• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second Order Differential Evolution Algorithm

    2017-10-11 10:53:57XinchaoZhaoGuangzhiXuDongyueLiuandXingquanZuo

    Xinchao Zhao, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    SecondOrderDifferentialEvolutionAlgorithm

    Xinchao Zhao*, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    Differential evolution (DE) is a simple, efficient and robust Evolutionary Algorithm (EA) for various optimization problems, which has several outstanding features, such as low time complexity, ease to use and robust steadiness. So it is becoming more and more popular and being widely used in more and more applications. However, many questions are deserving to consider the balance between exploration and exploitation behaviors. The difference vector of mutation operator for the neighborhood and direction information has not been completely utilized. Therefore, a second order differential evolution algorithm, SODE, is proposed, which can efficiently utilize the search direction information from the second order difference vector. The optimal second order difference mechanisms are proposed for DE/rand/1 and DE/best/1 to utilize the neighborhood and direction information of the difference vector. Then it will guide the individuals toward the possible more encouraging areas. Extensive experiments and comprehensive comparisons show that the second order difference mechanism in SODE is much better than the classical first order difference mechanisms based mutation strategy-“DE/rand/1” and “DE/best/1” as far as the converging and steady performance.

    differential evolution; second order difference vector; memory storage; swarm intelligence

    1 Introduction

    Many kinds of metaheuristic optimization algorithms are proposed for various increasing optimization problems in the recent few decades, which include Evolutionary Algorithms (EAs)[1], Particle Swarm Optimization (PSO)[2], Simulated Annealing (SA)[3], Ant Colony Optimization (ACO)[4]and Differential Evolution (DE)[5]etc.. Although these algorithms have better performance when solving various scientific and engineering problems involving nonlinear, multidimensional and no differentiable problems, many of them are still possible to be trapped in a local optimum when the current solution closes to the local trap or the optimal solution is far from the true optimum[6,7], especially for multimodal optimization problems[8].

    Differential evolution, a simple, yet very efficient evolutionary algorithm for many complex optimization problems, was proposed by Price and Storn[5]. It has been proved that DE has a series of advantages, such as lower computational complexity, higher robustness and simplexes, which made it used to find the satisfactory or approximate solutions for optimization problems and real-world applications[9,10]. DE searches for optimal or satisfactory solutions with three operations: mutation, crossover and selection, in which mutation is the core operation of DE. In DE, the offspring is generated by perturbing the solutions with a scaled difference of selected population individuals followed by a crossover strategy. And DE has several control parameters such as population size (NP), the scaling factor (F) and crossover probability (CR).

    However, the performance of classical DE algorithm is highly dependent on the mutation’s strategy and control parameter’s selection according to experimental studies[11]and theoretical analysis[12], which may lead to premature convergence and degradation of performance. Because basic and different vectors are randomly chosen from the current population, which does not utilize any neighborhood structure and/or beneficial direction information to guide the individuals toward the potential promising regions. This drawback will increase the possibility of being trapped in a local optimum when the current position is next to local trap or the optimal individual is far from the global optimum[13,14], especially for multimodal optimization problems[15].

    Consequently, in order to apply DE successfully to solve the optimization problems and alleviate its disadvantages, various DE variants and a trial and error search for the strategies are proposed by many researchers and engineers. For example, Fan and Lampinen[16]proposed a trigonometric mutation operator to enhance the performance of DE algorithm. This modification enables the algorithm to get a better trade-off between convergence rate and robustness. Thus, it can be possible to increase the convergence speed and thereby obtain an acceptable solution with a lower number of objective function evaluations. Sun et al.[17]proposed a hybrid of DE and estimation of distribution algorithm, called DE/EDA. They designed DE algorithm from a new aspect, which utilized local information and global information respectively. The local information was obtained by modified mutation operation, while the global information was acquired from population’s solution by the proposed model. Three different learning strategies for conventional DE, one is for selecting the base vector and the other two are for constructing the difference vectors that were proposed by Wang and Xiang[18]. Zhao et al.[19]proposed a new hybrid differential evolution with simulated annealing and self-adaptive immune operation which introduced simulated annealing idea to escape from possible local optimum attraction. Lu et al.[20]combined corpus-based and Word Net-based similarity methods based on differential evolution algorithm and assessed semantic similarity between terms in a continuous vector space to improve similarity computation in terms of accuracy. Michael et al.[21]illustrated how the relative simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3, can assist the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The robustness and convergence speed of the algorithm are investigated using different optimization control parameter settings and it is concluded that Generalized Differential Evolution 3 is a reliable optimization tool that can assist the mechatronic engineers in the design and decision making process. Shilpi and Karambir[22]implemented an optimizing technique called Differential Evolution to improve the effectiveness of test cases using Average Percentage of Fault Detection (APFD) metric. Wei Du et al.[23]proposed an Event-Triggered Impulsive (ETI) control scheme to improve the performance of DE. By introducing Impulsive control and event-triggered mechanism into DE, they hope to change the search performance of the population in a positive way after revising the positions of some individuals at certain moments.

    In this paper, the second order differential evolution algorithm is proposed. What’s more, the optimal second order differential mechanisms are proposed for DE/rand/1 and DE/best/1. The major contributions of this paper are as follows:

    ? The second order difference vector mechanism is proposed: Introducing the second order difference vector which is based on the classical mutation strategy and analyze the effect of the proposed mechanism through the experiment.

    ? Different optimal second order differential mechanisms for DE/rand/1 and DE/best/1 is proposed: Two difference vectors of the second order difference vector are associated with each individual, which can be individually selected according to different classical mutation strategies.

    This idea is powered by making use of the beneficial exploration direction of individual and employing different mutation strategies that support the production of new search moves that promote the detection of promising regions.

    The rest of the paper is structured as follows. The basic concepts and formulations of differential evolution are described in Section 2. The proposed DE algorithm with new strategies is presented in Section 3. Section 4 presents the experimental results, analysis and evolutionary behavior comparisons. Finally, concluding remarks and future researches are summarized in Section 5.

    2 Classical Differential Evolution

    In this section, the basic operations of differential evolution will be introduced to better understand our new algorithm, which is proposed in Section 4. DE is an optimization algorithm based on the principles of natural evolution, using a population P with individuals encoded in floating point, as indicated in Eq.(1).

    (1)

    (2)

    The four main steps in DE are initialization, mutation, crossover and selection.

    2.1 Initialization

    i=1,2,…,Np,j=1,2,…,D

    (3)

    2.2 Mutation operation

    “DE/rand/1:”

    Vi=Xr1+F(Xr2-Xr3)

    (4)

    “DE/best/1:”

    Vi=Xbest+F(Xr2-Xr3)

    (5)

    “DE/best/2:”

    Vi=Xbest+F(Xr2-Xr3)+F(Xr4-Xr5)

    (6)

    “DE/rand/2:”

    Vi=Xr1+F(Xr2-Xr3)+F(Xr4-Xr5)

    (7)

    “DE/current-to-best/1:”

    Vi=Xi+F(Xbest-Xi)+F(Xr2-Xr3)

    (8)

    “DE/rand-to-best/1:”

    Vi=Xr1+F(Xbest-Xr1)+F(Xr2-Xr3)

    (9)

    wherei=1,2,…,Np,rk∈[1,Np],k=1,2,…,5,k≠i, are different random integers, and they are also different from vector indexi. The scaling parameterFis usually in [0.4, 1] and is used to adjust the exploration or exploitation step size. Eqs.(5&6) generate a new individual around the current best solution to exploit the current neighborhood. In order to enlarge the exploring region, Eqs.(7,8,9) provide two different vectors which are randomly selected to obtain a new solution. In this way, the population diversity can be maintained and more heuristic information can be utilized.

    2.3 Crossover operation

    (10)

    2.4 Selection operation

    Selection operator contains a greedy mechanism according to their fitness of the trial vector and the parent individual. Then the better one, whose fitness is higher, is selected to survive for next generation. This operation is shown in Eq.(11) for minimization.

    (11)

    The above three operations repeat until the termination condition is met and a final solution is given.

    3 SODE Algorithm

    A novel second order differential evolution optimization algorithm, SODE, is proposed. The aim of proposing second order difference vector is to better utilize the search direction information. There is one word to say that, the motivation of this paper is not to propose a DE variant with powerful performance, but a distinct second order differential evolution algorithm model for the extensive subsequent research.

    3.1Thesecondorderdifferencevectormechanism

    Both classical mutation operations DE/rand/1 and DE/best/1 are used as the analytic generation strategies, which are the most successful and widely used schemes. Now, the beneficial heuristic direction information of the second order difference vector will be exploited. The second order difference vector information is indicated in Eqs.(12)-(16), which are based on the two classical mutation strategies.

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    (18)

    3.2AddthesecondorderdifferencevectortoDE/rand/1

    The first component pattern ofdrGis made by Eqs.(14) and (15). The second component pattern ofdrGis made by Eqs.(13) and (15). In order to evaluate the performance of the proposed mechanism for DE/rand/1, a suit of benchmark functions[13] [20] [21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/rand/1 will be presented in section 4.4.

    3.3AddthesecondorderdifferencevectortoDE/best/1

    The first component pattern ofdrGis made up by Eqs.(14&15). The second component pattern ofdrGis made up by Eqs.(13&15). In order to evaluate the performance of the proposed mechanism for DE/best/1, a suit of benchmark functions[13,20,21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/best/1 will be presented in section 4.5.

    4 Performance Comparison and Analysis

    In order to discuss the performance of the proposed second difference strategy, 20 functions[13,20,21]with dimension 30 are used as the test suite and three DE variants are also adopted.

    4.1 Benchmark functions

    The test suit contains 6 unimodal functions and 14 multimodal functions. Functionsf1-f7, butf5, are unimodal functions, because Rosenbrock’s functionf5is a multimodal function when its dimension is larger than three.f8-f20are multimodal functions, and the number of local minima increases exponentially with the increase of problem dimension.f19is an unimodal, separable, scalable function.f20is a multi-modal, non-separable, scalable function. They are described in Table 1.

    Table 1 Benchmark functions.

    Continue table 1

    4.2 Parameters setting

    The parameters in this paper are as follows without the special situation.

    ? Number of independent runs: RUN=30

    ? Population size: SIZE=50

    ? Benchmark dimension: D=30 ? Maximal iteration number: MAXFUNNUM=100000

    Both parameters, scale factorFand crossover probabilityCRClassical DE are initialized to 0.5 for all the algorithms[22,23]. Parameterλis also simply initialized as 0.1 according to our experiments for parameterλ, which will be discussed in the next part.

    4.3 Simulation results of parameter λ

    The influence of the selection of parameterλwill be discussed in this section. The parameter ofλmay have an important influence on the population evolving for the current solutions. 5 unimodal functions(f1,f2,f3,f4,f6) and 3 multimodal functions(f5,f19,f20)are chosen to empirically analyze its effects. In order to achieve more reliable results and rule out other interference factors, the conventional parameters are set as 0.1, 0.3, 0.5, 0.7 and 0.9 respectively. Then the comparison ofλfor DE/best/1 among five different selections is plotted in Fig. 1 and indicated in Table 2. The comparison ofλfor DE/rand/1 among five different selections is plotted in Fig. 2 and summarized in Table 3.

    Fig.1 indicates that parameterλfor DE/best/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 6 functions for all 8 functions. At the same time, numerical results in Table 2 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 2 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of the paper for DE/best/1.

    Fig.2 indicates that parameterλfor DE/rand/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 7 functions for all 8 functions. At the same time, numerical results in Table 3 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 3 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of this paper for DE/rand/1.

    Fig.1 The comparative results of five parameters for DE/best/1.

    λminmedianmeanstdf10.17.6280E-883.7454E-834.2049E-811.5281E-800.31.0475E-672.3247E-667.7773E-661.6136E-650.52.6880E-421.0036E-402.0878E-402.8538E-400.75.1106E-226.1659E-202.5106E-197.9992E-190.91.5754E-081.8418E-074.0466E-075.6518E-07f20.100000.300000.503.6999E-1454.2169E-582.1639E-570.71.3860E-667.2021E-441.9170E-396.5289E-390.91.4098E-432.8229E-398.2623E-374.3042E-36f30.14.5662E-872.3404E-835.4124E-792.6894E-780.32.6757E-691.9110E-678.4957E-671.6537E-660.51.1221E-438.1183E-425.3251E-411.1465E-400.71.0777E-224.2005E-211.3310E-201.8184E-200.94.7704E-092.9580E-083.4931E-082.5498E-08f40.12.7243E-155.9614E-129.4215E-129.8802E-120.34.2264E-152.1585E-121.0855E-111.6199E-110.53.2122E-151.5035E-123.7824E-127.7762E-120.72.7415E-151.3349E-127.0320E-121.8126E-110.91.1311E-141.0752E-124.2807E-127.8175E-12f50.12.2961E-488.0137E-461.6030E-434.0219E-430.31.2503E-371.1379E-361.8007E-362.1690E-360.55.2571E-248.1466E-231.0110E-229.9515E-230.75.9604E-133.4265E-124.6367E-124.0468E-120.91.1712E-052.8896E-053.2185E-051.7502E-05f60.12.9851E-032.1524E-023.5706E-024.0382E-020.31.8904E+001.1480E+011.8764E+011.7771E+010.53.8857E+021.2201E+031.5098E+039.6477E+020.73.3185E+038.5714E+039.1987E+033.2159E+030.98.3880E+031.5735E+041.5399E+043.1669E+03f190.11.8000E+013.1500E+013.1948E+017.8176E+000.33.0394E+016.2696E+015.9496E+011.4822E+010.56.6305E+018.7471E+018.5458E+011.0208E+010.77.4042E+019.7326E+019.6190E+011.1099E+010.98.4952E+011.0724E+021.0759E+021.0986E+01f200.11.0794E-034.4602E-019.2243E-011.0634E+000.301.9998E-022.9057E-015.4398E-010.5001.5462E-028.3828E-020.73.2024E-095.9876E-083.6123E-079.4670E-070.99.6550E-033.4770E-023.4410E-021.2583E-02

    Fig.2 The comparative results of five parameters for DE/rand/1.

    minmedianmeanstdf10.12.3748E-248.9364E-241.0791E-237.4357E-240.32.2481E-201.7031E-191.9115E-191.3418E-190.57.7264E-142.5173E-132.8213E-131.4254E-130.71.1364E-073.0378E-073.1974E-071.2165E-070.95.2271E-031.1470E-021.2312E-024.2024E-03f20.12.5920E-842.0303E-545.5454E-443.0339E-430.32.7092E-492.8089E-423.7573E-409.9621E-400.59.4267E-446.3708E-394.1188E-371.7745E-360.75.8460E-421.3581E-373.5245E-361.6267E-350.91.3643E-422.2592E-381.6980E-365.2681E-36f30.15.6101E-251.2114E-241.5209E-248.7373E-250.36.9903E-211.8458E-202.2353E-201.4554E-200.55.6471E-152.4238E-142.6119E-141.6640E-140.71.2183E-082.5242E-082.8771E-081.2787E-080.93.8878E-049.3069E-041.0003E-033.7333E-04f40.13.7035E-153.4163E-121.8382E-113.7888E-110.35.1973E-171.4428E-126.4210E-121.0733E-110.51.8682E-135.7236E-121.4242E-112.2713E-110.75.4746E-154.3894E-121.0482E-111.5998E-110.92.1840E-157.4248E-137.1842E-121.3502E-11f50.11.0619E-142.5203E-142.9253E-141.3661E-140.33.0948E-126.5844E-126.7447E-121.6803E-120.51.2988E-082.3529E-082.4017E-086.8930E-090.73.2190E-055.0411E-055.5018E-051.4460E-050.91.0708E-021.9155E-021.9515E-024.2629E-03f60.17.1855E+031.0725E+041.0462E+041.9158E+030.38.8619E+031.2352E+041.2469E+041.6214E+030.59.1152E+031.4289E+041.4252E+042.2462E+030.71.4035E+041.6941E+041.6884E+041.7970E+030.91.1992E+041.8700E+041.8360E+042.8819E+03f190.15.3188E+018.2814E+018.2523E+018.6160E+000.36.4938E+019.1962E+018.8314E+011.0019E+010.56.2106E+019.6627E+019.3259E+011.2688E+010.78.4442E+011.0173E+021.0276E+027.7944E+000.98.2279E+011.0524E+021.0671E+029.6852E+00f200.15.6843E-141.7764E-132.0440E-131.3113E-130.31.4024E-097.3160E-099.6733E-097.1346E-090.53.3792E-045.2640E-045.5936E-041.3135E-040.73.1780E-024.3001E-024.4544E-027.9437E-030.97.2583E-019.2463E-019.2312E-011.1465E-01

    4.4SimulationresultsandcomparisonanalysisforDE/rand/1

    In this paper, we propose the second order difference vector differential evolution. The new proposed algorithm is analyzed and verified with different algorithm variants and various benchmark functions.

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, three DE algorithms are chosen to compare each other, and are described as follows:

    ? DE1: differential evolution using generation strategy “DE/rand/1”

    ? SODE11: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/rand/1”.

    ? SODE12: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/rand /1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 4, which includes the items of Min, Median, Mean and STD in multiple runs. Observed from Table 4, it can be found that SODE11 and SODE12 algorithms outperform the classical DE1 algorithms. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    Table 4 Results of three algorithms for DE/rand/1.

    functionItemDE1SODE11SODE12f6min000medi?an000mean000std000f7min1.1215E-027.3852E-034.6170E-03medi?an2.0762E-021.1231E-021.1918E-02mean2.0471E-021.1229E-021.1493E-02std4.5320E-032.2653E-033.0677E-03f8min2.1673E+0200medi?an4.2394E+031.3642E-111.3642E-11mean3.8753E+033.9479E+001.8596E-09std1.1944E+032.1624E+017.7577E-09f9min1.4425E+021.0046E+021.0216E+02medi?an1.8032E+021.1750E+021.1815E+02mean1.7831E+021.1711E+021.1711E+02std1.2415E+018.5869E+007.2292E+00f10min3.7434E-063.3129E-133.9879E-13medi?an7.9597E-067.1854E-136.8123E-13mean9.1488E-068.5674E-137.3369E-13std4.4827E-063.1726E-132.7606E-13

    Continue table 4

    functionItemDE1SODE11SODE12f16min-7.8332E+01-7.8332E+01-7.8332E+01medi?an-7.8332E+01-7.8332E+01-7.8332E+01mean-7.8332E+01-7.8332E+01-7.8332E+01std1.1574E-083.8332E-143.5108E-14f17min9.8575E+016.7058E+016.3962E+01medi?an1.5142E+028.5857E+018.0006E+01mean1.4583E+028.5083E+018.2750E+01std1.6545E+017.9043E+009.2737E+00f18min1.3254E-022.8422E-141.4211E-14medi?an2.1337E-021.4566E-131.5277E-13mean2.2176E-021.8143E-131.6366E-13std5.4823E-031.7485E-131.2841E-13f19min4.1448E-149.2787E-286.7387E-28medi?an1.9896E-132.9217E-273.1668E-27mean2.6145E-133.2166E-273.7943E-27std1.9673E-131.4735E-273.4331E-27f20min6.2181E-163.5249E-141.2903E-14medi?an5.0791E-115.9096E-111.8509E-11mean1.9275E-101.0588E-101.6550E-10std2.8449E-101.4707E-102.9653E-10

    In general, SODE11 and SODE12 perform better than DE1 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE11 and SODE12 being better than DE1 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verifies the excellent effects of the proposed second order difference information strategy.

    (3) Online evolving performance comparison and analysis:

    The online performance comparison among four DE algorithms is shown in Fig. 3, which further supports the previous numerical results and the related analysis. Observed from Fig. 3, SODE11 and SODE12 based on DE1 algorithm performs better for 16 from 20 benchmarks for the final results, except forf3,f5,f15,f16. The evolving lines of SODE11 and SODE12 decline faster than DE1 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE11 and SODE12 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    Fig.3 The comparative results of three algorithms for DE/rand/1.

    4.5SimulationresultsandcomparisonanalysisforDE/best/1

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, four DE algorithms are chosen to compare each other, which are described as follows:

    ? DE2: differential evolution using generation strategy “DE/best/1”

    ? SODE21: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/best/1”.

    ? SODE22: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/best/1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 5, which includes the items of Min, Median, Mean and Std in multiple runs. Observed from Table 5, it can be found that SODE21 and SODE22 algorithms outperform the classical DE2 algorithms. As the results shown, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    In general, SODE21 and SODE22 perform better than DE2 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE21 and SODE22 being better than DE2 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verify the excellent effects of the proposed second order difference information strategy.

    Table 5 Results of three algorithms.

    functionItemDE2SODE21SODE22f9min3.0844E+011.6914E+018.9546E+00medi?an4.8753E+012.7859E+012.3879E+01mean50.90882.8721E+012.4907E+01std14.71618.9859E+009.2249E+00f10min4.2419E-054.4409E-157.9936E-15medi?an2.6592E+009.3130E-011.3404E+00mean2.6462E+008.3009E-011.0513E+00std1.3577E+007.2911E-017.7577E-01f11min2.7850E-0900medi?an1.7235E-027.3960E-038.6267E-03mean4.6388E-021.0407E-022.3740E-02std7.6763E-021.4420E-024.0320E-02f12min1.7399E-051.5705E-321.5705E-32medi?an2.9201E+001.0367E-011.0367E-01mean3.9499E+004.6011E-013.0457E-01std4.1432E+009.2490E-014.4431E-01f13min1.0988E-021.3498E-321.3498E-32medi?an3.9747E+001.0987E-021.6006E-02mean5.7266E+006.7217E-016.8796E-01std5.8384E+001.0854E+001.2302E+00f14min-2.6750E+01-2.8102E+01-2.8405E+01medi?an-2.5150E+01-2.3511E+01-2.3859E+01mean-2.5104E+01-2.3378E+01-2.3943E+01std9.1336E-012.2108E+002.3589E+00f15min1.8645E+031.5039E+035.3399E+03medi?an1.6296E+041.0190E+041.6617E+04mean1.9935E+041.5895E+041.9065E+04std1.5947E+041.8682E+041.1499E+04f16min-7.2678E+01-7.5505E+01-7.5505E+01medi?an-6.8908E+01-7.1264E+01-7.0793E+01mean-6.8876E+01-7.1295E+01-7.1076E+01std2.5177E+002.2648E+002.6674E+00

    Continue table 5

    functionItemDE2SODE21SODE22f19min1.2313E-209.9433E-909.1163E-92medi?an6.8305E-121.0004E-862.8009E-84mean6.8196E-069.4213E-848.4675E-75std2.5980E-053.7331E-834.6378E-74f20min1.0139E-131.8771E-142.9769E-13medi?an1.9232E-113.6794E-113.6652E-11mean3.5644E-111.6194E-101.0081E-10std5.4285E-112.3891E-101.3582E-10

    (3)Online evolving performance comparison and analysis:

    The evolutionary performance comparison among several DE variants can be found in Fig. 4, which will further support the previous numerical comparison and the relative analysis. Observed from Fig. 4, SODE21 and SODE22 based on DE1 outperforms its competitors for 17 from 20 benchmarks for the final results. The evolulary curves of SODE21, SODE22 decline faster than DE2 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As shown in the results, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE21 and SODE22 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    5 Conclusion and Future Work

    In this paper, a novel DE variant, SODE, with the second order information of the difference vector, is proposed and investigated which expands the current research scope of the classical (first order) DE algorithms effectively. It is possible to efficiently utilize the second order direction information of difference vector and the beneficial population information for even better solution location and to enhance the adaptability of DE search mechanism. It is possible to spark even more interesting and challenging research topics in future. This strategy has distinct advantages on avoiding premature convergence. SODE is verified on some classic benchmark functions when compared with other DE algorithms. The simulation results indicate that its performance is very competitive and better than other classical algorithms. It also indicates the proposed strategies’ effectiveness and cooperation.

    The better utilization of the second order information from the difference vector is an interesting topic for future research.

    Fig.4 The comparative results of three algorithms for DE/best/1.

    Acknowledgment

    This research is supported by National Natural Science Foundation of China (61375066, 61374204). We will express our awfully thanks to our Swarm Intelligence Research Team of BeiYou University.

    [1]T.Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, New York, USA:Oxford University Press, 1996.

    [2]J.Kennedy, R.Poli, and T.Blackwell, Particle swarm optimization,SwarmIntelligence, vol.1,no.1, pp.33-57, 2007.

    [3]S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, Optimization by simulated annealing,Science, vol.220,no.4598.pp.671-680, 1983.

    [4]M.Dorigo, V.Maniezzo, and A.Colorni, Ant system: optimization by a colony of cooperating agents,IEEETransactionsonSystems,Man,andCybernetics-PartB, vol.26,no.1,pp.29-41, 1996.

    [5]R.Storn and K.Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces,JournalofGlobalOptimization, vol.11,no.4, pp.341-359, 1997.

    [6]O.Hrstka and A.Kucerova, Improvement of real coded genetic algorithm based on differential operators preventing premature convergence,AdvancesinEngineeringSoftware, vol.35,no.3,pp.237-246, 2004.

    [7]J.J.Liang, A.K.Qin, P.N.Suganthan, and S.Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,IEEETransactionsonEvolutionaryComputation, vol.10.no.3,pp.281-295, 2006.

    [8]W.F.Sacco, N.Henderson, and A.C.Rios-Coelho, Topographical clearing differential evolution: A new method to solve multimodal optimization problems,ProgressinNuclearEnergy, vol.71,pp.269-278, 2014.

    [9]Y.Wang, B.Li, and T.Weise, Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of powers systems,InformationSciences, vol.180,no.12, pp.2405-2420, 2010.

    [10] M.Zhang, W.Luo, and X.Wang, Differential evolution with dynamic stochastic selection for constrained optimization,InformationSciences, vol.178,no.15,pp.3043-3074, 2008.

    [11] K.Zielinski, P.Weitkemper, R.Laur, and K.D.Kammeyer, Parameter study for differential evolution using a power allocation problem including interference cancellation,InProceedingsofIEEEInternationalConferenceonEvolutionaryComputation,pp.1857-1864, 2009.

    [12] J.Zhang and A.C.Sanderson, An approximate Gaussian model of differential evolution with spherical fitness functions, InProceedingsoftheIEEECongressonEvolutionaryComputation, Singapore, pp.2220-2228,2007.

    [13] H.Y.Fan and J.Lampinen, A trigonometric mutation operation to differential evolution,JournalofGlobalOptimization, vol.27, no.1, pp.105-129, 2003.

    [14] J.Y.Sun, Q.F.Zhang, and E.P.K.Tsang, DE/EDA: A new evolutionary algorithm for global optimization,InformationSciences, vol.169,no: 3-4, pp.249-262, 2005.

    [15] Y.X.Wang and Q.L.Xiang, Exploring new learning strategies in differential evolution algorithm,IEEECongressonEvolutionaryComputation, pp.204-209, 2008.

    [16] X.C.Zhao, W.Q.Lin, C.C.Yu, J.Chen, and S.G.Wang, A new hybrid differential evolution with simulated annealing and self-adaptive immune operation,ComputersandMathematicswithApplications, vol.66, no.10, pp.1948-1960, 2013.

    [17] W.Lu, Y.Y.Cai, X.P.Chen, and K.L.Shi, Semantic similarity assessment using differential evolution algorithm in continuous vector space,JournalofVisualLanguagesandComputing, vol.31, pp.246-251, 2015.

    [18] W.H.Wei, J.H.Wang, and M.Tao, Constrained differential evolution with multi-objective sorting mutation operators for constrained optimization,AppliedSoftComputing,vol.33, pp.207-222, 2015.

    [19] J.Q.Zhang and A.C.Sanderson, JADE: Adaptive differential evolution with optional external archive,IEEETransactionsonEvolutionaryComputation, vol.13,no.5, pp.945-958, 2009.

    [20] Y.W.Leung and Y.P.Wang, An orthogonal genetic algorithm with quantization for global numerical optimization,IEEETransactionsonEvolutionaryComputation, vol.5, no.1,pp.41-53, 2001.

    [21] M.B.Michael, N.Christian, and B.Daniel, A global multi-objective optimization tool for design of mechatronic components using Generalized Differential Evolution, Inproceedingsof42ndAnnualConferenceoftheIEEEIndustrialElectronicsSociety, Florence, Italy: IEEE Press, pp.475-481,2016.

    [22] Shilpi and Karambir, Improvising the effectiveness of test suites using differential evolution technique,Inproceedingsof5thInternationalConferenceonReliability,InfocomTechnologiesandOptimization, Noida, India: IEEE Press, pp.52-56, 2016.

    [23] W.Du, S.Y.Leung, Y.Tang, A.V.Vasilakos, Differential Evolution with Event-Triggered Impulsive Control,IEEETransactionsonCybernetics, vol.47, no.1, pp.244-257, 2016.

    GuangzhiXuwas born in 1987.He is a Ph.D.in Beijing University of Posts and Telecommunications.He has visited University of Glasgow as joined Ph.D.student.His research interests are Evolutionary computation and intelligent control, big data system and industry 4.0.

    DongyueLiureceived the B.Sc. degree in Qilu normal university, Jinan, China, in 2014. She is currently working towards the M.Sc. degree in Swarm intelligence optimization from Beijing University of Posts and Telecommunications, Beijing, China. Her current research is focused on Differential evolution and global optimization.XingquanZuois currently an Associate Professor in Computer School, Beijing University of Posts and Telecommunications. He received the Ph.D. degree in control theory and control engineering from Harbin Institute of Technology, Harbin, China, in 2004. From 2004 to 2006, he was a Postdoctoral Research Fellow in Automation Department of Tsinghua University. From 2012 to 2013, he was a Visiting Scholar in Industrial and System Engineering Department, Auburn University, AL, USA. His research interests are in system optimization and scheduling, evolutionary computation, data mining with applications and intelligent transportation systems. He has published more than 70 research papers in journals and conferences, two books and several book chapters. He has led or participated in 20 research and industrial projects.

    2016-12-20; revised: 2017-01-20

    the Ph.D.degree in Applied Mathematics from the Chinese Academy of Sciences, Beijing, China, in 2005.He is currently with the School of Science, Beijing University of Posts and Telecommunications.His research interests include swarm intelligence, evolutionary computation, operations research and applications.

    ?Xinchao Zhao and Dongyue Liu are with School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.E-mail: xcbupt@126.com.

    ?Guangzhi Xu is with School of Automation,Beijing University of Posts and Telecommunications, Beijing 100876, China. E-mail: xgzegw@gmail.com.

    ?Xingquan Zuo is with School of Computer Science,Beijing University of Posts and Telecommunications, Beijing 100876, China.

    *To whom correspondence should be addressed. Manuscript

    亚洲av第一区精品v没综合| av免费在线观看网站| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 精品人妻在线不人妻| 99re6热这里在线精品视频| 少妇被粗大的猛进出69影院| 精品人妻熟女毛片av久久网站| 韩国精品一区二区三区| 麻豆乱淫一区二区| 国产成人欧美| 久久国产亚洲av麻豆专区| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 国产蜜桃级精品一区二区三区 | 免费在线观看亚洲国产| 亚洲 国产 在线| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 国产精品亚洲一级av第二区| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 老司机影院毛片| 中文字幕最新亚洲高清| 欧美日本中文国产一区发布| 欧美日韩国产mv在线观看视频| 一本一本久久a久久精品综合妖精| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av香蕉五月 | 动漫黄色视频在线观看| 久9热在线精品视频| 国产亚洲一区二区精品| 男女下面插进去视频免费观看| 国产精品国产高清国产av | 久久午夜综合久久蜜桃| 亚洲av成人av| 一本综合久久免费| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 如日韩欧美国产精品一区二区三区| 悠悠久久av| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产一区二区精华液| 国产高清激情床上av| 国产麻豆69| 亚洲国产毛片av蜜桃av| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 露出奶头的视频| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 看片在线看免费视频| 狠狠狠狠99中文字幕| 一本综合久久免费| 国产国语露脸激情在线看| 91成人精品电影| 久久精品国产99精品国产亚洲性色 | 亚洲国产欧美网| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 高潮久久久久久久久久久不卡| tocl精华| 母亲3免费完整高清在线观看| 中亚洲国语对白在线视频| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人| 午夜福利免费观看在线| 国产主播在线观看一区二区| 欧美在线黄色| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 免费日韩欧美在线观看| 中文字幕av电影在线播放| 正在播放国产对白刺激| 国产精品久久电影中文字幕 | 熟女少妇亚洲综合色aaa.| aaaaa片日本免费| 69精品国产乱码久久久| 18禁裸乳无遮挡免费网站照片 | 91麻豆精品激情在线观看国产 | 亚洲精品美女久久av网站| 久久亚洲精品不卡| 国产又色又爽无遮挡免费看| 国产又爽黄色视频| 一区福利在线观看| 99国产极品粉嫩在线观看| 亚洲全国av大片| 久久久久久免费高清国产稀缺| 色婷婷久久久亚洲欧美| 欧美国产精品va在线观看不卡| 亚洲午夜理论影院| 国产1区2区3区精品| 国产1区2区3区精品| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 日日夜夜操网爽| 亚洲欧美日韩高清在线视频| 国产高清国产精品国产三级| 91大片在线观看| 黄色丝袜av网址大全| 熟女少妇亚洲综合色aaa.| 成熟少妇高潮喷水视频| 成人国语在线视频| 国产亚洲欧美98| 亚洲一区高清亚洲精品| 欧美成人免费av一区二区三区 | 久久精品亚洲精品国产色婷小说| 黄片播放在线免费| 欧美大码av| 久久久久国产一级毛片高清牌| 色综合欧美亚洲国产小说| 久久这里只有精品19| 一级作爱视频免费观看| 亚洲熟女精品中文字幕| 一区二区三区精品91| 高清毛片免费观看视频网站 | 黄色女人牲交| 日韩欧美一区视频在线观看| 亚洲,欧美精品.| 欧美日本中文国产一区发布| a级片在线免费高清观看视频| 亚洲精品一二三| 一区二区日韩欧美中文字幕| 精品久久久久久,| 好男人电影高清在线观看| 久久人人97超碰香蕉20202| 午夜视频精品福利| 午夜视频精品福利| 国产在线一区二区三区精| 精品久久久久久,| 亚洲精品久久成人aⅴ小说| 99re在线观看精品视频| 久久精品国产清高在天天线| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久人人做人人爽| 午夜影院日韩av| 亚洲欧美色中文字幕在线| 色在线成人网| 两个人免费观看高清视频| 亚洲视频免费观看视频| 亚洲片人在线观看| 黄片小视频在线播放| 高清视频免费观看一区二区| 女性生殖器流出的白浆| 久久中文字幕一级| 69av精品久久久久久| 欧美精品人与动牲交sv欧美| 色精品久久人妻99蜜桃| 别揉我奶头~嗯~啊~动态视频| 一级片'在线观看视频| 淫妇啪啪啪对白视频| a级毛片黄视频| 不卡一级毛片| 涩涩av久久男人的天堂| 日韩欧美三级三区| 91麻豆精品激情在线观看国产 | 国产深夜福利视频在线观看| 国产不卡一卡二| 90打野战视频偷拍视频| 高清毛片免费观看视频网站 | 亚洲av熟女| 精品无人区乱码1区二区| 久久ye,这里只有精品| 91在线观看av| 日本黄色视频三级网站网址 | 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 一二三四在线观看免费中文在| 黑人巨大精品欧美一区二区蜜桃| 丰满的人妻完整版| 亚洲性夜色夜夜综合| 免费观看a级毛片全部| av一本久久久久| 热re99久久国产66热| 999久久久精品免费观看国产| 一区福利在线观看| 精品国产一区二区三区久久久樱花| 国产av又大| 欧美日韩亚洲国产一区二区在线观看 | 色综合欧美亚洲国产小说| 一区二区三区国产精品乱码| 欧美日韩瑟瑟在线播放| 午夜福利视频在线观看免费| 在线免费观看的www视频| 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 国产aⅴ精品一区二区三区波| 欧美日韩瑟瑟在线播放| 女人高潮潮喷娇喘18禁视频| 国产91精品成人一区二区三区| 成在线人永久免费视频| 两性夫妻黄色片| 中文字幕最新亚洲高清| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕一二三四区| 国产欧美日韩一区二区精品| 成人18禁高潮啪啪吃奶动态图| 久热爱精品视频在线9| 国产精品久久久av美女十八| 久久人妻福利社区极品人妻图片| 无人区码免费观看不卡| 黄色丝袜av网址大全| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 捣出白浆h1v1| 国产色视频综合| www.熟女人妻精品国产| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 亚洲成人国产一区在线观看| 51午夜福利影视在线观看| 国产成人av教育| 国产日韩一区二区三区精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 精品亚洲成国产av| 国产欧美日韩精品亚洲av| a在线观看视频网站| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看| 又黄又粗又硬又大视频| 一本大道久久a久久精品| 国产成人av激情在线播放| av不卡在线播放| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 午夜视频精品福利| 久久中文字幕人妻熟女| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 窝窝影院91人妻| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 91成年电影在线观看| 女人精品久久久久毛片| 国产精品1区2区在线观看. | 美女 人体艺术 gogo| 又黄又爽又免费观看的视频| 宅男免费午夜| 久久精品亚洲av国产电影网| 精品国产乱子伦一区二区三区| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 日韩熟女老妇一区二区性免费视频| 久久国产精品大桥未久av| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 在线观看一区二区三区激情| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区欧美精品| av国产精品久久久久影院| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 18禁裸乳无遮挡免费网站照片 | 人人妻人人澡人人看| 国产精品乱码一区二三区的特点 | 午夜福利影视在线免费观看| 欧美精品高潮呻吟av久久| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| а√天堂www在线а√下载 | 国产一区二区三区综合在线观看| 18禁裸乳无遮挡动漫免费视频| 成年版毛片免费区| 久热这里只有精品99| 久久久国产成人免费| 午夜日韩欧美国产| 搡老岳熟女国产| 在线看a的网站| 日韩欧美在线二视频 | 如日韩欧美国产精品一区二区三区| 咕卡用的链子| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸| 国产麻豆69| av电影中文网址| 搡老岳熟女国产| 欧美在线一区亚洲| 国产麻豆69| 免费日韩欧美在线观看| 亚洲视频免费观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人手机| 久热爱精品视频在线9| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 午夜免费成人在线视频| 黄频高清免费视频| aaaaa片日本免费| 多毛熟女@视频| 成人18禁在线播放| 老熟妇乱子伦视频在线观看| 国产又爽黄色视频| 精品国产乱码久久久久久男人| 精品无人区乱码1区二区| 日日爽夜夜爽网站| 身体一侧抽搐| 亚洲片人在线观看| 在线看a的网站| 老司机福利观看| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看日韩| 国产精品美女特级片免费视频播放器 | 女性生殖器流出的白浆| 三级毛片av免费| 91九色精品人成在线观看| 亚洲欧美色中文字幕在线| 欧美日韩乱码在线| 国产精品久久电影中文字幕 | 亚洲成人国产一区在线观看| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 国产日韩欧美亚洲二区| 亚洲av熟女| 最新美女视频免费是黄的| 日韩制服丝袜自拍偷拍| 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| 亚洲熟女毛片儿| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 国产免费男女视频| 黄色女人牲交| 午夜老司机福利片| 亚洲一区中文字幕在线| 深夜精品福利| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 婷婷成人精品国产| 露出奶头的视频| 国产精品久久电影中文字幕 | 美女高潮到喷水免费观看| 老司机福利观看| 妹子高潮喷水视频| 日韩欧美免费精品| 国内久久婷婷六月综合欲色啪| 精品国产美女av久久久久小说| 国产成人影院久久av| 成人影院久久| 大型黄色视频在线免费观看| 久久精品人人爽人人爽视色| 免费在线观看黄色视频的| 色综合婷婷激情| 亚洲伊人色综图| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 男女午夜视频在线观看| a级毛片在线看网站| 国产99久久九九免费精品| 三上悠亚av全集在线观看| 久久国产精品大桥未久av| 在线播放国产精品三级| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 高清av免费在线| 欧美日韩黄片免| 国产亚洲精品久久久久5区| www.精华液| 国产精品综合久久久久久久免费 | 青草久久国产| 黑人操中国人逼视频| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 91精品国产国语对白视频| 国产淫语在线视频| 视频区图区小说| 黄色成人免费大全| 国产精品九九99| 久久久国产一区二区| 亚洲精品国产区一区二| 丝袜美腿诱惑在线| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 国产亚洲精品第一综合不卡| 18在线观看网站| 狠狠狠狠99中文字幕| 我的亚洲天堂| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 国产高清激情床上av| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 国产xxxxx性猛交| 久久精品国产亚洲av香蕉五月 | 亚洲精品中文字幕一二三四区| 美女国产高潮福利片在线看| 18在线观看网站| 男女床上黄色一级片免费看| 久久中文字幕人妻熟女| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩视频精品一区| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 一二三四在线观看免费中文在| 99re在线观看精品视频| 男女床上黄色一级片免费看| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 久久久水蜜桃国产精品网| 99精品久久久久人妻精品| 人人澡人人妻人| www日本在线高清视频| 天天影视国产精品| 国产精华一区二区三区| 色尼玛亚洲综合影院| 757午夜福利合集在线观看| 国产又爽黄色视频| 三级毛片av免费| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 69精品国产乱码久久久| 色播在线永久视频| 亚洲国产毛片av蜜桃av| 欧美乱妇无乱码| 我的亚洲天堂| 在线观看www视频免费| www.999成人在线观看| 日韩有码中文字幕| 欧美不卡视频在线免费观看 | 男女之事视频高清在线观看| 欧美大码av| 亚洲熟女精品中文字幕| 法律面前人人平等表现在哪些方面| 韩国av一区二区三区四区| 亚洲伊人色综图| 99国产综合亚洲精品| 成人黄色视频免费在线看| 黑人欧美特级aaaaaa片| 女人被躁到高潮嗷嗷叫费观| 久久精品国产99精品国产亚洲性色 | 一级a爱视频在线免费观看| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 一进一出抽搐gif免费好疼 | 老汉色av国产亚洲站长工具| 久久久久视频综合| 国产精品免费视频内射| 丰满的人妻完整版| 十八禁人妻一区二区| 精品久久久精品久久久| 精品亚洲成国产av| 最新的欧美精品一区二区| 国产主播在线观看一区二区| 国产精品久久视频播放| 欧美精品av麻豆av| 免费在线观看影片大全网站| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 日韩制服丝袜自拍偷拍| 91av网站免费观看| 亚洲综合色网址| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| 久久久国产成人免费| 黄色丝袜av网址大全| 国产99白浆流出| 99国产综合亚洲精品| 国产精品秋霞免费鲁丝片| 香蕉久久夜色| 午夜免费观看网址| 亚洲免费av在线视频| 色综合婷婷激情| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 在线国产一区二区在线| 亚洲中文字幕日韩| 成人免费观看视频高清| 国产成人免费观看mmmm| 看黄色毛片网站| 啦啦啦免费观看视频1| a级片在线免费高清观看视频| 亚洲黑人精品在线| 一级毛片高清免费大全| 12—13女人毛片做爰片一| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 久久精品成人免费网站| 亚洲 欧美一区二区三区| 老熟女久久久| 免费看十八禁软件| 看片在线看免费视频| 精品人妻1区二区| 国产色视频综合| 中文字幕av电影在线播放| 久久国产乱子伦精品免费另类| av福利片在线| 曰老女人黄片| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡动漫免费视频| 人人妻,人人澡人人爽秒播| 国产黄色免费在线视频| 韩国av一区二区三区四区| 久久久水蜜桃国产精品网| 亚洲精华国产精华精| 成人18禁在线播放| 好男人电影高清在线观看| 免费在线观看完整版高清| 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲欧美色中文字幕在线| 欧美日韩视频精品一区| 久久精品亚洲熟妇少妇任你| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 亚洲国产精品合色在线| 十八禁网站免费在线| 日韩欧美在线二视频 | 亚洲熟妇熟女久久| 亚洲精品国产色婷婷电影| 久久国产精品男人的天堂亚洲| 视频区图区小说| 国产精品亚洲一级av第二区| 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看| 在线天堂中文资源库| 法律面前人人平等表现在哪些方面| 国产xxxxx性猛交| 大码成人一级视频| 成人国产一区最新在线观看| 欧美人与性动交α欧美精品济南到| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 九色亚洲精品在线播放| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 69av精品久久久久久| 天天躁日日躁夜夜躁夜夜| 国产精品自产拍在线观看55亚洲 | 午夜福利欧美成人| 中出人妻视频一区二区| 国产男靠女视频免费网站| 一区在线观看完整版| 亚洲专区国产一区二区| 一夜夜www| 亚洲av片天天在线观看| 精品人妻熟女毛片av久久网站| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 久99久视频精品免费| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月欧美| 亚洲av成人av| 黄片播放在线免费| 国产蜜桃级精品一区二区三区 | 热re99久久精品国产66热6| 亚洲人成电影观看| 亚洲自偷自拍图片 自拍| 国产免费现黄频在线看| 在线国产一区二区在线| 欧美人与性动交α欧美精品济南到| 又黄又爽又免费观看的视频| 成在线人永久免费视频| 国产精品电影一区二区三区 | 国产精品美女特级片免费视频播放器 | 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 人人妻人人澡人人爽人人夜夜| 欧美最黄视频在线播放免费 | 亚洲成人手机| 91精品三级在线观看| 两个人看的免费小视频| 精品人妻在线不人妻| 777米奇影视久久| 一a级毛片在线观看| 久久草成人影院| 国产野战对白在线观看| 亚洲一区高清亚洲精品| 人妻 亚洲 视频| 免费久久久久久久精品成人欧美视频| 国产成人系列免费观看| 黄色片一级片一级黄色片| 中文字幕制服av| 国产麻豆69| 91成人精品电影| 两人在一起打扑克的视频| 久久久久久久国产电影| 视频区图区小说| 欧美精品高潮呻吟av久久| 亚洲欧美激情综合另类| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 日韩制服丝袜自拍偷拍| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 国产精品成人在线| 久久久久久免费高清国产稀缺| 在线观看免费日韩欧美大片| 黄网站色视频无遮挡免费观看| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡| cao死你这个sao货| 一边摸一边抽搐一进一出视频|