• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fine-grained Image Categorization Based on Fisher Vector

    2017-10-11 10:54:02XiaolinTianXinDingLichengJiaoandMaoguoGong

    Xiaolin Tian, Xin Ding, Licheng Jiao, and Maoguo Gong

    Fine-grainedImageCategorizationBasedonFisherVector

    Xiaolin Tian*, Xin Ding, Licheng Jiao, and Maoguo Gong

    Fine-grained image categorization is a categorization task, where classifying objects should be the same basic-level class and have similar shape or visual appearances. In general, the bag-of-words (BoW) model is widely used for image classification. However, it has a process of damage for the feature quantization in image representation, and also severely limits the descriptive power of the image representation. Fisher vectors employ soft assignments and reduce information loss due to quantization by calculating the gradient for each parameter separately, which have been shown to outperform other global representations on most benchmark datasets. In this paper, the acquired template is represented by Fisher Vector (FV). Using the improved spatial pyramid matching (SPM) to combine FV separately, we use a method, i.e., FV+SPM, to obtain a feature representation. The experimental results show that our method is superior to the most advanced classification method in the Caltech-UCSD Birds dataset.

    image categorization; fisher vector; template matching

    1 Introduction

    Classifying objects have a similar shape or visual appearances, and they are belonging to the same basic-level class. Fine-grained image categorization is designed to achieve this categorization task[1-3]. Fine-grained categorization needs more local information than the basic-level categorization, and the obtained feature should be more discriminative and characteristic. Fine-grained categorization will be widely used in many different applications.

    Fine-grained categorization requires an algorithm to discriminate delicate differences among highly similar object classes. Traditional bag-of-words (BoW) approach does not meet the requirements of fine-grained categorization. BoW model is constructed for fine-grained categorization, which can produce more redundant words than the general image categorization. However, that will increase computation complexity. Moreover, BoW model doesn’t describe direction information. Fisher vector (FV)[4]avoids this default and can fit image data. FV is a coding method derived from the Fisher core. Standardized FV is used as a critical step in achieving good performance. A template matching approach is proposed, and it can effectively preserve image detail information. Recently, the performance of template matching has been greatly increased by FV which codes higher order statistics of local features. In this paper, fine-grained image categorization with FV based on template matching is implemented. For training samples, feature points are extracted and the distribution model of these feature points is constructed by Gaussian mixture model (GMM). Accordingly, we can obtain the FV feature by the derivation of the GMM.

    The scale and orientation of object in an image need not be specifically processed, because the FV represents the entire distribution feature of image. That is to say, FV feature has the invariant attribution of scale and orientation. Due to the better discriminative and characteristic of FV feature, the proposed method performs well even with simple linear classifiers. Since template represented by FV feature lacks position information of feature points. In this paper, we introduce spatial information based on improved spatial pyramid matching (SPM)[5]. Spatial pyramid is gathered on different spatial resolution in partially disordered images. SPM achieves the statistics on different levels, and it mainly reflects the statistical feature of information distribution.

    The remaining part of this paper is organized as follows: Section 2 discusses related work. Section 3 describes the FV and GMM. Section 4 describes templates and feature representation. Section 5 describes image coding based on SPM. Experiment results are described in Section 6, and Section 7 concludes this paper.

    2 Related Work

    Image categorization has been studied for many years. Perhaps BoW model is the most common method for describing local features in an image[6]. Recently, the BoW model has been greatly enhanced by FV[7]. However, the BoW model discards the spatial order of local descriptors. A codebook-free and annotation-free approach is proposed for fine-grained image categorization in [8]. SPM for modeling the spatial layout of the local features has been developed.

    In this paper, we achieve fine-grained image categorization with FV based on template matching. For training samples, feature points are extracted and these feature points are modeled based on Gaussian mixture model (GMM). And then, the FV feature by derivation of the GMM can be obtained. We introduce image coding based on improved SPM. Spatial pyramid is gathered on different spatial resolution in partially disordered images. Due to statistics on different levels, SPM model is able to influence on statistical feature of information distribution.

    3 The FV and GMM

    In this section, we introduce the Fisher Vector (FV) and establishment of GMM. We first describe the principle of the Fisher kernel (FK)[9], and then describe the GMM model.

    3.1 The Fisher Kernel

    In this section, we introduce the Fisher Vector (FV) and GMM model. We first describe the principle of the Fisher Kernel (FK)[9]. LetX={xt,t=1,2,…,T} be a sample set of local feature descriptors,Tis the number of the samples.Xcan be described as the following gradient vector[9]:

    (1)

    (2)

    Fλ=Ex~u λ[▽?duì)薼oguλ(x)▽?duì)薼oguλ(x)′]

    (3)

    Assuming that the above feature distribution is independent and governed by the mixture Gaussian distribution, we can useKGaussian distributions to express these independent distributions. Let the parameterλ={wi,μi,∑i,i=1,2,…,K}, we can obtain the value of logarithm:

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    3.2 FV normalization

    We now describe two normalization steps after the FV is obtained[10-11].

    L2-normalization. When two images contain the same object and have different amount of background information (e.g. the same object at different scales), we will obtain different signatures. Especially, small objects with a small specific information value will be difficult to be detected. To remove the dependence on specific information, we can use L2-normalization[12]to replace Kernel:

    (10)

    PowerNormalization. The great number of similar Gaussian function is yielded with the increase of the number of Gaussian, which results in redundant FV feature. We intend to use the following function to achieve power normalization in each dimension:

    (11)

    where 0≤α≤1 is a normalized parameter, and the parameter value will change with the number of Gaussian. In practice, combining L2-normalization with power normalization, we firstly execute power normalization, and then use L2-normalization, which can eliminate the influence of two types of normalization. The categorization performance will be better than non-normalization.

    4 Templates and Feature Representation

    Fig.1 Acquisition of the templates.

    5 Image Coding based on SPM

    SPM procedure divides an image into three different levels, i.e., layer 0, layer 1, and layer 2, and then we can deal with statistical image information for each level. The process is shown in Fig.2. The first layer is divided 4 blocks, the second layer is divided 16, and the layeriis divided blocks 2i×2i. The final image is consist of concatenated and normalized statistical information at different levels in different blocks.

    Fig.2 Construction of SPM

    Generally, two layers of Pyramid are used to deal with statistical information, which is beneficial for reducing computational complexity[20]. From each block, the three biggest similarity of response diagram is taken at the layer 0. The layer 1 and layer 2 are the same processing step in each block. The three locations with biggest similarity values should have a certain distance, which is beneficial for whole statistics of a block. After obtaining statistical distribution of whole and local similarity, we are able to represent response vector of a template on the image[21]. So that response vectors of all the templates are jointed. Finally, the statistic feature of each image is obtained by matching the same template sets.

    Based on above description, the step of proposed algorithm is described as follows:

    1) Extract features;

    2) Establish GMM based on all the feature points;

    3) Obtain templates in the specified training samples;

    4) All of the templates are represented by FV;

    5) Code feature representation based on SPM;

    6) Match each template and image and obtain response diagram of similarity;

    7) The spatial hierarchical statistics representation is jointed as image coding;

    8) Carry out image categorization using SVM;

    9) According to confusion matrix, output the categorization accuracy.

    6 Experiments

    The proposed method is implemented in MATLAB (Version R2010a) on a machine with an Intel core i5-5200 CPU, 8 GB memory and Microsoft Windows 7 operating system.

    Caltech-UCSD Birds dataset (CUB-200)[22]is widely used in the fine-grained image categorization. It contains 15 training images and 10 to 25 test images for each category, which is in total of 200 bird images. For verifying our categorization performance, a part of the image library are used from the Black Capped Vireo to the Downy Woodpecker[23], which contains 13 categories of birds.

    CUB-200 dataset has handled a coarse segmentation well, which can be used in our training samples. Take out the target from images as a new training sample set, and get a template in the selected target image. We select templates with five sizes, i.e.,WH=[20 20; 50 50; 100 100; 50 80; 80 50 ], whereWHis width and height of a template in the experiment.

    Since images have been segmented roughly in this dataset, we use a method called super-pixel segmentation(SLIC) to deal with the segmented target regions of images in the training samples. The number of super-pixel blocks is initialized 150 blocks, and RGB features of each image are extracted. Using these RGB feature points to establish GMM. Fig.3 shows that the number of GMM affects algorithm performance.

    In experiments, we firstly determine how many GMM is the best to implement classification. We randomly select six different locations in each training samples, so that we get 13×15×5×6=5850 templates, which is expressed by FV coding with power normalization and L2-normalization. Finally, we use 1×13 vectors in SPM model that represents the matching result of each template. When the number of GMM is larger and the number of feature point is fewer, the average accuracy rate will decline; when the number of GMM is fewer, it is more difficult to obtain the accurate feature distribution. As a result, five GMM are selected in our experiments.

    Fig.3TherelationbetweenalgorithmperformanceandnumberofGMM.

    Fig.4(a) shows response diagram of a template in an image, where we consider the three maximum similarity values with a certain distance. The distance among the three points with maximum similarity values should larger than 0.1 times the width (height). In Fig.4(b), the image is divided into 2×2 blocks, and we only consider the maximum similarity value of each block; In Fig.4(c), the image is divided into top, middle and bottom part. We only consider the maximum similarity value of each block. The processing procedure of Fig.4(d) is similar to Fig.4(c). Finally, we can get a vector with thirteen dimensions, which represent the coding of a template in an image. In experiments, we extract only the RGB feature and use coding method based on the SPM model. The number of templates, randomly selected from each training image, has great influence on image coding. Fig.5 shows how the number of templates affects algorithm performance.

    Fig.4 Formation of 1×13 vector

    We selected 50 templates from each training image in our experiments. CUB-200 dataset has 13 categories, and each category has 15 training images, from which we select 10 images. And then, we get 13×50×10=6500 templates. Each template corresponds to a 1×13-dimensional image representation. The final dimension of an image is 6500×13=84500. We reduce the dimension of the image representation by principal component analyses (PCA), and implement classification with support vector machine (SVM).

    In experiments, it takes 2 minutes 10 seconds for extracting features and FV representation based on SPM needs 44 minutes 20 seconds. It is in total of 46 minutes 30 seconds. For accurately describing image information, FV representation based on SPM is implemented by two traverses in our experiments, which takes most of the time. In addition, we achieve two other models: FV+VQ (Vector Quantization) and FV+LLC (locality-constrained linear coding). The compared methods include: cSIFT+SPM[24], MKL[25], Birdlet[26], and CF+AF[19]. Confusion matrix and mean average precision (MAP) is used as evaluation criteria, and the classification results are shown in Table 1. Compared with other methods from Table 1, we know that our method improves classification performance.

    Fig.5Therelationbetweennumberoftemplateandalgorithmperformance.

    Table 1 Comparison of classification results.

    7 Conclusion

    In this paper, we use a FV coding method to implement fine-grained image categorization. After extracting feature points and creating GMM model, the statistic feature of FV coding of each image is obtained. Furthermore, FV coding of an image based on SPM is achieved, and the spatial hierarchical statistics is obtained for coding image. Finally, SVM classifier is carried out to finish the image categorization. Generally, our method improves the accuracy rate of fine-grained image categorization compared with other methods.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China under Grant 61571342, 61573267, 61473215; by the National Basic Research Program of China under Grant 2013CB329402; by Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2017JM6032.

    [1]I. Biederman, S. Subramaniam, M. Bar, P. Kalocsai, and J. Fiser, Subordinate-level object classification reexamined,Psychol.Res., 62(2-3): 131-153, 1999.

    [2]S.Branson, C.Wah, F.Schroff, B.Babenko, P.Welinder, P.Perona, and S.Belongie. Visual recognition with humans in the loop, inProceedingsofEuropeanConferenceonComputerVision, Crete, Greece, 2010, pp.438- 451.

    [3]A. Hillel and D. Weinshall,Subordinate class recognition using relational object models, inNeuralInformationProcessingSystems2006(NIPS),Canada,2006,pp.73-80.

    [4]J. Yang, K. Yu, Y. Gong, and T Huang, Linear spatial pyramid matching using sparse coding for image classification, inProceedingsof2009IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Miami, USA,2009, pp.1794-1801.

    [5]S. Lazebnik, C. Schmid, and J. Ponce,Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, inProceedingsof2006IEEEConferenceonComputerVision and Pattern Recognition (CVPR), New York, USA, 2006, pp.2169-2178.

    [6]J. Sivic and A. Zisserman,Video google: a text retrieval approach to object matching in videos, inProceedingsof2003IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Madison, USA, 2003, pp.1470-1478.

    [7]W. Zheng, S. Gong, and T. Xiang, Associating groups of people, inProceedingsofBritishMachineVisionConference(BMVC), London, 2009, 23.1-23.11

    [8]B. B. Yao, G. Bradski and F. F. Li, A codebook-free and annotation-free approach for fine-grained image categorization, inProceedingsof2012IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Rhode Island, USA, 2012, pp.3466-3473.

    [9]J. Sanchez, F. Perronnin, and T. Mensink, Image classification with the Fisher Vector: theory and practice,Int.J.Comput.Vis., vol.105,no.3,pp.222-245, 2013.

    [10] F. Perronnin, J. Sanchez, and T. Mensink, Improving the Fisher kernel for large-scale image classification, inProceedingsof11thEuropeanConferenceonComputerVision(ECCV), Heraklion, Greece,2010, pp.119-133.

    [11] F. Perronnin and C. Dance, Fisher kernels on visual vocabularies for image categorization, inProceedingsof2007IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Minnesota, USA,2007, pp.1-8.

    [12] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study,Int.J.Comput.Vis., vol.73,no.2,pp.213-238,2005.

    [13] H. Liu and Z. Su, Template-based multiple codebooks generation for fine-grained shopping classification and retrieval, inProceedingsofinternationalconferenceondigitalhome(ICDH), Guangzhou,China,2014, pp.293-298.

    [14] S.Branson, C.Wah, F.Schroff, B.Babenko, and S.Belongie, Visual recognition with humans in the loop, inProceedingsofEuropeanConferenceonComputerVision, Crete, Greece, 2010, pp.438- 451.

    [15] D. G. Lowe,Distinctive image features from scale-invariant keypoints,Int.J.Comput.Vis., vol.60,no.2,pp.91-110, 2004.

    [16] K. VandeSande, T. Gevers, and C. Snoek, Evaluating color descriptors for object and scene recognition,IEEETrans.PatternAnal.Mach.Intell.,vol. 32,no.9,pp.1582-1596, 2010.

    [17] P. S. Hiremath and J. Pujari,Content based image retrieval using color, texture and shape features, inProceedingsof15thInternationalConferenceonAdvancedComputing&Communication(ADCOM), Guwahati,India,2007, pp.780-784.

    [18] J. Yu, Z. Qin, T. Wan, and X .Zhang, Feature integration analysis of bag-of-features model for image retrieval,Neurocomputing,vol.120, pp.355-364, 2013.

    [19] Li L J, Su H, Xing E, Li.F F, Object bank: A high-level image representation for scene classification and semantic feature sparsification, inNeuralInformationProcessingSystems(NIPS), Whistler, Canada, 2010, pp.719-729.

    [20] S. Maji, L. Bourdev, and J. Malik, Action recognition from a distributed representation of pose and appearance, inProceedingsof2011IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Colorado Springs,USA, 2011, pp.3177-3184.

    [21] A. Coates and H. Lee, An analysis of single-layer networks in unsupervised feature learning, inProceedingsofinternationalconferenceonArtificialIntelligenceandStatistics(AISTATS), FL, USA, 2011,pp. 215-233.

    [22] P.Welinder, S.Branson, T.Mita, C.Wah, F.Schroff, S.Belongie, and P.Perona, Caltech-UCSD Birds 200,California Institute of Technology,CNS-TR-2010-001,2010.

    [23] R. Farrell, O. Oza, N. Zhang, and VI Morariu,Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance,inProceedingsofIEEEInternationalConferenceonComputerVision(ICCV), Barcelona,Spain,2011,pp.809-818.

    [24] S. Lazebnik, C.Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, inProceedingsof2006IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition(CVPR2006), NY, USA,2006,pp. 2169-2178.

    [25] S. Branson, C.Wah, F.Schroff, B.Babenko, P.Welinder, P.Perona, and S.Belongie.Visual recognition with humans in the loop, inProceedingsof11thEuropeanConferenceonComputerVision(ECCV), Crete, Greece,2010, pp.438- 451.

    [26] B. B. Yao, A. Khosla, and F. F. Li,Combining randomization and discrimination for fine-grained image categorization, inProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR), Colorado Springs,USA, 2011, pp.1577-1584.

    XiaolinTianis currently an Associate Professor in the Electronic Engineering School, Xidian University, Xi’an, China. He received PhD degree from Xidian University in 2008. During 2011 and 2012, he was a visiting scholar at Vision Lab, University of California, Los Angeles, USA. His current research interests are in the areas of image and video processing.

    LichengJiaoreceived the B.S. degree from Shanghai Jiaotong University, Shanghai, China, in 1982, the M.S. and PhD degrees from Xi’an Jiaotong University, Xi’an, China, in 1984 and 1990, respectively.Since 1992, he has been a Professor with the School of Electronic Engineering, Xidian University, Xi’an, China. He was in charge of about 40 important scientific research projects, and published more than 20 monographs and 100 papers in international journals and conferences. His research interests include image processing, natural computation, machine learning, and intelligent information processing.MaoguoGongreceived the B. Eng degree and Ph.D. degree from Xidian University. Since 2006, he has been a teacher of Xidian University. He was promoted to associate professor and full professor in 2008 and 2010, respectively, both with exceptive admission.Gong’s research interests are broadly in the area of computational intelligence, with applications to optimization, learning, data mining and image understanding. He has published over one hundred papers in journals and conferences, and holds over twenty granted patents as the first inventor. He is leading or has completed over ten projects as the PI, funded by the National Natural Science Foundation of China, the National High Technology Research and Development Program (863 Program) of China and others. He was the recipient of the prestigious National Program for Support of Top-notch Young Professionals (selected by the Central Organization Department of China), the Excellent Young Scientist Foundation (selected by the National Natural Science Foundation of China), the New Century Excellent Talent in University (selected by the Ministry of Education of China), the Young Teacher Award by the Fok Ying Tung Education Foundation, and the National Natural Science Award of China.

    2016-12-20; accepted:2017-1-20

    the B.S. degree in electronic engineering from the Zhengzhou University, Zhengzhou, China, in 2015. He is currently pursuing the M. S. degree in Xidian University, Xi’an, China.

    ?Xiaolin Tian, Xin Ding, Licheng Jiao and Maoguo Gong are with Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center of Intelligent Perception and Computation, International Collaboration Joint Lab in Intelligent Perception and Computation, Xidian University, Xi’an 710071, China.E-mail:xltian@mail.xidian.edu.cn

    *To whom correspondence should be addressed. Manuscript

    国产午夜福利久久久久久| 精品人妻偷拍中文字幕| 色在线成人网| 99久久精品热视频| 国产一区二区激情短视频| 日韩强制内射视频| 偷拍熟女少妇极品色| 91久久精品国产一区二区成人| 一区二区三区免费毛片| 国产成人影院久久av| 夜夜爽天天搞| 国产精品久久视频播放| 又爽又黄无遮挡网站| 色尼玛亚洲综合影院| 一级毛片aaaaaa免费看小| 精品福利观看| 少妇被粗大猛烈的视频| 一夜夜www| 亚洲国产精品成人久久小说 | 日日摸夜夜添夜夜爱| 免费高清视频大片| 欧美zozozo另类| 免费观看的影片在线观看| 国模一区二区三区四区视频| 国产日本99.免费观看| 99热这里只有精品一区| 国产在线精品亚洲第一网站| 成人高潮视频无遮挡免费网站| 中文字幕av成人在线电影| 国产不卡一卡二| 亚洲综合色惰| 国产高清不卡午夜福利| 精品久久久久久久久亚洲| 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 午夜福利在线观看吧| 亚洲国产色片| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品论理片| 99视频精品全部免费 在线| 又黄又爽又免费观看的视频| 亚洲无线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有是精品50| 搡老熟女国产l中国老女人| 亚洲av二区三区四区| 我的老师免费观看完整版| 欧美日韩在线观看h| 国产蜜桃级精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 观看美女的网站| 亚洲精品久久国产高清桃花| 久久草成人影院| 久久久精品大字幕| 一个人看视频在线观看www免费| 日日摸夜夜添夜夜添av毛片| 此物有八面人人有两片| 深夜精品福利| 毛片一级片免费看久久久久| 少妇人妻精品综合一区二区 | 亚洲一区二区三区色噜噜| 无遮挡黄片免费观看| 深夜精品福利| 精品免费久久久久久久清纯| 一进一出抽搐动态| 日韩大尺度精品在线看网址| av天堂中文字幕网| 亚洲成人中文字幕在线播放| 97在线视频观看| 亚洲精品国产成人久久av| 少妇丰满av| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 国产黄色小视频在线观看| 成人无遮挡网站| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av天美| 麻豆一二三区av精品| 三级国产精品欧美在线观看| 国产精品一及| 亚洲aⅴ乱码一区二区在线播放| 日韩 亚洲 欧美在线| 亚洲第一电影网av| 精品久久久久久久人妻蜜臀av| 三级经典国产精品| 嫩草影视91久久| 亚洲综合色惰| 久久久久久久久久黄片| 久久人人爽人人爽人人片va| 97热精品久久久久久| 高清毛片免费观看视频网站| 国产精品久久久久久久久免| 精品久久久噜噜| 少妇的逼水好多| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 性插视频无遮挡在线免费观看| aaaaa片日本免费| 可以在线观看毛片的网站| 亚洲va在线va天堂va国产| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| 精品人妻偷拍中文字幕| 男人的好看免费观看在线视频| 女生性感内裤真人,穿戴方法视频| av在线观看视频网站免费| 一级黄色大片毛片| 人妻丰满熟妇av一区二区三区| 91精品国产九色| 国产精品av视频在线免费观看| 最近在线观看免费完整版| 中文字幕av在线有码专区| avwww免费| 在现免费观看毛片| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 国产单亲对白刺激| 特级一级黄色大片| 97超视频在线观看视频| 亚洲国产精品成人久久小说 | 日韩av不卡免费在线播放| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 亚洲电影在线观看av| 一区福利在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品在线观看二区| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 黄色视频,在线免费观看| 在线播放国产精品三级| av中文乱码字幕在线| 在线观看午夜福利视频| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| videossex国产| 久久久久久久久久成人| 床上黄色一级片| 国产精品一区二区免费欧美| 91av网一区二区| 亚洲最大成人手机在线| 欧美激情久久久久久爽电影| 亚洲av成人av| 老女人水多毛片| 久久精品久久久久久噜噜老黄 | 婷婷六月久久综合丁香| 免费观看的影片在线观看| 男女那种视频在线观看| 国产精品av视频在线免费观看| 国产视频内射| 天天躁夜夜躁狠狠久久av| 不卡视频在线观看欧美| 国产精品电影一区二区三区| 亚洲美女搞黄在线观看 | 国产亚洲精品综合一区在线观看| av在线亚洲专区| 国产在视频线在精品| 91狼人影院| 精品不卡国产一区二区三区| av天堂在线播放| 一级黄色大片毛片| 精品久久久久久久人妻蜜臀av| 晚上一个人看的免费电影| 六月丁香七月| 变态另类丝袜制服| 午夜a级毛片| 成人毛片a级毛片在线播放| 国产精品国产高清国产av| 免费观看精品视频网站| 美女高潮的动态| 中国美女看黄片| АⅤ资源中文在线天堂| av天堂中文字幕网| 国内精品久久久久精免费| 又爽又黄无遮挡网站| 99久久精品国产国产毛片| 亚洲成人久久性| 中文字幕免费在线视频6| 午夜福利视频1000在线观看| 男女之事视频高清在线观看| 亚洲一级一片aⅴ在线观看| 老熟妇仑乱视频hdxx| 大香蕉久久网| 国产精品一区二区免费欧美| 亚洲欧美清纯卡通| 岛国在线免费视频观看| 国产欧美日韩精品亚洲av| 男女下面进入的视频免费午夜| 中文字幕av成人在线电影| 亚洲av电影不卡..在线观看| 好男人在线观看高清免费视频| 一个人免费在线观看电影| 欧美日韩在线观看h| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 国产色爽女视频免费观看| 国产v大片淫在线免费观看| 久久九九热精品免费| 欧美激情在线99| 国产精品日韩av在线免费观看| 婷婷六月久久综合丁香| 亚洲乱码一区二区免费版| 熟女电影av网| 一级a爱片免费观看的视频| 日韩人妻高清精品专区| 内射极品少妇av片p| 久久人妻av系列| 欧美成人a在线观看| 免费看a级黄色片| 国产高清视频在线播放一区| av天堂中文字幕网| 婷婷亚洲欧美| 欧美xxxx性猛交bbbb| 九色成人免费人妻av| 成人毛片a级毛片在线播放| 女同久久另类99精品国产91| 九九爱精品视频在线观看| a级毛色黄片| 国产欧美日韩一区二区精品| 69av精品久久久久久| 国产亚洲91精品色在线| 国产高清视频在线播放一区| 最近在线观看免费完整版| 国产精品久久久久久av不卡| 我的女老师完整版在线观看| 日韩人妻高清精品专区| 久久久久国产精品人妻aⅴ院| 国产精品伦人一区二区| 最近在线观看免费完整版| 久久久久国内视频| 成人国产麻豆网| 免费看a级黄色片| 亚洲精品影视一区二区三区av| 俄罗斯特黄特色一大片| 国产精品爽爽va在线观看网站| 成人永久免费在线观看视频| 乱人视频在线观看| 精品午夜福利在线看| 日日撸夜夜添| 色综合亚洲欧美另类图片| 日日啪夜夜撸| 99久久精品国产国产毛片| 一区二区三区四区激情视频 | 中文字幕精品亚洲无线码一区| 欧美丝袜亚洲另类| 99热6这里只有精品| 成人无遮挡网站| 18禁在线播放成人免费| 变态另类丝袜制服| 精品久久久久久久久av| 国产黄a三级三级三级人| 国产成人91sexporn| 寂寞人妻少妇视频99o| 国产黄片美女视频| 极品教师在线视频| 亚洲精品久久国产高清桃花| 欧美激情在线99| 亚洲国产精品成人综合色| 亚洲欧美日韩卡通动漫| 综合色丁香网| 亚洲人成网站在线播放欧美日韩| 黄色一级大片看看| 成熟少妇高潮喷水视频| 晚上一个人看的免费电影| 精品久久久久久久久av| 免费看光身美女| 51国产日韩欧美| 国产淫片久久久久久久久| 成人漫画全彩无遮挡| 舔av片在线| 国产精品久久久久久精品电影| 人人妻人人看人人澡| 丝袜美腿在线中文| 伦理电影大哥的女人| 国产精品一区二区免费欧美| 亚洲国产精品国产精品| 国产精品永久免费网站| 欧洲精品卡2卡3卡4卡5卡区| 麻豆av噜噜一区二区三区| 激情 狠狠 欧美| 成年女人永久免费观看视频| 亚洲成人中文字幕在线播放| 精品人妻视频免费看| 亚洲无线在线观看| 亚洲18禁久久av| 久久中文看片网| 国产一区亚洲一区在线观看| 久久人人精品亚洲av| 亚洲一区二区三区色噜噜| 成年版毛片免费区| 又黄又爽又免费观看的视频| 亚洲av免费高清在线观看| 自线自在国产av| 妹子高潮喷水视频| 一级爰片在线观看| 亚洲av在线观看美女高潮| 日本-黄色视频高清免费观看| 色婷婷av一区二区三区视频| 成人特级av手机在线观看| 三级国产精品片| 看免费成人av毛片| 欧美另类一区| 午夜影院在线不卡| 日本与韩国留学比较| 我要看日韩黄色一级片| 久久6这里有精品| 毛片一级片免费看久久久久| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 精品久久久精品久久久| 久久久国产欧美日韩av| 久久99精品国语久久久| 中国国产av一级| 青春草视频在线免费观看| 2022亚洲国产成人精品| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 夜夜骑夜夜射夜夜干| 人人妻人人看人人澡| 欧美三级亚洲精品| 丰满迷人的少妇在线观看| 国产成人a∨麻豆精品| 大片免费播放器 马上看| 天堂俺去俺来也www色官网| 七月丁香在线播放| 欧美 亚洲 国产 日韩一| 国产探花极品一区二区| 在线精品无人区一区二区三| 亚洲精品色激情综合| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 国产视频内射| 在线看a的网站| 国产精品国产三级国产av玫瑰| a级毛色黄片| 看十八女毛片水多多多| 日日摸夜夜添夜夜添av毛片| 深夜a级毛片| 99久久精品热视频| 日韩欧美一区视频在线观看 | 成人美女网站在线观看视频| 精品少妇黑人巨大在线播放| 99视频精品全部免费 在线| 日韩成人伦理影院| 成人综合一区亚洲| 插逼视频在线观看| av天堂中文字幕网| 伊人亚洲综合成人网| 九九爱精品视频在线观看| 九九爱精品视频在线观看| 国产真实伦视频高清在线观看| 一本久久精品| 久久99热这里只频精品6学生| 中文字幕精品免费在线观看视频 | 草草在线视频免费看| 久久热精品热| 成年女人在线观看亚洲视频| 丰满饥渴人妻一区二区三| 婷婷色综合www| 插阴视频在线观看视频| 热re99久久精品国产66热6| 国产成人精品一,二区| 性高湖久久久久久久久免费观看| 亚洲成色77777| 国产亚洲5aaaaa淫片| 精品酒店卫生间| 蜜桃在线观看..| 免费在线观看成人毛片| 久久精品久久久久久久性| 亚洲精品乱码久久久v下载方式| 狂野欧美白嫩少妇大欣赏| 精品国产国语对白av| 成人影院久久| 日本爱情动作片www.在线观看| 免费看av在线观看网站| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 少妇的逼水好多| 亚洲三级黄色毛片| 亚洲欧美精品专区久久| 我要看黄色一级片免费的| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产爽快片一区二区三区| 91久久精品电影网| 亚洲国产精品专区欧美| 精品一区二区免费观看| 亚洲高清免费不卡视频| 中文字幕久久专区| 黄色配什么色好看| 国产在线男女| 亚洲欧洲国产日韩| 夜夜骑夜夜射夜夜干| 日韩电影二区| 少妇人妻一区二区三区视频| 亚洲精品日本国产第一区| 国产精品99久久久久久久久| 日韩一本色道免费dvd| 老司机影院成人| 欧美最新免费一区二区三区| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 黄色配什么色好看| 黄色怎么调成土黄色| 久久久a久久爽久久v久久| av播播在线观看一区| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 国产一区亚洲一区在线观看| 最后的刺客免费高清国语| 蜜桃在线观看..| av播播在线观看一区| 久久国产亚洲av麻豆专区| 嘟嘟电影网在线观看| 久久免费观看电影| 久久97久久精品| 欧美高清成人免费视频www| 色5月婷婷丁香| 777米奇影视久久| 街头女战士在线观看网站| 99热网站在线观看| 桃花免费在线播放| 国产黄片美女视频| 内射极品少妇av片p| 最近中文字幕2019免费版| 国产高清不卡午夜福利| 亚洲电影在线观看av| 黄片无遮挡物在线观看| 亚洲av中文av极速乱| 欧美精品一区二区大全| 成人亚洲欧美一区二区av| 国产 一区精品| 高清视频免费观看一区二区| 欧美日韩综合久久久久久| 免费观看av网站的网址| 国产一区二区三区综合在线观看 | 多毛熟女@视频| 精品一区二区免费观看| 欧美日韩视频高清一区二区三区二| 一边亲一边摸免费视频| 国产国拍精品亚洲av在线观看| av在线播放精品| 国产69精品久久久久777片| 久久精品熟女亚洲av麻豆精品| 两个人免费观看高清视频 | 热99国产精品久久久久久7| 狠狠精品人妻久久久久久综合| 一个人看视频在线观看www免费| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 亚洲电影在线观看av| 欧美日韩视频高清一区二区三区二| 欧美xxxx性猛交bbbb| 少妇 在线观看| 久久综合国产亚洲精品| 在线观看美女被高潮喷水网站| av又黄又爽大尺度在线免费看| 国产91av在线免费观看| 这个男人来自地球电影免费观看 | 大片电影免费在线观看免费| 亚洲精品456在线播放app| 免费人成在线观看视频色| 亚洲美女黄色视频免费看| 久久精品久久久久久久性| 性色av一级| 中文字幕久久专区| av免费观看日本| 欧美精品国产亚洲| 亚洲成人手机| 久久精品国产亚洲网站| h日本视频在线播放| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 欧美xxⅹ黑人| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美一区二区三区国产| 啦啦啦啦在线视频资源| 在线观看免费日韩欧美大片 | 国产精品国产三级专区第一集| 日韩免费高清中文字幕av| 男人狂女人下面高潮的视频| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 国产高清有码在线观看视频| 插逼视频在线观看| 精品卡一卡二卡四卡免费| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 香蕉精品网在线| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 老司机影院毛片| 亚洲自偷自拍三级| 国产亚洲av片在线观看秒播厂| 国产免费一级a男人的天堂| 嫩草影院入口| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 插阴视频在线观看视频| 97在线人人人人妻| 国产极品天堂在线| 一边亲一边摸免费视频| 王馨瑶露胸无遮挡在线观看| 夫妻性生交免费视频一级片| 伊人亚洲综合成人网| 乱系列少妇在线播放| 国产成人精品一,二区| 国产亚洲欧美精品永久| 极品教师在线视频| 涩涩av久久男人的天堂| 国产一区有黄有色的免费视频| 肉色欧美久久久久久久蜜桃| 欧美最新免费一区二区三区| 亚洲精品日韩av片在线观看| 精品久久久久久久久亚洲| 久久精品国产自在天天线| 亚洲av欧美aⅴ国产| 色网站视频免费| 久久韩国三级中文字幕| 亚洲欧美成人精品一区二区| 亚洲电影在线观看av| 精品少妇内射三级| 赤兔流量卡办理| 在线观看三级黄色| 久久国内精品自在自线图片| 国产高清有码在线观看视频| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 久久久国产一区二区| 久久97久久精品| 亚洲国产欧美日韩在线播放 | 国内精品宾馆在线| 人妻一区二区av| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 精品久久久噜噜| 国产欧美日韩综合在线一区二区 | 欧美日韩视频高清一区二区三区二| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频 | 国产精品福利在线免费观看| 少妇 在线观看| 国产女主播在线喷水免费视频网站| 人人澡人人妻人| 精品一区二区三卡| 精品久久国产蜜桃| 亚洲欧美中文字幕日韩二区| 在线看a的网站| 日韩 亚洲 欧美在线| 国产中年淑女户外野战色| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| 精品久久国产蜜桃| 精品卡一卡二卡四卡免费| 高清欧美精品videossex| 高清黄色对白视频在线免费看 | 在线观看av片永久免费下载| 五月伊人婷婷丁香| 欧美国产精品一级二级三级 | 国产精品一二三区在线看| 亚洲经典国产精华液单| 午夜老司机福利剧场| 天堂8中文在线网| av在线老鸭窝| 久久久久久久久久久久大奶| 青春草国产在线视频| 不卡视频在线观看欧美| av女优亚洲男人天堂| 麻豆乱淫一区二区| 丝袜在线中文字幕| 亚洲成色77777| 日本-黄色视频高清免费观看| 日本av免费视频播放| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 久久久精品94久久精品| kizo精华| 国产日韩一区二区三区精品不卡 | av网站免费在线观看视频| tube8黄色片| 久久国产精品男人的天堂亚洲 | 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费 | 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 国产欧美日韩精品一区二区| 亚洲av中文av极速乱| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 777米奇影视久久| 国产精品久久久久久久久免| 久久精品熟女亚洲av麻豆精品| 国内揄拍国产精品人妻在线| 免费看av在线观看网站| 精华霜和精华液先用哪个| 中文乱码字字幕精品一区二区三区| 一级av片app| 这个男人来自地球电影免费观看 | 日韩中字成人| 国产精品久久久久久av不卡| 99国产精品免费福利视频| 国产在线视频一区二区|