雷 斌,李 進,段留生,張鵬忠,李 杰,譚偉明
?
種衣劑對低溫處理下棉花胚根及幼苗外部形態(tài)和超微結(jié)構(gòu)的影響*
雷 斌1,2,李 進2,3,段留生1**,張鵬忠4,李 杰3,譚偉明1
(1.中國農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院,北京 100083;2.新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所,烏魯木齊 830091;3.新疆綠洲興源農(nóng)業(yè)科技有限責(zé)任公司,烏魯木齊 830091;4.國家棉花工程技術(shù)研究中心,烏魯木齊 830091)
以棉種‘新陸中54號’為材料,用3種種衣劑(棉1、棉2、棉3)包衣棉種后播種于塑料營養(yǎng)盒內(nèi),25℃恒溫培養(yǎng),分別在第4天(棉種長出胚根)和第7天(棉株幼苗)均進行5、10、15、20℃共4個低溫處理,與各低溫下未包衣種子(對照,CK)進行比較,低溫處理24h后,觀察各處理棉花胚根、幼苗外部形態(tài)和超微結(jié)構(gòu)的變化,以期通過模擬新疆早春“倒春寒”發(fā)生特點,考察種衣劑對提高棉花耐寒性的功效。結(jié)果表明:20℃下種衣劑處理與CK無差異,種子萌發(fā)正常,發(fā)芽率在92.24%~95.51%,3種種衣劑包衣處理胚根生長量為3.66~3.81cm,幼苗葉色濃綠,莖桿直立,胚根細胞中線粒體結(jié)構(gòu)完整,葉肉細胞中線粒體、葉綠體結(jié)構(gòu)規(guī)則;15℃低溫下種衣劑處理棉種發(fā)芽率較CK提高4.45~6.98個百分點,胚根生長速度下降,但包衣處理生長量較CK提高25.27%~36.05%,幼苗葉色濃綠,棉苗直立,胚根細胞中線粒體內(nèi)脊清晰,葉肉細胞中葉綠體、線粒體結(jié)構(gòu)清晰,細胞器結(jié)構(gòu)和數(shù)量明顯優(yōu)于CK;10℃低溫下棉種發(fā)芽受到抑制,但包衣處理較CK發(fā)芽率提高0.73~4.25個百分點,19.15%~42.55%的幼苗葉片下垂萎蔫,保持正常溫度后種衣劑處理棉苗很快恢復(fù)到正常形態(tài),胚根細胞中線粒體、內(nèi)質(zhì)網(wǎng)數(shù)目多于CK,葉肉細胞中葉綠體輪廓清晰,內(nèi)含物較少;5℃低溫下各處理棉種發(fā)芽率均低于50.00%,CK幼苗葉色脫水失綠,萎蔫下垂,萎蔫率達74.47%,葉綠體膨脹成圓球形、輪廓模糊,包衣處理幼苗萎蔫率在60.42%~67.45%,葉肉細胞中葉綠體結(jié)構(gòu)完整,呈橢球型,線粒體結(jié)構(gòu)較規(guī)則、內(nèi)含物渾濁。研究表明種衣劑能促進低溫處理下種子萌發(fā)、提高發(fā)芽率和胚根生長速度、保護棉苗外部形態(tài)和細胞超微結(jié)構(gòu)穩(wěn)定,維持正常生長,增強幼苗抵御低溫的危害能力。
種衣劑;棉花;低溫處理;外部形態(tài);超微結(jié)構(gòu)
棉花(L.)是重要的經(jīng)濟作物,是新疆經(jīng)濟發(fā)展的支柱,2015年新疆種植面積達242.13萬hm2,總產(chǎn)量約451.00萬t[1]。棉花是喜溫作物,棉種發(fā)芽最適溫度為28~30℃,播種期、苗期臨界溫度分別為12℃、15℃[2-3],低溫是制約其生長發(fā)育的主要因素之一,種子露白期和幼苗期是感受低溫最敏感的時期[4-6]。新疆北疆棉區(qū)由于早春“倒春寒”頻繁發(fā)生,種子露白期和幼苗期經(jīng)常發(fā)生低溫冷害,造成爛種、爛芽和死苗。種衣劑是由殺蟲劑、殺菌劑、植物生長調(diào)節(jié)劑、成膜劑、懸浮劑等成分經(jīng)特定工藝流程加工制成的,可直接或經(jīng)稀釋后包覆于種子表面,形成具有一定強度和通透性保護層膜的農(nóng)藥制劑[7],具有抗逆、助長等功能,能促進棉種發(fā)芽和幼苗生長[8]。因此,分析種衣劑對低溫處理下棉花胚根、幼苗外部形態(tài)和超微結(jié)構(gòu)響應(yīng),探索種衣劑抗寒作用機制,為種衣劑推廣提供科學(xué)依據(jù),對提高棉花抵御低溫脅迫能力、促進棉花產(chǎn)業(yè)持續(xù)健康發(fā)展具有重要意義。
關(guān)于低溫對作物生長發(fā)育和超微結(jié)構(gòu)也有相關(guān)研究,李進等[8]研究發(fā)現(xiàn)低溫脅迫會延長發(fā)芽時間、降低發(fā)芽勢、發(fā)芽率,限制下胚軸的生長,并且溫度越低,抑制作用越強,但種衣劑處理能促進低溫處理下棉花種子發(fā)芽和幼苗生長。武輝等[9]研究發(fā)現(xiàn),棉花幼苗葉片在不同程度低溫脅迫下所表現(xiàn)的冷害癥狀差異較明顯,輕則葉片下垂萎蔫,重則葉片死亡。楊云珠等[10]研究發(fā)現(xiàn),低溫條件下PVA和PEG預(yù)處理吸脹的大豆種子,其胚根細胞內(nèi)線粒體能繼續(xù)發(fā)育,有明顯的雙層膜結(jié)構(gòu)。Ma等[11]用透射電鏡觀察發(fā)現(xiàn),4℃處理下低溫敏感型綠豆葉肉細胞中葉綠體遭到破壞、淀粉粒積聚。楊鳳仙等[12]研究發(fā)現(xiàn)低溫鍛煉過程中,棉花葉片葉綠體發(fā)生明顯變形,液泡內(nèi)出現(xiàn)大量膜性結(jié)構(gòu)物質(zhì),而線粒體等其它細胞器表現(xiàn)較為穩(wěn)定。Robert等[13]研究表明,棉花葉綠體在5℃下形成外圍的網(wǎng)狀結(jié)構(gòu),也證實了低溫對膜產(chǎn)生不利影響。
目前,對棉花低溫研究大多集中在生理生化指標(biāo)上,對低溫處理下棉花種子胚根、幼苗外部形態(tài)和超微結(jié)構(gòu)關(guān)聯(lián)研究相對較少,對外源物質(zhì)提高耐低溫能力的研究報道更少。因此,本研究通過自制種衣劑包衣棉種,模擬大田低溫危害,考察種衣劑處理對不同低溫下棉花胚根及幼苗外部形態(tài)和超微結(jié)構(gòu)的影響,以期探索緩解低溫冷害對新疆棉花危害的技術(shù)及產(chǎn)品,為種衣劑推廣和棉花抗寒研究提供理論依據(jù)。
1.1 材料
試驗于2015-2016年在新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所進行。供試棉花品種為‘新陸中54號’。供試種衣劑共3種(棉1:18.6%拌·?!ひ覒腋》N衣劑;棉2:7.2%拌·福懸浮種衣劑;棉3:26%多·?!ち⒖萘讘腋》N衣劑),棉1由新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所研制,棉2、棉3為市購產(chǎn)品,分別由新疆當(dāng)?shù)毓旧a(chǎn)。
1.2 方法
1.2.1 種子包衣處理
挑選健康飽滿、大小均勻的棉花種子,按藥種重量比1:50進行包衣,陰干后置于種子袋內(nèi)保存?zhèn)溆谩?/p>
1.2.2 棉花種子發(fā)芽、胚根生長試驗、電鏡樣品取樣
將種子播種在塑料營養(yǎng)盒中放入25℃培養(yǎng)箱中培養(yǎng),基質(zhì)為細砂,培養(yǎng)箱光照強度12000lx,光周期為12h/12h(晝/夜),相對濕度70%~75%。在培養(yǎng)箱中培養(yǎng)后第4天和第7天,對3種種衣劑包衣棉種或幼苗均進行5、10、15、20℃共4個低溫處理,以各低溫下未包衣處理為對照CK,分別與相應(yīng)低溫下包衣處理進行比較。每處理50粒,重復(fù)3次。培養(yǎng)4d后低溫處理24h,記錄各處理種子發(fā)芽數(shù),計算發(fā)芽率,并從各處理隨機選取10棵測定胚根長度,計算胚根生長速度。另取5棵用蒸餾水清洗干凈,濾紙吸干水后拍照,然后快速用刀片將胚根切成厚度約0.5mm的薄片樣品,真空抽氣使完全下沉,放入4℃冰箱內(nèi)用2.5%戊二醛固定液中固定24h作為后續(xù)電鏡試驗樣品。培養(yǎng)7d后低溫處理24h,隨機定苗40株,統(tǒng)計各處理萎蔫幼苗數(shù)并拍照,計算萎蔫率,另從各處理棉花葉片中部主脈兩側(cè)無葉脈處切取寬為1~2mm的小長條樣品,真空抽氣使葉片完全下沉,放入4℃冰箱內(nèi)用2.5%戊二醛固定液中固定24h作為后續(xù)電鏡試驗樣品。
(2)
1.2.3 電鏡樣品制備與觀察
取固定好的胚根、葉片電鏡試驗樣品,用磷酸緩沖液(pH7.2)漂洗3~5次,轉(zhuǎn)入1%鋨酸液中固定1.5h。固定完成后用磷酸緩沖液(pH7.2)漂洗3~5次,再用30%、50%、60%、70%、80%、90%、95%、100%酒精逐級脫水,每次0.5h,用體積比1:1、4:1、1:0丙酮與酒精進行沖洗置換,Epon812滲透、包埋。把制好的樣品在烘箱內(nèi)烘干、超薄切片機切片、醋酸雙氧鈾和檸檬酸鉛溶液雙重染色,然后用透射電鏡觀察、拍照。
1.3 數(shù)據(jù)處理
用Microsoft Excel 2003進行數(shù)據(jù)處理,利用SPSS 17.0軟件進行方差分析(P<0.05),鄧肯氏法進行多重比較檢驗,數(shù)據(jù)均以“平均值±標(biāo)準差”表示。
2.1 種衣劑對低溫處理下棉花胚根及幼苗外部形態(tài)的影響
由圖1和圖2可見,包衣與未包衣棉花胚根和幼苗在不同低溫處理下所表現(xiàn)的外部形態(tài)差異較明顯。20℃低溫處理時棉花種子萌發(fā)正常,發(fā)芽率為92.24%~95.51%,胚根乳白色,各處理胚根長在3.66~3.81cm,幼苗葉色濃綠,莖桿直立,棉花植株無萎蔫,統(tǒng)計分析發(fā)現(xiàn)包衣與未包衣差異不顯著(表1、表2、表3)。15℃低溫處理時棉花種子萌發(fā)受到輕微抑制,發(fā)芽率降低、胚根長度受阻,CK分別比包衣處理降低4.45~6.98個百分點、25.27%~36.05%,在外觀形態(tài)方面,包衣與CK處理差異不顯著,均表現(xiàn)出幼苗葉色濃綠、莖桿直立、植株無萎蔫。10℃低溫處理時棉花種子萌發(fā)受到較大抑制,發(fā)芽率均下降,棉1處理發(fā)芽率最高,為62.72%,包衣處理較未包衣提高0.73~4.25個百分點,胚根生長受阻較大,生長量低,幼苗葉色呈暗綠色,19.15%~42.55%的幼苗葉片下垂萎蔫,種衣劑處理較CK萎蔫率下降12.76~23.40個百分點,包衣與未包衣處理差異顯著。5℃低溫處理嚴重抑制棉花種子萌發(fā),發(fā)芽率均低于50.00%,胚根生長嚴重受阻,CK幼苗葉片脫水失綠,莖桿變軟彎曲,萎蔫下垂,萎蔫率為74.47%,較包衣處理高7.02 ~14.05個百分點,差異顯著。
表1 25℃培養(yǎng)第4天進行不同低溫處理24h后棉種發(fā)芽率比較(平均值±均方差)
注:小寫字母表示品種間在0.05水平上的差異顯著性。下同。
Note:Lowercase indicates the difference significance among varieties at 0.05 level. The same as below.
2.2 種衣劑對低溫處理下棉花胚根及棉苗細胞超微結(jié)構(gòu)的影響
植物細胞的超微結(jié)構(gòu)與其耐低溫性密切相關(guān)。圖3顯示,20℃低溫處理下棉花胚根細胞中線粒體結(jié)構(gòu)完整,嵴清晰,呈橢球形,分布在細胞壁周圍,數(shù)量較少,有內(nèi)質(zhì)網(wǎng)和高爾基體分布。葉片中葉綠體結(jié)構(gòu)完整,呈長橢球狀,緊貼細胞壁分布,基粒片層結(jié)構(gòu)清晰,平行排列,多而整齊,葉綠體基質(zhì)中未見淀粉粒,線粒體結(jié)構(gòu)完整,呈橢球形,雙層膜清晰,膜系統(tǒng)結(jié)構(gòu)完整,細胞內(nèi)含物少,包衣與CK(未包衣)無明顯差異。
表2 25℃培養(yǎng)第4天進行不同低溫處理24h后棉種胚根長度比較(平均值±均方差)
表3 25℃培養(yǎng)第7天進行不同低溫處理24h后包衣與未包衣棉花幼苗萎蔫率比較
注:1、2、3、4為棉1、棉2、棉3、未包衣處理胚根細胞超微結(jié)構(gòu);5、6、7、8為棉1、棉2、棉3、未包衣處理葉肉細胞超微結(jié)構(gòu),下同。各圖放大倍數(shù):1(×30k);2(×20k);3(×17k);4(×5k);5(×17k);6(×17k);7(×20k);8(×15k)。CW:細胞壁;Ch:葉綠體;M:線粒體;SG:淀粉粒;G:基粒;O:嗜鋨顆粒;ER:內(nèi)質(zhì)網(wǎng);Ga:高爾基體
Note:1,2,3,4 represent the radicle cell ultrastructure of coated (Mian1,Mian2 and Mian3) and uncoated seed, respectively; 5, 6, 7, 8 represent the mesophyll cell ultrastructure of coated (Mian1, Mian2 and Mian3) and uncoated seed, respectively. The same as below. Direct magnification:1(×30k),2(×20k),3(×17k),4(×5k), 5(×17k), 6(×17k),7(×20k), 8(×15k). CW: cell wall; Ch: hloroplast; M: Mitochondria; SG: Starch grain; G: Grana; O: Osmiophilic material; ER: Endoplasmic reticulum; Ga: Golgi apparatus
圖4表明,15℃低溫處理下胚根細胞中線粒體結(jié)構(gòu)完整,嵴清晰,呈橢球形,分布在細胞壁周圍,種衣劑處理的線粒體、內(nèi)質(zhì)網(wǎng)數(shù)量多于CK,有高爾基體分布。種衣劑處理的葉綠體結(jié)構(gòu)完整,呈長橢球狀,緊貼細胞壁分布,基粒片層結(jié)構(gòu)較清晰,CK的葉綠體略膨脹變形,葉綠體基質(zhì)中有嗜鋨顆粒,未見有淀粉粒,線粒體結(jié)構(gòu)完整,呈橢球形,雙層膜較清晰,細胞內(nèi)含物少,包衣處理與CK差異不明顯。可見,15℃低溫條件下,種衣劑處理對棉花種子胚根和幼苗生長影響不大。
圖5表明,10℃低溫處理下棉花胚根細胞中線粒體結(jié)構(gòu)完整,嵴清晰,呈橢球形,分布在細胞壁周圍,種衣劑處理的線粒體、內(nèi)質(zhì)網(wǎng)數(shù)量略多于CK,有高爾基體分布。棉1、棉2處理的葉片葉綠體呈長橢球狀,結(jié)構(gòu)較完整,緊貼細胞壁分布,基粒片層結(jié)構(gòu)較清晰,葉綠體基質(zhì)中有嗜鋨顆粒和淀粉粒,棉3和CK的葉綠體膨脹變形,呈卵圓形,淀粉粒較大,基粒彎曲松散,線粒體結(jié)構(gòu)完整,呈橢球形,線粒體嵴清晰,細胞內(nèi)含物較少,棉1和CK之間在細胞器數(shù)量、結(jié)構(gòu)完整性和化合物數(shù)量方面差異較明顯,可見,10℃低溫處理24h時,種衣劑處理能保護細胞結(jié)構(gòu)完整,較不包衣能促進棉花種子胚根和幼苗生長。
注:各圖放大倍數(shù):1(×17k);2(×17k);3(×10k);4(×15k);5(×17k);6(×10k);7(×12k);8(×17k)
Note: Direct magnification: 1(×17k); 2(×17k); 3(×10k); 4(×15k); 5(×17k); 6(×10k); 7(×12k); 8(×17k)
注:各圖放大倍數(shù):1(×20k);2(×12k);3(×15k);4(×17k);5(×15k);6(×12k);7(×20k);8(×12k)
Note: Direct magnification:1(×20k); 2(×12k); 3(×15k); 4(×17k); 5(×15k); 6(×12k); 7(×20k); 8(×12k)
圖6顯示,5℃低溫處理下棉花胚根細胞中線粒體結(jié)構(gòu)較完整,嵴清晰可見,呈橢球形,分布在細胞壁周圍,棉1、棉3處理的線粒體、內(nèi)質(zhì)網(wǎng)、高爾基體數(shù)量略多于CK。棉1處理的棉花葉肉細胞中葉綠體結(jié)構(gòu)模糊,略微變形,呈橢球狀或圓球狀,葉綠體少量解體,葉綠體基粒片層結(jié)構(gòu)不清晰,基粒松散,葉綠體基質(zhì)中有嗜鋨顆粒和淀粉粒;棉2、棉3和CK棉花葉片葉肉細胞葉綠體輪廓模糊,大部分脫離細胞壁,呈隨機分布,結(jié)構(gòu)松散,膨脹成不規(guī)則形,基粒模糊彎曲,細胞內(nèi)含物渾濁,大部分葉綠體已經(jīng)解體,線粒體結(jié)構(gòu)模糊,淀粉粒少。5℃低溫處理24h下各處理棉花種子胚根細胞超微結(jié)構(gòu)變化不明顯,但葉片葉肉細胞超微結(jié)構(gòu)遭到破壞,可見,5℃低溫處理下,種衣劑處理尤其是棉1種衣劑處理較CK對保護細胞結(jié)構(gòu)有一定作用,但不明顯。
注:各圖放大倍數(shù):1(×35k);2(×20k);3(×6k);4(×1k);5(×10k);6(×10k);7(×8k);8(×17k)
Note: Direct magnification:1(×35k); 2(×20k); 3(×6k); 4(×1k); 5(×10k); 6(×10k); 7(×8k); 8(×17k)
試驗結(jié)果表明,20℃輕度低溫處理時棉花種子發(fā)芽率均高于90.00%,隨著處理溫度的降低,發(fā)芽率急劇下降,5℃處理時發(fā)芽率均低于50.00%,表明發(fā)芽率受溫度影響較大。但不同低溫處理下包衣棉種較CK發(fā)芽率提高1.24~9.42個百分點,說明種衣劑能促進種子萌發(fā),提高發(fā)芽率;在助長方面,20℃時各處理胚根長度在3.66~3.81cm,較5℃低溫條件下增加2.4~4.3倍,表明低溫能抑制胚根生長,溫度越低,抑制程度越大,胚根生長越慢;在外部形態(tài)方面,20℃、15℃時各處理幼苗葉色濃綠,莖直立,無萎蔫癥狀,10℃時19.15%~ 42.55%的幼苗葉片下垂萎蔫,種衣劑處理較CK萎蔫率下降12.76~23.40個百分點,5℃處理時葉片萎蔫率高達74.47%,CK較包衣處理萎蔫更明顯。5℃與10℃低溫處理下莖、葉100%彎曲、萎蔫,表明在5℃和10℃低溫處理下,種衣劑對棉花幼苗具有一定保護作用,降低萎蔫率,與王鈺靜等[5,9]等在棉花上研究結(jié)果基本一致,驗證了種衣劑能緩解棉花遭受低溫冷害的功能。
細胞器超微結(jié)構(gòu)是近年來深入研究植物抗寒性的重要指標(biāo)。本研究表明,隨著處理溫度的降低,包衣處理的棉花胚根細胞中線粒體在不同低溫下結(jié)構(gòu)均保持完整,呈橢球形,分布在細胞壁周圍,內(nèi)嵴清晰可見,線粒體、內(nèi)質(zhì)網(wǎng)數(shù)量略多于CK,溫度越低細胞器結(jié)構(gòu)完整性和豐富性越降,細胞中淀粉粒轉(zhuǎn)化為糖類的能力下降,細胞活力減弱。棉花葉片葉肉細胞中葉綠體隨著外界溫度的降低結(jié)構(gòu)遭到破壞,由長橢球狀變?yōu)閳A球狀,大部分脫離細胞壁,呈隨機分布,基粒片層結(jié)構(gòu)松散,線粒體結(jié)構(gòu)較完整,呈橢球形,雙層膜清晰,膜系統(tǒng)結(jié)構(gòu)完整,細胞內(nèi)含物多,15℃和10℃時包衣處理的葉綠體、線粒體結(jié)構(gòu)與CK相比較完整,說明低溫不僅影響植物的外部形態(tài),同時也影響植物細胞超微結(jié)構(gòu)的變化,Ma等[11-15]在綠豆、棉花、小麥、玉米等作物上也得出類似結(jié)論。輕度低溫20℃和重度低溫5℃處理時種子包衣與不包衣差異不明顯。在作物抗寒性超微結(jié)構(gòu)方面,許多研究表明,低溫脅迫能引起線粒體、葉綠體等細胞超微結(jié)構(gòu)改變,液泡膜的破壞是凍害致死的臨界線,進一步探索低溫脅迫植物超微結(jié)構(gòu)變化,對解析植物抗寒機理、鑒別作物品種抗寒性具有重要意義[16],而在棉花上的相關(guān)研究鮮有報道。有關(guān)種衣劑處理有助于保持低溫條件下棉花葉肉細胞和胚根細胞結(jié)構(gòu)完整、免遭低溫危害的研究尚無報道。
本研究根據(jù)種衣劑能促進新疆棉田出苗、保苗、低溫修復(fù)的生產(chǎn)實際,并將當(dāng)?shù)赝茝V較好的種衣劑和自制產(chǎn)品進行相關(guān)抗寒機制探討,從棉花外部形態(tài)到細胞內(nèi)部結(jié)構(gòu)均表現(xiàn)出一致性,表明種衣劑(尤其是棉1)能提高棉種及幼苗抗寒能力,這為指導(dǎo)棉花生產(chǎn)和抗寒基礎(chǔ)理論研究提供了一定的借鑒作用。但是,種衣劑調(diào)控棉種體內(nèi)激素、信號傳導(dǎo)、耐寒基因表達等抗寒機制,以及種衣劑處理后棉苗耐受低溫的范圍、持續(xù)時長、頻次等問題尚需進一步深入研究。
References
[1]新疆維吾爾自治區(qū)統(tǒng)計局.新疆統(tǒng)計年鑒[M].中國統(tǒng)計出版社,2015:363-369.
Statistic Burean of Xinjiang Uygur Autonomous Region.Xinjiang statistical yearbook[M].China Statistics Press, 2015:363-369.(in Chinese)
[2]嚴志丹.2012年阿拉爾市棉花生育期氣象條件分析[J].新疆農(nóng)墾科技,2014,(8):51-52.
Yan Z D.Analysis of cotton meteorological conditions in Alar in 2012[J].Xinjiang Farmland Reclamation Science and Technology,2014,(8):51-52.(in Chinese)
[3]劉玉濤,王瑾.低溫天氣對棉花播種出苗的影響及對策[J].中國種業(yè),2011,(2):48.
Liu Y T,Wang J.Effects of low temperature weather on the seed emergence of cotton and measures[J].China Seed Industry,2011, (2):48.(in Chinese)
[4]Ruelland E,Vaultier M N,Zachowski A.Cold signalling and cold acclimation in plants[J].Advances in Botanical Research,2009, 49:35-150.
[5]王鈺靜,謝磊,李志博,等.低溫脅迫對北疆棉花種子萌發(fā)的影響及其耐冷性差異評價[J].種子,2014,33(5):74-77.
Wang Y J,Xie L,Li Z B,et al.Effects of low temperature stress to germination of cotton seeds and evaluation of their cold resistance in northern Xinjiang[J].Seed,2014,33(5):74-77.(in Chinese)
[6]Zeinolabedin J,Rohola H,Saeed S.Chilling stress in plants[J]. International Journal of Agriculture and Crop Sciences,2013, 24(5):2961-2968.
[7]吳學(xué)宏,劉西莉,王紅梅,等.我國種衣劑的研究進展[J].農(nóng)藥,2003,42(5):1-5.
Wu X H,Liu X L,Wang H M,et al.Progressing on the study of seed coating formulations in China[J].Pesticides,2003,42(5): 1-5.(in Chinese)
[8]李進,段俊杰,努爾買買提·努爾合加,等.種衣劑對棉花幼苗生長及抗寒能力的影響[J].新疆農(nóng)業(yè)科學(xué),2015,52(11):1997- 2003.
Li J,Duan J J,Nu E M M T,et al.Effect of seed coating agents on seedling growth and cold resistance of cotton[J].Xinjiang Agricultural Sciences,2015,52(11):1997-2003.(in Chinese)
[9]武輝,張巨松,石俊毅,等.棉花幼苗對不同程度低溫逆境的生理響應(yīng)[J].西北植物學(xué)報,2013,33(1):74-82.
Wu H,Zhang J S,Shi J Y,et al.Physiological response of cotton seedlings under low temperature stress[J].Acta Bot. Boreal.- Occident.Sin,2013,33(1):74-82.(in Chinese)
[10]楊云珠,陳文濤,郭金銓.PVA和PEG預(yù)處理對大豆種子在低溫吸脹過程中胚根線粒體發(fā)育和超微結(jié)構(gòu)的影響[J].植物學(xué)報,1992,31(6):432-436.
Yang Y Z,Chen W T,Guo J Q.Effects of PVA and PEG pretreatment on development and ultrastructure of plumular root mitochondria in soybean seed during low temperature imbibition process[J].Acta Botanica Sinica,1992,31(6): 432-436.(in Chinese)
[11]Ma S F,Lin C Y,Chen Y M.Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling-sensitive(mungbean) and -insensitive(pea) seedlings[J].Bot.Bull.Academia Sinica,1990, 31:263-272.
[12]楊鳳仙,董俊梅,楊曉霞.低溫脅迫下棉葉葉綠體、液泡超微結(jié)構(gòu)的變化[J].山西農(nóng)業(yè)大學(xué)學(xué)報,2001,(2):116-117.
Yang F X,Dong J M,Yang X X.Varitions of the ultrastructure of the leaf cell of cotton under low temperature[J].Journal of Shanxi Agriculture University,2001,(2):116-117.(in Chinese)
[13]Robert R W,Mcwilliam J R,Naylor A W.A comparative study of low temperature-induced ultrastructural alterations of three species with differing chilling sensitivities[J].Plant,Cell and Environment,1983,6(7):525-535.
[14]彭倩,周青,葉亞新.La與UV-B輻射脅迫對大豆葉片細胞葉綠體超微結(jié)構(gòu)的影響[J].中國農(nóng)業(yè)氣象,2008,29(1):33-36.
Peng Q,Zhou Q,Ye Y X.Influence of La and Ultraviolet-B stress on chloroplast ultrastructure of soybean leaves[J].Chinese Journal of Agrometeorology,2008,29(1):33-36.(in Chinese)
[15]付連雙,王曉楠,王學(xué)東,等.低溫馴化及封凍后不同抗寒性小麥品種細胞超微結(jié)構(gòu)的比較[J].麥類作物學(xué)報, 2010,30(1):66-72.
Fu L S,Wang X N,Wang X D,et al.Comparison of cell ultrastructure between winter wheat cultivars during cold acclimation and freezing period[J].Journal of Triticeae Crops,2010,30(1):66-72.(in Chinese)
[16]吳凱,周曉陽.環(huán)境脅迫對植物超微結(jié)構(gòu)的影響[J].山東林業(yè)科技,2007,(3):80-83.
Wu K,Zhou X Y.Effects of Environmental stresses on plant ultrastructure[J].Shandong Forestry Science and Technology, 2007,(3):80-83.(in Chinese)
Effect of Seed Coating Agents on External Morphology and Ultrastructure of Cotton Radicles and Seedlings under Low Temperature Treatments
LEI Bin1,2, LI Jin2,3, DUAN Liu-sheng1, ZHANG Peng-zhong4, LI Jie3, TAN Wei-ming1
(1.College of Agriculture and Biotechnology, China Agricultural University, Beijing 100083, China; 2.Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091; 3.Xinjiang Oasis Agricultural Science and Technology Co., Ltd., Urumqi 830091; 4.Research Center of National Cotton Engineering and Technology, Urumqi 830091)
In this study, ‘Xinluzhong 54’ cotton seeds coated with three different homemade seed coating agents (Mian 1, Mian 2 and Mian 3) were sown in plastic nutrition boxes and cultured at 25℃. On the 4thand 7thdays when cotton seed radicles had grown into cotton seedlings, the coated cotton seeds were exposed to four low-temperature treatments at 5℃, 10℃, 15℃ and 20℃. The uncoated cotton seeds exposed to the same low-temperature treatments served as the control group (CK). The external morphologies and ultrastructures of the cotton radicles and seedlings were observed at 24 hours after low-temperature exposure to explore the effects of seed coating agents on improving the cold resistance of cotton by simulating the late spring cold climate in Xinjiang Province. The results showed that there was no significant difference between the coated and uncoated treatments at 20℃. Cotton seeds germinated normally at the germination rate of 92.24%-95.51%. The radicle growth lengths of the three different seed coating agents were 3.66-3.81cm, and the cotton seedlings grew well with dark green leaves and erect stems. The mitochondrial structure of radicle cells was complete, and the structures of mitochondria and chloroplasts in mesophyll cells were normal. Compared with the control, the seed germination rate of the coated seeds increased by 4.45-6.98 percentage points at 15℃. The radicle growth speed declined, but the growth amount increased by 25.27%-36.05%. The cotton seedlings grew well with dark green leaves and erect stems. Mitochondria cristae in radicle cells were clear. In addition, the structures of chloroplasts and mitochondria in mesophyll cells were clear, which were significantly better than after CK treatment. Cotton seed germination was inhibited at 10℃, but the germination rate of the coated seeds increased by 0.73-4.25 percentage points compared with that of the uncoated seeds. Radicle growth was limited, and the leaves were dark green. Approximately 19.15%-42.55% of the seedling leaves drooped and wilted. There were more mitochondria and endoplasmic reticula in the radicle cells of seedlings compared with that in seedlings from uncoated seeds. The outline of the chloroplast in mesophyll cells was clear with few inclusions. The Main 1 treatment was better than the other treatments. The cotton germination rate after different treatments was lower than 50.00% at 5℃. The seedling leaves in the uncoated group lost color and wilted with a wilting rate of 74.47%, whereas that of the coated treatment group was 60.42%-67.45%. The mitochondrial structure in the radicle cells was clear, and the mitochondrial structure in mesophyll cells was normal, while chloroplasts expanded into a spherical shape. The grana lamellar structure disintegrated, inclusions were turbid, and no significant difference was observed between coated and uncoated treatment groups. Our results show that seed coating agents can stimulate cotton seed germination, increase the seed germination rate and radicle growth speed under low-temperature treatments, protect the external morphology and cell ultrastructure stability of cotton radicles and seedlings, maintain normal growth, and enhance the ability of seedlings to resist damage from the low-temperature climate.
Seed coating agents; Cotton; Low temperature stress; External morphology; Ultrastructure
10.3969/j.issn.1000-6362.2017.04.006
2016-10-08
。E-mail:duanlsh@cau.edu.cn
新疆維吾爾自治區(qū)重點研發(fā)任務(wù)專項“機采棉苗期低溫冷害保苗技術(shù)與產(chǎn)品開發(fā)”(2016B01001-2-2);國家科技支撐計劃項目“棉花高產(chǎn)高效關(guān)鍵技術(shù)研究與示范”(2014BAD11B02-1-3);農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點實驗室項目“低溫脅迫下種衣劑對棉花抗寒性的影響及其作用機理研究”(25107020-201505)
雷斌(1973-),博士,研究員,研究方向為作物化控。E-mail:leib668@xaas.ac.cn