• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second Order Differential Evolution Algorithm

    2017-10-11 10:53:57XinchaoZhaoGuangzhiXuDongyueLiuandXingquanZuo

    Xinchao Zhao, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    SecondOrderDifferentialEvolutionAlgorithm

    Xinchao Zhao*, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    Differential evolution (DE) is a simple, efficient and robust Evolutionary Algorithm (EA) for various optimization problems, which has several outstanding features, such as low time complexity, ease to use and robust steadiness. So it is becoming more and more popular and being widely used in more and more applications. However, many questions are deserving to consider the balance between exploration and exploitation behaviors. The difference vector of mutation operator for the neighborhood and direction information has not been completely utilized. Therefore, a second order differential evolution algorithm, SODE, is proposed, which can efficiently utilize the search direction information from the second order difference vector. The optimal second order difference mechanisms are proposed for DE/rand/1 and DE/best/1 to utilize the neighborhood and direction information of the difference vector. Then it will guide the individuals toward the possible more encouraging areas. Extensive experiments and comprehensive comparisons show that the second order difference mechanism in SODE is much better than the classical first order difference mechanisms based mutation strategy-“DE/rand/1” and “DE/best/1” as far as the converging and steady performance.

    differential evolution; second order difference vector; memory storage; swarm intelligence

    1 Introduction

    Many kinds of metaheuristic optimization algorithms are proposed for various increasing optimization problems in the recent few decades, which include Evolutionary Algorithms (EAs)[1], Particle Swarm Optimization (PSO)[2], Simulated Annealing (SA)[3], Ant Colony Optimization (ACO)[4]and Differential Evolution (DE)[5]etc.. Although these algorithms have better performance when solving various scientific and engineering problems involving nonlinear, multidimensional and no differentiable problems, many of them are still possible to be trapped in a local optimum when the current solution closes to the local trap or the optimal solution is far from the true optimum[6,7], especially for multimodal optimization problems[8].

    Differential evolution, a simple, yet very efficient evolutionary algorithm for many complex optimization problems, was proposed by Price and Storn[5]. It has been proved that DE has a series of advantages, such as lower computational complexity, higher robustness and simplexes, which made it used to find the satisfactory or approximate solutions for optimization problems and real-world applications[9,10]. DE searches for optimal or satisfactory solutions with three operations: mutation, crossover and selection, in which mutation is the core operation of DE. In DE, the offspring is generated by perturbing the solutions with a scaled difference of selected population individuals followed by a crossover strategy. And DE has several control parameters such as population size (NP), the scaling factor (F) and crossover probability (CR).

    However, the performance of classical DE algorithm is highly dependent on the mutation’s strategy and control parameter’s selection according to experimental studies[11]and theoretical analysis[12], which may lead to premature convergence and degradation of performance. Because basic and different vectors are randomly chosen from the current population, which does not utilize any neighborhood structure and/or beneficial direction information to guide the individuals toward the potential promising regions. This drawback will increase the possibility of being trapped in a local optimum when the current position is next to local trap or the optimal individual is far from the global optimum[13,14], especially for multimodal optimization problems[15].

    Consequently, in order to apply DE successfully to solve the optimization problems and alleviate its disadvantages, various DE variants and a trial and error search for the strategies are proposed by many researchers and engineers. For example, Fan and Lampinen[16]proposed a trigonometric mutation operator to enhance the performance of DE algorithm. This modification enables the algorithm to get a better trade-off between convergence rate and robustness. Thus, it can be possible to increase the convergence speed and thereby obtain an acceptable solution with a lower number of objective function evaluations. Sun et al.[17]proposed a hybrid of DE and estimation of distribution algorithm, called DE/EDA. They designed DE algorithm from a new aspect, which utilized local information and global information respectively. The local information was obtained by modified mutation operation, while the global information was acquired from population’s solution by the proposed model. Three different learning strategies for conventional DE, one is for selecting the base vector and the other two are for constructing the difference vectors that were proposed by Wang and Xiang[18]. Zhao et al.[19]proposed a new hybrid differential evolution with simulated annealing and self-adaptive immune operation which introduced simulated annealing idea to escape from possible local optimum attraction. Lu et al.[20]combined corpus-based and Word Net-based similarity methods based on differential evolution algorithm and assessed semantic similarity between terms in a continuous vector space to improve similarity computation in terms of accuracy. Michael et al.[21]illustrated how the relative simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3, can assist the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The robustness and convergence speed of the algorithm are investigated using different optimization control parameter settings and it is concluded that Generalized Differential Evolution 3 is a reliable optimization tool that can assist the mechatronic engineers in the design and decision making process. Shilpi and Karambir[22]implemented an optimizing technique called Differential Evolution to improve the effectiveness of test cases using Average Percentage of Fault Detection (APFD) metric. Wei Du et al.[23]proposed an Event-Triggered Impulsive (ETI) control scheme to improve the performance of DE. By introducing Impulsive control and event-triggered mechanism into DE, they hope to change the search performance of the population in a positive way after revising the positions of some individuals at certain moments.

    In this paper, the second order differential evolution algorithm is proposed. What’s more, the optimal second order differential mechanisms are proposed for DE/rand/1 and DE/best/1. The major contributions of this paper are as follows:

    ? The second order difference vector mechanism is proposed: Introducing the second order difference vector which is based on the classical mutation strategy and analyze the effect of the proposed mechanism through the experiment.

    ? Different optimal second order differential mechanisms for DE/rand/1 and DE/best/1 is proposed: Two difference vectors of the second order difference vector are associated with each individual, which can be individually selected according to different classical mutation strategies.

    This idea is powered by making use of the beneficial exploration direction of individual and employing different mutation strategies that support the production of new search moves that promote the detection of promising regions.

    The rest of the paper is structured as follows. The basic concepts and formulations of differential evolution are described in Section 2. The proposed DE algorithm with new strategies is presented in Section 3. Section 4 presents the experimental results, analysis and evolutionary behavior comparisons. Finally, concluding remarks and future researches are summarized in Section 5.

    2 Classical Differential Evolution

    In this section, the basic operations of differential evolution will be introduced to better understand our new algorithm, which is proposed in Section 4. DE is an optimization algorithm based on the principles of natural evolution, using a population P with individuals encoded in floating point, as indicated in Eq.(1).

    (1)

    (2)

    The four main steps in DE are initialization, mutation, crossover and selection.

    2.1 Initialization

    i=1,2,…,Np,j=1,2,…,D

    (3)

    2.2 Mutation operation

    “DE/rand/1:”

    Vi=Xr1+F(Xr2-Xr3)

    (4)

    “DE/best/1:”

    Vi=Xbest+F(Xr2-Xr3)

    (5)

    “DE/best/2:”

    Vi=Xbest+F(Xr2-Xr3)+F(Xr4-Xr5)

    (6)

    “DE/rand/2:”

    Vi=Xr1+F(Xr2-Xr3)+F(Xr4-Xr5)

    (7)

    “DE/current-to-best/1:”

    Vi=Xi+F(Xbest-Xi)+F(Xr2-Xr3)

    (8)

    “DE/rand-to-best/1:”

    Vi=Xr1+F(Xbest-Xr1)+F(Xr2-Xr3)

    (9)

    wherei=1,2,…,Np,rk∈[1,Np],k=1,2,…,5,k≠i, are different random integers, and they are also different from vector indexi. The scaling parameterFis usually in [0.4, 1] and is used to adjust the exploration or exploitation step size. Eqs.(5&6) generate a new individual around the current best solution to exploit the current neighborhood. In order to enlarge the exploring region, Eqs.(7,8,9) provide two different vectors which are randomly selected to obtain a new solution. In this way, the population diversity can be maintained and more heuristic information can be utilized.

    2.3 Crossover operation

    (10)

    2.4 Selection operation

    Selection operator contains a greedy mechanism according to their fitness of the trial vector and the parent individual. Then the better one, whose fitness is higher, is selected to survive for next generation. This operation is shown in Eq.(11) for minimization.

    (11)

    The above three operations repeat until the termination condition is met and a final solution is given.

    3 SODE Algorithm

    A novel second order differential evolution optimization algorithm, SODE, is proposed. The aim of proposing second order difference vector is to better utilize the search direction information. There is one word to say that, the motivation of this paper is not to propose a DE variant with powerful performance, but a distinct second order differential evolution algorithm model for the extensive subsequent research.

    3.1Thesecondorderdifferencevectormechanism

    Both classical mutation operations DE/rand/1 and DE/best/1 are used as the analytic generation strategies, which are the most successful and widely used schemes. Now, the beneficial heuristic direction information of the second order difference vector will be exploited. The second order difference vector information is indicated in Eqs.(12)-(16), which are based on the two classical mutation strategies.

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    (18)

    3.2AddthesecondorderdifferencevectortoDE/rand/1

    The first component pattern ofdrGis made by Eqs.(14) and (15). The second component pattern ofdrGis made by Eqs.(13) and (15). In order to evaluate the performance of the proposed mechanism for DE/rand/1, a suit of benchmark functions[13] [20] [21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/rand/1 will be presented in section 4.4.

    3.3AddthesecondorderdifferencevectortoDE/best/1

    The first component pattern ofdrGis made up by Eqs.(14&15). The second component pattern ofdrGis made up by Eqs.(13&15). In order to evaluate the performance of the proposed mechanism for DE/best/1, a suit of benchmark functions[13,20,21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/best/1 will be presented in section 4.5.

    4 Performance Comparison and Analysis

    In order to discuss the performance of the proposed second difference strategy, 20 functions[13,20,21]with dimension 30 are used as the test suite and three DE variants are also adopted.

    4.1 Benchmark functions

    The test suit contains 6 unimodal functions and 14 multimodal functions. Functionsf1-f7, butf5, are unimodal functions, because Rosenbrock’s functionf5is a multimodal function when its dimension is larger than three.f8-f20are multimodal functions, and the number of local minima increases exponentially with the increase of problem dimension.f19is an unimodal, separable, scalable function.f20is a multi-modal, non-separable, scalable function. They are described in Table 1.

    Table 1 Benchmark functions.

    Continue table 1

    4.2 Parameters setting

    The parameters in this paper are as follows without the special situation.

    ? Number of independent runs: RUN=30

    ? Population size: SIZE=50

    ? Benchmark dimension: D=30 ? Maximal iteration number: MAXFUNNUM=100000

    Both parameters, scale factorFand crossover probabilityCRClassical DE are initialized to 0.5 for all the algorithms[22,23]. Parameterλis also simply initialized as 0.1 according to our experiments for parameterλ, which will be discussed in the next part.

    4.3 Simulation results of parameter λ

    The influence of the selection of parameterλwill be discussed in this section. The parameter ofλmay have an important influence on the population evolving for the current solutions. 5 unimodal functions(f1,f2,f3,f4,f6) and 3 multimodal functions(f5,f19,f20)are chosen to empirically analyze its effects. In order to achieve more reliable results and rule out other interference factors, the conventional parameters are set as 0.1, 0.3, 0.5, 0.7 and 0.9 respectively. Then the comparison ofλfor DE/best/1 among five different selections is plotted in Fig. 1 and indicated in Table 2. The comparison ofλfor DE/rand/1 among five different selections is plotted in Fig. 2 and summarized in Table 3.

    Fig.1 indicates that parameterλfor DE/best/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 6 functions for all 8 functions. At the same time, numerical results in Table 2 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 2 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of the paper for DE/best/1.

    Fig.2 indicates that parameterλfor DE/rand/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 7 functions for all 8 functions. At the same time, numerical results in Table 3 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 3 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of this paper for DE/rand/1.

    Fig.1 The comparative results of five parameters for DE/best/1.

    λminmedianmeanstdf10.17.6280E-883.7454E-834.2049E-811.5281E-800.31.0475E-672.3247E-667.7773E-661.6136E-650.52.6880E-421.0036E-402.0878E-402.8538E-400.75.1106E-226.1659E-202.5106E-197.9992E-190.91.5754E-081.8418E-074.0466E-075.6518E-07f20.100000.300000.503.6999E-1454.2169E-582.1639E-570.71.3860E-667.2021E-441.9170E-396.5289E-390.91.4098E-432.8229E-398.2623E-374.3042E-36f30.14.5662E-872.3404E-835.4124E-792.6894E-780.32.6757E-691.9110E-678.4957E-671.6537E-660.51.1221E-438.1183E-425.3251E-411.1465E-400.71.0777E-224.2005E-211.3310E-201.8184E-200.94.7704E-092.9580E-083.4931E-082.5498E-08f40.12.7243E-155.9614E-129.4215E-129.8802E-120.34.2264E-152.1585E-121.0855E-111.6199E-110.53.2122E-151.5035E-123.7824E-127.7762E-120.72.7415E-151.3349E-127.0320E-121.8126E-110.91.1311E-141.0752E-124.2807E-127.8175E-12f50.12.2961E-488.0137E-461.6030E-434.0219E-430.31.2503E-371.1379E-361.8007E-362.1690E-360.55.2571E-248.1466E-231.0110E-229.9515E-230.75.9604E-133.4265E-124.6367E-124.0468E-120.91.1712E-052.8896E-053.2185E-051.7502E-05f60.12.9851E-032.1524E-023.5706E-024.0382E-020.31.8904E+001.1480E+011.8764E+011.7771E+010.53.8857E+021.2201E+031.5098E+039.6477E+020.73.3185E+038.5714E+039.1987E+033.2159E+030.98.3880E+031.5735E+041.5399E+043.1669E+03f190.11.8000E+013.1500E+013.1948E+017.8176E+000.33.0394E+016.2696E+015.9496E+011.4822E+010.56.6305E+018.7471E+018.5458E+011.0208E+010.77.4042E+019.7326E+019.6190E+011.1099E+010.98.4952E+011.0724E+021.0759E+021.0986E+01f200.11.0794E-034.4602E-019.2243E-011.0634E+000.301.9998E-022.9057E-015.4398E-010.5001.5462E-028.3828E-020.73.2024E-095.9876E-083.6123E-079.4670E-070.99.6550E-033.4770E-023.4410E-021.2583E-02

    Fig.2 The comparative results of five parameters for DE/rand/1.

    minmedianmeanstdf10.12.3748E-248.9364E-241.0791E-237.4357E-240.32.2481E-201.7031E-191.9115E-191.3418E-190.57.7264E-142.5173E-132.8213E-131.4254E-130.71.1364E-073.0378E-073.1974E-071.2165E-070.95.2271E-031.1470E-021.2312E-024.2024E-03f20.12.5920E-842.0303E-545.5454E-443.0339E-430.32.7092E-492.8089E-423.7573E-409.9621E-400.59.4267E-446.3708E-394.1188E-371.7745E-360.75.8460E-421.3581E-373.5245E-361.6267E-350.91.3643E-422.2592E-381.6980E-365.2681E-36f30.15.6101E-251.2114E-241.5209E-248.7373E-250.36.9903E-211.8458E-202.2353E-201.4554E-200.55.6471E-152.4238E-142.6119E-141.6640E-140.71.2183E-082.5242E-082.8771E-081.2787E-080.93.8878E-049.3069E-041.0003E-033.7333E-04f40.13.7035E-153.4163E-121.8382E-113.7888E-110.35.1973E-171.4428E-126.4210E-121.0733E-110.51.8682E-135.7236E-121.4242E-112.2713E-110.75.4746E-154.3894E-121.0482E-111.5998E-110.92.1840E-157.4248E-137.1842E-121.3502E-11f50.11.0619E-142.5203E-142.9253E-141.3661E-140.33.0948E-126.5844E-126.7447E-121.6803E-120.51.2988E-082.3529E-082.4017E-086.8930E-090.73.2190E-055.0411E-055.5018E-051.4460E-050.91.0708E-021.9155E-021.9515E-024.2629E-03f60.17.1855E+031.0725E+041.0462E+041.9158E+030.38.8619E+031.2352E+041.2469E+041.6214E+030.59.1152E+031.4289E+041.4252E+042.2462E+030.71.4035E+041.6941E+041.6884E+041.7970E+030.91.1992E+041.8700E+041.8360E+042.8819E+03f190.15.3188E+018.2814E+018.2523E+018.6160E+000.36.4938E+019.1962E+018.8314E+011.0019E+010.56.2106E+019.6627E+019.3259E+011.2688E+010.78.4442E+011.0173E+021.0276E+027.7944E+000.98.2279E+011.0524E+021.0671E+029.6852E+00f200.15.6843E-141.7764E-132.0440E-131.3113E-130.31.4024E-097.3160E-099.6733E-097.1346E-090.53.3792E-045.2640E-045.5936E-041.3135E-040.73.1780E-024.3001E-024.4544E-027.9437E-030.97.2583E-019.2463E-019.2312E-011.1465E-01

    4.4SimulationresultsandcomparisonanalysisforDE/rand/1

    In this paper, we propose the second order difference vector differential evolution. The new proposed algorithm is analyzed and verified with different algorithm variants and various benchmark functions.

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, three DE algorithms are chosen to compare each other, and are described as follows:

    ? DE1: differential evolution using generation strategy “DE/rand/1”

    ? SODE11: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/rand/1”.

    ? SODE12: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/rand /1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 4, which includes the items of Min, Median, Mean and STD in multiple runs. Observed from Table 4, it can be found that SODE11 and SODE12 algorithms outperform the classical DE1 algorithms. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    Table 4 Results of three algorithms for DE/rand/1.

    functionItemDE1SODE11SODE12f6min000medi?an000mean000std000f7min1.1215E-027.3852E-034.6170E-03medi?an2.0762E-021.1231E-021.1918E-02mean2.0471E-021.1229E-021.1493E-02std4.5320E-032.2653E-033.0677E-03f8min2.1673E+0200medi?an4.2394E+031.3642E-111.3642E-11mean3.8753E+033.9479E+001.8596E-09std1.1944E+032.1624E+017.7577E-09f9min1.4425E+021.0046E+021.0216E+02medi?an1.8032E+021.1750E+021.1815E+02mean1.7831E+021.1711E+021.1711E+02std1.2415E+018.5869E+007.2292E+00f10min3.7434E-063.3129E-133.9879E-13medi?an7.9597E-067.1854E-136.8123E-13mean9.1488E-068.5674E-137.3369E-13std4.4827E-063.1726E-132.7606E-13

    Continue table 4

    functionItemDE1SODE11SODE12f16min-7.8332E+01-7.8332E+01-7.8332E+01medi?an-7.8332E+01-7.8332E+01-7.8332E+01mean-7.8332E+01-7.8332E+01-7.8332E+01std1.1574E-083.8332E-143.5108E-14f17min9.8575E+016.7058E+016.3962E+01medi?an1.5142E+028.5857E+018.0006E+01mean1.4583E+028.5083E+018.2750E+01std1.6545E+017.9043E+009.2737E+00f18min1.3254E-022.8422E-141.4211E-14medi?an2.1337E-021.4566E-131.5277E-13mean2.2176E-021.8143E-131.6366E-13std5.4823E-031.7485E-131.2841E-13f19min4.1448E-149.2787E-286.7387E-28medi?an1.9896E-132.9217E-273.1668E-27mean2.6145E-133.2166E-273.7943E-27std1.9673E-131.4735E-273.4331E-27f20min6.2181E-163.5249E-141.2903E-14medi?an5.0791E-115.9096E-111.8509E-11mean1.9275E-101.0588E-101.6550E-10std2.8449E-101.4707E-102.9653E-10

    In general, SODE11 and SODE12 perform better than DE1 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE11 and SODE12 being better than DE1 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verifies the excellent effects of the proposed second order difference information strategy.

    (3) Online evolving performance comparison and analysis:

    The online performance comparison among four DE algorithms is shown in Fig. 3, which further supports the previous numerical results and the related analysis. Observed from Fig. 3, SODE11 and SODE12 based on DE1 algorithm performs better for 16 from 20 benchmarks for the final results, except forf3,f5,f15,f16. The evolving lines of SODE11 and SODE12 decline faster than DE1 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE11 and SODE12 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    Fig.3 The comparative results of three algorithms for DE/rand/1.

    4.5SimulationresultsandcomparisonanalysisforDE/best/1

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, four DE algorithms are chosen to compare each other, which are described as follows:

    ? DE2: differential evolution using generation strategy “DE/best/1”

    ? SODE21: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/best/1”.

    ? SODE22: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/best/1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 5, which includes the items of Min, Median, Mean and Std in multiple runs. Observed from Table 5, it can be found that SODE21 and SODE22 algorithms outperform the classical DE2 algorithms. As the results shown, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    In general, SODE21 and SODE22 perform better than DE2 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE21 and SODE22 being better than DE2 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verify the excellent effects of the proposed second order difference information strategy.

    Table 5 Results of three algorithms.

    functionItemDE2SODE21SODE22f9min3.0844E+011.6914E+018.9546E+00medi?an4.8753E+012.7859E+012.3879E+01mean50.90882.8721E+012.4907E+01std14.71618.9859E+009.2249E+00f10min4.2419E-054.4409E-157.9936E-15medi?an2.6592E+009.3130E-011.3404E+00mean2.6462E+008.3009E-011.0513E+00std1.3577E+007.2911E-017.7577E-01f11min2.7850E-0900medi?an1.7235E-027.3960E-038.6267E-03mean4.6388E-021.0407E-022.3740E-02std7.6763E-021.4420E-024.0320E-02f12min1.7399E-051.5705E-321.5705E-32medi?an2.9201E+001.0367E-011.0367E-01mean3.9499E+004.6011E-013.0457E-01std4.1432E+009.2490E-014.4431E-01f13min1.0988E-021.3498E-321.3498E-32medi?an3.9747E+001.0987E-021.6006E-02mean5.7266E+006.7217E-016.8796E-01std5.8384E+001.0854E+001.2302E+00f14min-2.6750E+01-2.8102E+01-2.8405E+01medi?an-2.5150E+01-2.3511E+01-2.3859E+01mean-2.5104E+01-2.3378E+01-2.3943E+01std9.1336E-012.2108E+002.3589E+00f15min1.8645E+031.5039E+035.3399E+03medi?an1.6296E+041.0190E+041.6617E+04mean1.9935E+041.5895E+041.9065E+04std1.5947E+041.8682E+041.1499E+04f16min-7.2678E+01-7.5505E+01-7.5505E+01medi?an-6.8908E+01-7.1264E+01-7.0793E+01mean-6.8876E+01-7.1295E+01-7.1076E+01std2.5177E+002.2648E+002.6674E+00

    Continue table 5

    functionItemDE2SODE21SODE22f19min1.2313E-209.9433E-909.1163E-92medi?an6.8305E-121.0004E-862.8009E-84mean6.8196E-069.4213E-848.4675E-75std2.5980E-053.7331E-834.6378E-74f20min1.0139E-131.8771E-142.9769E-13medi?an1.9232E-113.6794E-113.6652E-11mean3.5644E-111.6194E-101.0081E-10std5.4285E-112.3891E-101.3582E-10

    (3)Online evolving performance comparison and analysis:

    The evolutionary performance comparison among several DE variants can be found in Fig. 4, which will further support the previous numerical comparison and the relative analysis. Observed from Fig. 4, SODE21 and SODE22 based on DE1 outperforms its competitors for 17 from 20 benchmarks for the final results. The evolulary curves of SODE21, SODE22 decline faster than DE2 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As shown in the results, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE21 and SODE22 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    5 Conclusion and Future Work

    In this paper, a novel DE variant, SODE, with the second order information of the difference vector, is proposed and investigated which expands the current research scope of the classical (first order) DE algorithms effectively. It is possible to efficiently utilize the second order direction information of difference vector and the beneficial population information for even better solution location and to enhance the adaptability of DE search mechanism. It is possible to spark even more interesting and challenging research topics in future. This strategy has distinct advantages on avoiding premature convergence. SODE is verified on some classic benchmark functions when compared with other DE algorithms. The simulation results indicate that its performance is very competitive and better than other classical algorithms. It also indicates the proposed strategies’ effectiveness and cooperation.

    The better utilization of the second order information from the difference vector is an interesting topic for future research.

    Fig.4 The comparative results of three algorithms for DE/best/1.

    Acknowledgment

    This research is supported by National Natural Science Foundation of China (61375066, 61374204). We will express our awfully thanks to our Swarm Intelligence Research Team of BeiYou University.

    [1]T.Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, New York, USA:Oxford University Press, 1996.

    [2]J.Kennedy, R.Poli, and T.Blackwell, Particle swarm optimization,SwarmIntelligence, vol.1,no.1, pp.33-57, 2007.

    [3]S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, Optimization by simulated annealing,Science, vol.220,no.4598.pp.671-680, 1983.

    [4]M.Dorigo, V.Maniezzo, and A.Colorni, Ant system: optimization by a colony of cooperating agents,IEEETransactionsonSystems,Man,andCybernetics-PartB, vol.26,no.1,pp.29-41, 1996.

    [5]R.Storn and K.Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces,JournalofGlobalOptimization, vol.11,no.4, pp.341-359, 1997.

    [6]O.Hrstka and A.Kucerova, Improvement of real coded genetic algorithm based on differential operators preventing premature convergence,AdvancesinEngineeringSoftware, vol.35,no.3,pp.237-246, 2004.

    [7]J.J.Liang, A.K.Qin, P.N.Suganthan, and S.Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,IEEETransactionsonEvolutionaryComputation, vol.10.no.3,pp.281-295, 2006.

    [8]W.F.Sacco, N.Henderson, and A.C.Rios-Coelho, Topographical clearing differential evolution: A new method to solve multimodal optimization problems,ProgressinNuclearEnergy, vol.71,pp.269-278, 2014.

    [9]Y.Wang, B.Li, and T.Weise, Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of powers systems,InformationSciences, vol.180,no.12, pp.2405-2420, 2010.

    [10] M.Zhang, W.Luo, and X.Wang, Differential evolution with dynamic stochastic selection for constrained optimization,InformationSciences, vol.178,no.15,pp.3043-3074, 2008.

    [11] K.Zielinski, P.Weitkemper, R.Laur, and K.D.Kammeyer, Parameter study for differential evolution using a power allocation problem including interference cancellation,InProceedingsofIEEEInternationalConferenceonEvolutionaryComputation,pp.1857-1864, 2009.

    [12] J.Zhang and A.C.Sanderson, An approximate Gaussian model of differential evolution with spherical fitness functions, InProceedingsoftheIEEECongressonEvolutionaryComputation, Singapore, pp.2220-2228,2007.

    [13] H.Y.Fan and J.Lampinen, A trigonometric mutation operation to differential evolution,JournalofGlobalOptimization, vol.27, no.1, pp.105-129, 2003.

    [14] J.Y.Sun, Q.F.Zhang, and E.P.K.Tsang, DE/EDA: A new evolutionary algorithm for global optimization,InformationSciences, vol.169,no: 3-4, pp.249-262, 2005.

    [15] Y.X.Wang and Q.L.Xiang, Exploring new learning strategies in differential evolution algorithm,IEEECongressonEvolutionaryComputation, pp.204-209, 2008.

    [16] X.C.Zhao, W.Q.Lin, C.C.Yu, J.Chen, and S.G.Wang, A new hybrid differential evolution with simulated annealing and self-adaptive immune operation,ComputersandMathematicswithApplications, vol.66, no.10, pp.1948-1960, 2013.

    [17] W.Lu, Y.Y.Cai, X.P.Chen, and K.L.Shi, Semantic similarity assessment using differential evolution algorithm in continuous vector space,JournalofVisualLanguagesandComputing, vol.31, pp.246-251, 2015.

    [18] W.H.Wei, J.H.Wang, and M.Tao, Constrained differential evolution with multi-objective sorting mutation operators for constrained optimization,AppliedSoftComputing,vol.33, pp.207-222, 2015.

    [19] J.Q.Zhang and A.C.Sanderson, JADE: Adaptive differential evolution with optional external archive,IEEETransactionsonEvolutionaryComputation, vol.13,no.5, pp.945-958, 2009.

    [20] Y.W.Leung and Y.P.Wang, An orthogonal genetic algorithm with quantization for global numerical optimization,IEEETransactionsonEvolutionaryComputation, vol.5, no.1,pp.41-53, 2001.

    [21] M.B.Michael, N.Christian, and B.Daniel, A global multi-objective optimization tool for design of mechatronic components using Generalized Differential Evolution, Inproceedingsof42ndAnnualConferenceoftheIEEEIndustrialElectronicsSociety, Florence, Italy: IEEE Press, pp.475-481,2016.

    [22] Shilpi and Karambir, Improvising the effectiveness of test suites using differential evolution technique,Inproceedingsof5thInternationalConferenceonReliability,InfocomTechnologiesandOptimization, Noida, India: IEEE Press, pp.52-56, 2016.

    [23] W.Du, S.Y.Leung, Y.Tang, A.V.Vasilakos, Differential Evolution with Event-Triggered Impulsive Control,IEEETransactionsonCybernetics, vol.47, no.1, pp.244-257, 2016.

    GuangzhiXuwas born in 1987.He is a Ph.D.in Beijing University of Posts and Telecommunications.He has visited University of Glasgow as joined Ph.D.student.His research interests are Evolutionary computation and intelligent control, big data system and industry 4.0.

    DongyueLiureceived the B.Sc. degree in Qilu normal university, Jinan, China, in 2014. She is currently working towards the M.Sc. degree in Swarm intelligence optimization from Beijing University of Posts and Telecommunications, Beijing, China. Her current research is focused on Differential evolution and global optimization.XingquanZuois currently an Associate Professor in Computer School, Beijing University of Posts and Telecommunications. He received the Ph.D. degree in control theory and control engineering from Harbin Institute of Technology, Harbin, China, in 2004. From 2004 to 2006, he was a Postdoctoral Research Fellow in Automation Department of Tsinghua University. From 2012 to 2013, he was a Visiting Scholar in Industrial and System Engineering Department, Auburn University, AL, USA. His research interests are in system optimization and scheduling, evolutionary computation, data mining with applications and intelligent transportation systems. He has published more than 70 research papers in journals and conferences, two books and several book chapters. He has led or participated in 20 research and industrial projects.

    2016-12-20; revised: 2017-01-20

    the Ph.D.degree in Applied Mathematics from the Chinese Academy of Sciences, Beijing, China, in 2005.He is currently with the School of Science, Beijing University of Posts and Telecommunications.His research interests include swarm intelligence, evolutionary computation, operations research and applications.

    ?Xinchao Zhao and Dongyue Liu are with School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.E-mail: xcbupt@126.com.

    ?Guangzhi Xu is with School of Automation,Beijing University of Posts and Telecommunications, Beijing 100876, China. E-mail: xgzegw@gmail.com.

    ?Xingquan Zuo is with School of Computer Science,Beijing University of Posts and Telecommunications, Beijing 100876, China.

    *To whom correspondence should be addressed. Manuscript

    国产 一区精品| 99热这里只有是精品在线观看| 久久精品国产a三级三级三级| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 在线免费十八禁| 欧美高清性xxxxhd video| 伦精品一区二区三区| 在线看a的网站| 美女国产视频在线观看| 亚洲va在线va天堂va国产| 亚洲精品456在线播放app| 免费看不卡的av| av网站免费在线观看视频| 免费播放大片免费观看视频在线观看| 久久6这里有精品| 久久精品国产亚洲网站| 午夜视频国产福利| av在线蜜桃| 国产伦精品一区二区三区视频9| 国产精品欧美亚洲77777| 五月天丁香电影| 国产色爽女视频免费观看| 国产在线视频一区二区| 少妇被粗大猛烈的视频| 亚洲,一卡二卡三卡| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片久久久久久久久女| 青春草国产在线视频| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人 | 国产亚洲最大av| 久久6这里有精品| 精品午夜福利在线看| 亚洲性久久影院| 国产成人freesex在线| .国产精品久久| 亚洲国产高清在线一区二区三| 亚洲欧美精品自产自拍| 免费播放大片免费观看视频在线观看| 中文精品一卡2卡3卡4更新| 女人十人毛片免费观看3o分钟| 黄色视频在线播放观看不卡| av在线老鸭窝| 国产精品麻豆人妻色哟哟久久| 男女无遮挡免费网站观看| 高清视频免费观看一区二区| 边亲边吃奶的免费视频| 亚洲美女黄色视频免费看| 26uuu在线亚洲综合色| 日本vs欧美在线观看视频 | 日韩在线高清观看一区二区三区| 欧美激情国产日韩精品一区| 亚洲第一区二区三区不卡| 午夜福利网站1000一区二区三区| 亚洲av日韩在线播放| 日韩人妻高清精品专区| av在线观看视频网站免费| 久久99蜜桃精品久久| 国产一区二区在线观看日韩| 亚洲国产精品专区欧美| 久久久久视频综合| 伦理电影免费视频| 啦啦啦中文免费视频观看日本| 亚洲色图综合在线观看| 春色校园在线视频观看| 国产乱来视频区| 久久久久久人妻| 亚洲色图av天堂| 日本wwww免费看| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| 久久鲁丝午夜福利片| 亚洲成人中文字幕在线播放| 少妇猛男粗大的猛烈进出视频| 亚洲av综合色区一区| 99国产精品免费福利视频| av免费观看日本| 免费观看无遮挡的男女| 亚洲av成人精品一区久久| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 中文字幕精品免费在线观看视频 | 日韩av免费高清视频| 国产亚洲精品久久久com| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 日日撸夜夜添| 久久精品夜色国产| 黄色一级大片看看| 在线观看三级黄色| 麻豆乱淫一区二区| 99国产精品免费福利视频| 观看av在线不卡| 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲 | 免费在线观看成人毛片| 精品少妇黑人巨大在线播放| 99热网站在线观看| 亚洲精品国产av成人精品| 日本欧美视频一区| 亚洲欧美精品专区久久| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 黄片无遮挡物在线观看| 国产色婷婷99| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| 六月丁香七月| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区三区久久久樱花 | 国产乱人视频| 激情五月婷婷亚洲| 欧美3d第一页| 成人亚洲欧美一区二区av| 我的女老师完整版在线观看| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看| 精品国产三级普通话版| 2021少妇久久久久久久久久久| 黄色欧美视频在线观看| 91aial.com中文字幕在线观看| 久久人人爽av亚洲精品天堂 | 高清日韩中文字幕在线| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 精华霜和精华液先用哪个| 久久6这里有精品| 国产久久久一区二区三区| 黑丝袜美女国产一区| 欧美精品国产亚洲| 婷婷色av中文字幕| 欧美xxⅹ黑人| 久久久久久久精品精品| 在线观看一区二区三区激情| 国产午夜精品久久久久久一区二区三区| 偷拍熟女少妇极品色| 热re99久久精品国产66热6| 黄色一级大片看看| 国产精品人妻久久久影院| 免费黄色在线免费观看| 亚洲经典国产精华液单| 国产精品免费大片| 91精品国产九色| 99精国产麻豆久久婷婷| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 一级毛片电影观看| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 黄片无遮挡物在线观看| 在现免费观看毛片| 欧美日本视频| 亚洲av.av天堂| 黄色视频在线播放观看不卡| 五月开心婷婷网| 日韩三级伦理在线观看| 中文字幕制服av| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 中文字幕免费在线视频6| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 国产乱来视频区| 一个人看的www免费观看视频| 色吧在线观看| 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 欧美另类一区| 国产亚洲av片在线观看秒播厂| 纵有疾风起免费观看全集完整版| 国产黄片视频在线免费观看| av在线老鸭窝| 欧美bdsm另类| 下体分泌物呈黄色| 亚洲三级黄色毛片| 三级经典国产精品| 男人狂女人下面高潮的视频| 色5月婷婷丁香| 久久国产乱子免费精品| av卡一久久| 国产无遮挡羞羞视频在线观看| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 黄片无遮挡物在线观看| 久久ye,这里只有精品| 久久国内精品自在自线图片| 日本欧美视频一区| 夜夜看夜夜爽夜夜摸| 免费播放大片免费观看视频在线观看| 麻豆国产97在线/欧美| 午夜福利影视在线免费观看| 久久久久久久亚洲中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 成人漫画全彩无遮挡| 在线免费十八禁| 在线观看一区二区三区激情| 制服丝袜香蕉在线| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 国产成人a区在线观看| 1000部很黄的大片| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| av播播在线观看一区| 最近手机中文字幕大全| 伦理电影大哥的女人| 精品久久国产蜜桃| 国产高清三级在线| 免费观看a级毛片全部| 男人和女人高潮做爰伦理| 18+在线观看网站| 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 26uuu在线亚洲综合色| 国产成人freesex在线| 91久久精品电影网| 国产精品秋霞免费鲁丝片| 国产高清国产精品国产三级 | 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| xxx大片免费视频| 春色校园在线视频观看| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 毛片一级片免费看久久久久| 香蕉精品网在线| www.av在线官网国产| 蜜臀久久99精品久久宅男| tube8黄色片| 一级毛片黄色毛片免费观看视频| 久久久久久久久大av| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| 亚洲av国产av综合av卡| 2018国产大陆天天弄谢| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 国产男女内射视频| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 1000部很黄的大片| av免费在线看不卡| 2021少妇久久久久久久久久久| 中文在线观看免费www的网站| 女性生殖器流出的白浆| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 亚洲av不卡在线观看| 国产成人一区二区在线| 免费观看a级毛片全部| 99久久综合免费| 老师上课跳d突然被开到最大视频| 色网站视频免费| 大码成人一级视频| 国产精品伦人一区二区| 国产黄频视频在线观看| 午夜激情福利司机影院| 身体一侧抽搐| 午夜老司机福利剧场| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 久久久久久久久大av| 国产视频内射| 中文天堂在线官网| 2021少妇久久久久久久久久久| 免费看光身美女| 啦啦啦在线观看免费高清www| 中文字幕制服av| 汤姆久久久久久久影院中文字幕| 亚洲精品日本国产第一区| 亚洲av二区三区四区| 伦理电影免费视频| 少妇的逼水好多| 我的女老师完整版在线观看| av在线app专区| 国产一区二区在线观看日韩| 极品教师在线视频| 亚洲天堂av无毛| 99热6这里只有精品| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 高清在线视频一区二区三区| 日本vs欧美在线观看视频 | 国产精品人妻久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av二区三区四区| 久久影院123| 男女无遮挡免费网站观看| 七月丁香在线播放| 97在线人人人人妻| 久久99热这里只有精品18| 热re99久久精品国产66热6| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 美女xxoo啪啪120秒动态图| 久久久精品免费免费高清| 亚州av有码| 高清在线视频一区二区三区| 亚洲综合色惰| 国产 一区 欧美 日韩| 国产一区二区在线观看日韩| 国产精品伦人一区二区| 国产精品无大码| 国产乱来视频区| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 最近中文字幕2019免费版| 亚洲成人手机| 黄色一级大片看看| 少妇猛男粗大的猛烈进出视频| 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 尾随美女入室| 视频中文字幕在线观看| 麻豆成人av视频| 噜噜噜噜噜久久久久久91| 国产成人精品一,二区| 色婷婷av一区二区三区视频| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区视频9| 亚洲av综合色区一区| 自拍偷自拍亚洲精品老妇| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区三区| 欧美97在线视频| 亚洲自偷自拍三级| 联通29元200g的流量卡| 亚洲国产欧美人成| 99久久精品一区二区三区| 亚洲国产欧美在线一区| 久久精品熟女亚洲av麻豆精品| 亚洲一级一片aⅴ在线观看| av在线app专区| 久久久久久久久大av| 久久久久久人妻| 精品国产三级普通话版| 内地一区二区视频在线| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 水蜜桃什么品种好| 亚洲精品视频女| 秋霞在线观看毛片| 国产一区二区三区av在线| 性色av一级| 国产精品无大码| 蜜桃亚洲精品一区二区三区| 日本午夜av视频| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 中文字幕制服av| 男女下面进入的视频免费午夜| 香蕉精品网在线| 3wmmmm亚洲av在线观看| 亚洲精品国产av蜜桃| 少妇被粗大猛烈的视频| 高清在线视频一区二区三区| av又黄又爽大尺度在线免费看| 老女人水多毛片| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 大码成人一级视频| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 少妇的逼水好多| 夫妻午夜视频| 亚洲无线观看免费| 偷拍熟女少妇极品色| 欧美老熟妇乱子伦牲交| 国产高清有码在线观看视频| 免费大片黄手机在线观看| 免费观看无遮挡的男女| 国产有黄有色有爽视频| 国产 精品1| 亚洲av国产av综合av卡| 亚洲av综合色区一区| 国产一区二区在线观看日韩| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 免费少妇av软件| 日本猛色少妇xxxxx猛交久久| 成年女人在线观看亚洲视频| 伦理电影免费视频| 国产在线视频一区二区| 欧美成人一区二区免费高清观看| 一级毛片黄色毛片免费观看视频| 免费观看的影片在线观看| 久久人妻熟女aⅴ| 麻豆成人午夜福利视频| 中文字幕av成人在线电影| 简卡轻食公司| 中文字幕久久专区| 我要看日韩黄色一级片| 国产成人freesex在线| 国产精品久久久久久av不卡| 国产精品久久久久久久电影| 精品人妻熟女av久视频| 亚洲欧美日韩无卡精品| 国产在线一区二区三区精| 亚州av有码| 日韩一区二区视频免费看| 青春草亚洲视频在线观看| 日韩国内少妇激情av| 女人十人毛片免费观看3o分钟| 亚洲中文av在线| 插阴视频在线观看视频| 亚洲av日韩在线播放| 少妇 在线观看| 亚洲欧美日韩无卡精品| 又爽又黄a免费视频| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 美女福利国产在线 | 我要看日韩黄色一级片| 大香蕉久久网| 高清欧美精品videossex| 亚洲美女视频黄频| av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩一本色道免费dvd| 性色av一级| 精品国产三级普通话版| 老女人水多毛片| 有码 亚洲区| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 在线观看免费日韩欧美大片 | 看免费成人av毛片| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 成人国产麻豆网| 亚洲av不卡在线观看| 久久久午夜欧美精品| 国产精品99久久99久久久不卡 | 噜噜噜噜噜久久久久久91| 成人综合一区亚洲| 各种免费的搞黄视频| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| 亚洲成人中文字幕在线播放| 日日啪夜夜爽| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 美女福利国产在线 | 国产白丝娇喘喷水9色精品| 大香蕉97超碰在线| 亚洲精品,欧美精品| 老熟女久久久| 97在线视频观看| 内射极品少妇av片p| 国产成人免费无遮挡视频| 日本免费在线观看一区| 99热这里只有是精品在线观看| 美女主播在线视频| 亚洲第一av免费看| 国产综合精华液| 国产av精品麻豆| 下体分泌物呈黄色| 最黄视频免费看| 国产免费又黄又爽又色| 欧美日韩视频高清一区二区三区二| 性高湖久久久久久久久免费观看| 免费观看的影片在线观看| 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 久久婷婷青草| 国产成人免费无遮挡视频| 高清黄色对白视频在线免费看 | 欧美人与善性xxx| 最近中文字幕高清免费大全6| 大陆偷拍与自拍| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 日韩一区二区视频免费看| 国产av国产精品国产| 身体一侧抽搐| 如何舔出高潮| 一级片'在线观看视频| 十八禁网站网址无遮挡 | 尤物成人国产欧美一区二区三区| 免费久久久久久久精品成人欧美视频 | 成人毛片a级毛片在线播放| 91精品国产九色| xxx大片免费视频| 99国产精品免费福利视频| 国产精品久久久久成人av| 2022亚洲国产成人精品| 精品人妻一区二区三区麻豆| 激情 狠狠 欧美| 国产av精品麻豆| 麻豆精品久久久久久蜜桃| 七月丁香在线播放| 91狼人影院| 中文字幕精品免费在线观看视频 | 亚洲av不卡在线观看| 亚洲精品乱久久久久久| 99re6热这里在线精品视频| 毛片女人毛片| 国产精品成人在线| 亚洲国产毛片av蜜桃av| 在线观看国产h片| 久久国产精品大桥未久av | 久久久精品免费免费高清| 国产成人a∨麻豆精品| 久久久亚洲精品成人影院| 欧美高清性xxxxhd video| 黑人猛操日本美女一级片| 亚洲成色77777| 99热6这里只有精品| 成人国产麻豆网| av视频免费观看在线观看| 精品久久久久久久末码| 91午夜精品亚洲一区二区三区| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频 | 日本色播在线视频| 青春草视频在线免费观看| 国产成人免费无遮挡视频| 日韩人妻高清精品专区| 久久久久久久国产电影| 激情五月婷婷亚洲| 精品国产露脸久久av麻豆| 建设人人有责人人尽责人人享有的 | 嫩草影院入口| 国内少妇人妻偷人精品xxx网站| 久热久热在线精品观看| 一级a做视频免费观看| 国产精品一区二区在线观看99| 日韩 亚洲 欧美在线| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 天堂俺去俺来也www色官网| 97超视频在线观看视频| 麻豆成人av视频| 国产老妇伦熟女老妇高清| 又大又黄又爽视频免费| 蜜桃在线观看..| 中文字幕精品免费在线观看视频 | 97在线人人人人妻| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 美女视频免费永久观看网站| 有码 亚洲区| 亚洲色图av天堂| 久久久久性生活片| 精品一区二区免费观看| 麻豆成人av视频| 国产片特级美女逼逼视频| 国产伦精品一区二区三区视频9| 赤兔流量卡办理| 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 国产色婷婷99| 高清不卡的av网站| 午夜日本视频在线| av在线老鸭窝| 国产免费视频播放在线视频| 欧美亚洲 丝袜 人妻 在线| 黄色欧美视频在线观看| 99久久综合免费| 欧美精品一区二区免费开放| 国产免费又黄又爽又色| 美女内射精品一级片tv| 国产午夜精品久久久久久一区二区三区| 亚洲国产毛片av蜜桃av| 免费观看无遮挡的男女| 国产亚洲5aaaaa淫片| 大又大粗又爽又黄少妇毛片口| 亚洲,一卡二卡三卡| 午夜福利在线在线| 精品亚洲成a人片在线观看 | 国产在线免费精品| 欧美xxxx性猛交bbbb| 亚州av有码| 网址你懂的国产日韩在线| 秋霞在线观看毛片| 国产男人的电影天堂91| 久久久久久久久久久免费av|