各基本運(yùn)行姿態(tài)下有效運(yùn)行,并始終保持行走路徑的穩(wěn)定。
項(xiàng)目組在本文研究的基礎(chǔ)上,預(yù)計(jì)的后續(xù)研究包括:柔性底盤于硬化路面行走時(shí)的姿態(tài)連續(xù)性試驗(yàn),于田間土壤中行走時(shí)各行駛姿態(tài)的局限性與穩(wěn)定性試驗(yàn),以及裝載相應(yīng)作業(yè)機(jī)具時(shí)底盤的穩(wěn)定性和可靠性試驗(yàn)等。并期望通過以上試驗(yàn),來進(jìn)一步改進(jìn)柔性底盤整機(jī)機(jī)械結(jié)構(gòu)和控制系統(tǒng),以完善其工作性能。
[1] 齊飛,周新群,丁小明,等. 設(shè)施農(nóng)業(yè)工程技術(shù)分類方法探討[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(10): 1-7. Qi Fei, Zhou Xinqun, Ding Xiaoming, et al. Discussion on classification method of protected agricultural engineering technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(10): 1-7. (in Chinese with English abstract)
[2] 喻景權(quán). “十一五”我國設(shè)施蔬菜生產(chǎn)和科技進(jìn)展及其展望[J]. 中國蔬菜,2011(2): 11-23. Yu Jingquan. Progress in protected vegetable production and research during ’the eleventh five-year plan’ in china[J]. China Vegetables, 2011(2): 11-23. (in Chinese with English abstract)
[3] 李中華,孫少磊,丁小明,等. 我國設(shè)施園藝機(jī)械化水平現(xiàn)狀與評價(jià)研究[J]. 新疆農(nóng)業(yè)科學(xué),2014,51(6): 1143-1148. Li Zhonghua, Sun Shaolei, Ding Xiaoming, et al. Research on the present situation and evaluation of protected horticulture mechanization level in China[J]. Xinjiang Agricultural Sciences, 2014,51(6): 1143-1148. (in Chinese with English abstract)
[4] 高輝松,朱思洪,史俊龍,等. 溫室大棚用電動(dòng)微耕機(jī)研制[J]. 機(jī)械設(shè)計(jì),2012,29(11):83-87. Gao Huisong, Zhu Sihong, Shi Junlong, et al. Development of electric micro-farming machines for greenhouses[J]. Journal of Machine Design, 2012,29(11): 83-87. (in Chinese with English abstract)
[5] 彭彬,楊玲,楊明金,等. 微耕機(jī)標(biāo)準(zhǔn)體系的內(nèi)涵分析及其發(fā)展對策[J]. 西南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,39(4):141-146. Peng Bin, Yang Ling, Yang Mingjin, et al. On connotation analysis and development countermeasures of the mini-tiller standard system[J]. Journal of Southwest China Normal University : Natural Science Edition, 2014,39(4): 141-146. (in Chinese with English abstract)
[6] 王友權(quán),周俊,姬長英,等. 基于自主導(dǎo)航和全方位轉(zhuǎn)向的農(nóng)用機(jī)器人設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(7):110-113. Wang Youquan, Zhou Jun, Ji Changying, et al. Design of agricultural wheeled mobile robot based on autonomous navigation and omnidirectional steering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008,24(7): 110-113. (in Chinese with English abstract)
[7] 張春龍,黃小龍,耿長興,等. 智能鋤草機(jī)器人系統(tǒng)設(shè)計(jì)與仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(7):196-199,185. Zhang Chunlong, Huang Xiaolong, Geng Changxing, et al. Design and simulation of intelligent weeding robot system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(7): 196-199, 185. (in Chinese with English abstract)
[8] 劉濤,張賓,鄭承云. 溫室機(jī)器人導(dǎo)航系統(tǒng)設(shè)計(jì)與性能測試[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,34(2):108-111. Liu Tao, Zhang Bin, Zheng Chengyun. Navigation system design and performance testing of the greenhouse robot[J]. Journal of Inner Mongolia Agricultural University, 2013,34(2): 108-111. (in Chinese with English abstract)
[9] 張鐵民,黃翰,黃鵬煥. 電動(dòng)輪式移動(dòng)小車控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):11-18. Zhang Tiemin, Huang Han, Huang Penghuan. Design and test of drive and control system for electric wheeled mobile car[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(19): 11-18. (in Chinese with English abstract)
[10] 吳紅雷,弋景剛,孔德剛,等. 一種滑移式升降可調(diào)通用底盤結(jié)構(gòu)設(shè)計(jì)與關(guān)鍵技術(shù)研究[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(5):116-121. Wu Honglei, Yi Jinggang, Kong Degang, et al. Design and key technology research on one kind of slip-type lifting adjustable general chassis structure[J]. Journal of Agricultural University of Hebei, 2015,38(5): 116-121 (in Chinese with English abstract)
[11] 張京,陳度,王書茂,等. 農(nóng)用輪式機(jī)器人四輪獨(dú)立轉(zhuǎn)向驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):63-70. Zhang Jing, Chen Du, Wang Shumao, et al. Design and experiment of four-wheel independent steering driving and control system for agricultural wheeled robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(18): 63-70. (in Chinese with English abstract)
[12] 梅娜,郭康權(quán),路敵,等. 柔性底盤驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2010,32(4):112-113,122. Mei Na, Guo Kangquan, Lu Di, et al. Flexible chassis design- driven control system[J]. Journal of Agricultural Mechanization Research, 2010,32(4): 112-113, 122. (in Chinese with English abstract)
[13] 路敵,郭康權(quán). 柔性底盤的轉(zhuǎn)向運(yùn)動(dòng)模型[J]. 農(nóng)機(jī)化研究,2011,33(4): 219-222. Lu Di, Guo Kangquan. Divertical motion model of flexible chassis[J]. Journal of Agricultural Mechanization Research, 2011,33(4): 219-222. (in Chinese with English abstract)
[14] 楊露,郭康權(quán),丁新民. 基于電橋電路的溫室作業(yè)柔性底盤轉(zhuǎn)向控制系統(tǒng)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2013,35(9): 151-155. Yang Lu, Guo Kangquan, Ding Xinmin. The steering control system design of flexible chassis for conservatory work based on bridge circuit[J]. Journal of Agricultural Mechanization Research, 2013,35(9): 151-155. (in Chinese with English abstract)
[15] 宋樹杰,瞿濟(jì)偉,李翊寧,等. 農(nóng)用車底盤偏置轉(zhuǎn)向軸驅(qū)動(dòng)輪運(yùn)動(dòng)與動(dòng)力特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):28-34. Song Shujie, Qu JIwei, Li Yining, et al. Experiment on movement and dynamic property of driving wheel with offset steering shaft for agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(23): 28-34. (in Chinese with English abstract)
[16] 王元杰, 劉永成, 楊福增, 等. 溫室微型遙控電動(dòng)拖拉機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):23-29. Wang Yuanjie, Liu Yongcheng, Yang Fuzeng, et al. Development and test of tiny remotely controlled electric tractor for greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(22): 23-29. (in Chinese with English abstract)
[17] Shuai Zhibin, Zhang Hui, Wang Junming, et al. Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over can network with time-varying delays[J]. Ieee Transactions on Vehicular Technology, 2014, 63(2): 591-602.
[18] Shuai Zhibin, Zhang Hui, Wang Junming, et al. Lateral motion control for four-wheel-independent-drive electric vehicles using optimal torque allocation and dynamic message priority scheduling[J]. Control Engineering Practice, 2014, 24: 55-66.
[19] Wang Rongrong, Wang Junming. Fault-Tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles[J]. Ieee Transactions on Vehicular Technology, 2011, 60(9): 4276-4287.
[20] Chau K T, Chan C C, Liu Chunhua. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles[J]. Ieee Transactions on Industrial Electronics, 2008, 55(6): 2246-2257.
[21] Emadi Ali, Young Joo Lee, Kaushik Rajashekara. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles[J]. Ieee Transactions on Industrial Electronics, 2008, 55(6): 2237-2245.
[22] Zhu Z Q, David Howe. Electrical machines and drives for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the Ieee, 2007, 95(4): 746-765.
[23] 陳齊平,舒紅宇,瞿飛俊,等. 輪轂電機(jī)嵌入式電磁駐車制動(dòng)設(shè)計(jì)與仿真[J]. 重慶大學(xué)學(xué)報(bào),2012,35(7):1-6. Chen Qiping, Shu Hongyu, Qu Feijun, et al. Design and simulation of electromagnetic parking brake embedded in-wheel motor[J]. Journal of Chongqing University, 2012,35(7): 1-6. (in Chinese with English abstract)
[24] 劉存香,何仁,胡春花. 轎車電磁制動(dòng)與摩擦制動(dòng)集成系統(tǒng)的性能試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào):自然科版,2012,33(5):508-512. Liu Cunxiang, He Ren, Hu Chunhua. Performance experiment of integrated system with car electromagnetic and frictional brakes[J]. Journal of Jiangsu University: Natural Science Edition, 2012,33(5): 508-512. (in Chinese with English abstract)
[25] 高連興,史巖,師帥兵. 拖拉機(jī)與汽車(下冊)[M]. 北京:中國農(nóng)業(yè)出版社,2000.
[26] Pilatowicz Grzegorz, Budde-Meiwes Heide, Kowal Julia, et al. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications[J]. Journal of Power Sources, 2016(331): 348-359.
[27] Chong Lee Wai, Wong Yee Wan, Rajkumar Rajprasad Kumar, et al. An optimal control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system[J]. Journal of Power Sources, 2016(331): 553-565.
[28] Ansari Amir Babak, Esfahanian Vahid, Torabi Farschad. Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition[J]. Applied Energy, 2016(173): 152-167.
[29] 溫銀堂,賀晙華,王洪斌,等. 基于模糊自適應(yīng)PID算法的改進(jìn)三段式蓄電池快速充電系統(tǒng)[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2014,54(7):952-958. Wen Yintang, He Junhua, Wang Hongbin, et al. Improved fast battery charging system with a three-segemnt structure via fuzzy adaptive PID algorithm[J]. J Tsinghua Nuiv: Sci & Technol, 2014,54(7): 952-958. (in Chinese with English abstract)
[30] 宋永華,陽岳希,胡澤春. 電動(dòng)汽車電池的現(xiàn)狀及發(fā)展趨勢[J]. 電網(wǎng)技術(shù),2011,35(4):1-7. Song Yonghua, Yang Yuexi, Hu Zechun. Present status and development trend of batteries for electric vehicles[J]. Power System Technology, 2011,35(4): 1-7. (in Chinese with English abstract)
[31] 高輝松,朱思洪. 電動(dòng)拖拉機(jī)傳動(dòng)系設(shè)計(jì)理論與方法研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,32(1):140-145. Gao Huisong, Zhu Sihong. Study on design theory and method for driving line of electric tractor[J]. Journal of Nanjing Agricultural University, 2009,32(1): 140-145. (in Chinese with English abstract)
[32] 仇成群,劉成林,沈法華,等. 基于Matlab和模糊PID的汽車巡航控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):197-202. Qiu Chengqun, Liu Chenglin, Shen Fahua, et al. Design of automobile cruise control system based on Matlab and fuzzy PID[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(6): 197-202. (in Chinese with English abstract)
[33] 馬從國,趙德安,王建國,等. 基于無線傳感器網(wǎng)絡(luò)的水產(chǎn)養(yǎng)殖池塘溶解氧智能監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015,31(7):193-200. Ma Congguo, Zhao Dean, Wang Jianguo, et al. Intelligent monitoring system for aquaculture dissolved oxygen in pond based on wireless sensor network[J]. T Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(7): 193-200. (in Chinese with English abstract)
[34] 王僑,曹衛(wèi)彬,張振國,等. 穴盤苗自動(dòng)取苗機(jī)構(gòu)的自適應(yīng)模糊PID定位控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):32-39. Wang Qiao, Cao Weibin, Zhang Zhenguo, et al. Location control of automatic pick-up plug seedlings mechanism based on adaptive fuzzy-PID[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(12): 32-39. (in Chinese with English abstract)
[35] 劉浩蓬,龍長江,萬鵬,等. 植保四軸飛行器的模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):71-77. Liu Haopeng, Long Changjiang, Wan Peng, et al. Fuzzy self-adjusting proportion integration differentiation for eppo quadrocopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(1): 71-77. (in Chinese with English abstract)
李翊寧,周 偉,宋樹杰,瞿濟(jì)偉,周福陽,郭康權(quán).溫室作業(yè)用柔性底盤試驗(yàn)樣機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):41-50. doi:10.11975/j.issn.1002-6819.2017.19.006 http://www.tcsae.org
Li Yining, Zhou Wei, Song Shujie, Qu Jiwei, Zhou Fuyang, Guo Kangquan.Design of experimental prototype of flexible chassis used in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 41-50. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.006 http://www.tcsae.org
Design of experimental prototype of flexible chassis used in greenhouse
Li Yining1, Zhou Wei1, Song Shujie2, Qu Jiwei1, Zhou Fuyang1, Guo Kangquan1,3※
(1.712100,;2.712100,;3.712100,)
A novel general power-output chassis system for agricultural vehicles been used in facility agriculture was proposed in this study, and named as Flexible Chassis. An initial prototype had been developed previously for basic theoretical research of four-wheel independent drive and four-wheel independent steering which was based on a simplified model. To study the kinematic and dynamic characteristics of the Flexible Chassis under practical operating conditions, the second prototype named as the experimental prototype has been developed. The mechanical structure of the flexible chassis consisted of the chassis frame, power battery pack, and single-wheel running system. The four single-wheel running systems were symmetrically distributed on both sides of the chassis frame, which was the only source of driving force for maintaining and transforming the driving attitude of the flexible chassis. The power battery pack included four maintenance-free lead-acid batteries, and was placed in the chassis frame with a cross distribution. This allocation was helpful to reduce the whole machine size and prevented interference with the four single-wheel running systems. The single-wheel running system was the core part of the Flexible Chassis. It was made up of offset-axle knuckle mechanic, wheel hub motor, and electromagnetic locking device. Through the interaction between the four single-wheel running systems, the chassis frame, and the ground, the Flexible Chassis can achieve lengthways, horizontal, and slant linear movement, two-wheel or four-wheel steering movement, and revolving movement. The rated traction of the flexible chassis was 2 400 N, and the rated traction power was 8 kW. Therefore, it can work for more than one hour when equipped with a single furrow reversible plough. The technical parameters of the flexible chassis were that the total weight was 750 kg; and the length, width and height were 1 715, 1 475, and 1 135 mm, respectively. The tread was 1 320 mm, the wheel base was 1 200 mm, and the minimum ground clearance was 235 mm. The speed of plowing operation was 5 km/h and the maximum speed was 28 km/h. The control system of the Flexible Chassis was formed by one chassis central control subsystem (CCCS) which was composed of control handle (CH), core data processing module (CDPM), and posture monitoring module (PMM). The four single-wheel running control subsystems (SRCS) were composed of control module (CM), actuator module (AM), and state monitoring module (SMM). All the subsystems communicated through the CANBUS. When the Flexible Chassis started, the CDPM calculated the current state parameters of the Flexible Chassis through accepting and analyzing the sensors data from PMM and SMMs. When the control signal of CH was accepted, the expected state parameters of every single-wheel running system were calculated and sent to SRCSs by CDPM. The CMs, through the analysis of the expected state parameters, calculated and outputted the corresponding control signals to the AMs. Every output torque of wheel hub motors and locking torque of electromagnetic locks were adjusted in real time by AMs for realizing the expected state parameters of every single-wheel running systems, thus accomplishing the expected driving attitude of the Flexible Chassis. The adaptive fuzzy PID control theory was used to SRCSs. The steering response angle (SRA) and steering response time (SRT) of single-wheel running systems were measured. Compared to the theoretical prototype, the experimental prototype was significantly improved in terms of machine power, mechanical structure, control system and other aspects. The mean value of SRA was between 89.84° and 90.11°. The maximum value was 90.880°, and the minimum value was 89.208°. The mean value of SRT was between 4.24 and 4.28 s. The maximum value was 4.495 s, and the minimum value was 4.054 s. The results indicated that the control was relatively stable and there was no major fluctuation. The acceleration pulse of the Flexible Chassis’ barycenter was measured in vertical, horizontal, oblique linear, and rotational motion experiment. All values of acceleration pulse were less than 0.007. The results showed that the Flexible Chassis could operate stably in basic running attitude.
agricultural machinery; design; control; flexible chassis, facility agriculture; four-wheel independent dive; four-wheel independent steering; offset shaft
10.11975/j.issn.1002-6819.2017.19.006
S229+.1;U467.5+24
A
1002-6819(2017)-19-0041-10
2017-03-30
2017-06-17
國家自然科學(xué)基金項(xiàng)目(51375401)
李翊寧,陜西楊凌人,博士生,主要從事智能化農(nóng)業(yè)裝備與技術(shù)的研究。楊凌 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,712100。 Email:liyining_work@163.com。
※通信作者:郭康權(quán),陜西西安人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)技術(shù)裝備的研究。楊凌 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,712100。Email:jdgkq@nusuaf.edu.cn。