• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second Order Differential Evolution Algorithm

    2017-10-11 10:53:57XinchaoZhaoGuangzhiXuDongyueLiuandXingquanZuo

    Xinchao Zhao, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    SecondOrderDifferentialEvolutionAlgorithm

    Xinchao Zhao*, Guangzhi Xu, Dongyue Liu, and Xingquan Zuo

    Differential evolution (DE) is a simple, efficient and robust Evolutionary Algorithm (EA) for various optimization problems, which has several outstanding features, such as low time complexity, ease to use and robust steadiness. So it is becoming more and more popular and being widely used in more and more applications. However, many questions are deserving to consider the balance between exploration and exploitation behaviors. The difference vector of mutation operator for the neighborhood and direction information has not been completely utilized. Therefore, a second order differential evolution algorithm, SODE, is proposed, which can efficiently utilize the search direction information from the second order difference vector. The optimal second order difference mechanisms are proposed for DE/rand/1 and DE/best/1 to utilize the neighborhood and direction information of the difference vector. Then it will guide the individuals toward the possible more encouraging areas. Extensive experiments and comprehensive comparisons show that the second order difference mechanism in SODE is much better than the classical first order difference mechanisms based mutation strategy-“DE/rand/1” and “DE/best/1” as far as the converging and steady performance.

    differential evolution; second order difference vector; memory storage; swarm intelligence

    1 Introduction

    Many kinds of metaheuristic optimization algorithms are proposed for various increasing optimization problems in the recent few decades, which include Evolutionary Algorithms (EAs)[1], Particle Swarm Optimization (PSO)[2], Simulated Annealing (SA)[3], Ant Colony Optimization (ACO)[4]and Differential Evolution (DE)[5]etc.. Although these algorithms have better performance when solving various scientific and engineering problems involving nonlinear, multidimensional and no differentiable problems, many of them are still possible to be trapped in a local optimum when the current solution closes to the local trap or the optimal solution is far from the true optimum[6,7], especially for multimodal optimization problems[8].

    Differential evolution, a simple, yet very efficient evolutionary algorithm for many complex optimization problems, was proposed by Price and Storn[5]. It has been proved that DE has a series of advantages, such as lower computational complexity, higher robustness and simplexes, which made it used to find the satisfactory or approximate solutions for optimization problems and real-world applications[9,10]. DE searches for optimal or satisfactory solutions with three operations: mutation, crossover and selection, in which mutation is the core operation of DE. In DE, the offspring is generated by perturbing the solutions with a scaled difference of selected population individuals followed by a crossover strategy. And DE has several control parameters such as population size (NP), the scaling factor (F) and crossover probability (CR).

    However, the performance of classical DE algorithm is highly dependent on the mutation’s strategy and control parameter’s selection according to experimental studies[11]and theoretical analysis[12], which may lead to premature convergence and degradation of performance. Because basic and different vectors are randomly chosen from the current population, which does not utilize any neighborhood structure and/or beneficial direction information to guide the individuals toward the potential promising regions. This drawback will increase the possibility of being trapped in a local optimum when the current position is next to local trap or the optimal individual is far from the global optimum[13,14], especially for multimodal optimization problems[15].

    Consequently, in order to apply DE successfully to solve the optimization problems and alleviate its disadvantages, various DE variants and a trial and error search for the strategies are proposed by many researchers and engineers. For example, Fan and Lampinen[16]proposed a trigonometric mutation operator to enhance the performance of DE algorithm. This modification enables the algorithm to get a better trade-off between convergence rate and robustness. Thus, it can be possible to increase the convergence speed and thereby obtain an acceptable solution with a lower number of objective function evaluations. Sun et al.[17]proposed a hybrid of DE and estimation of distribution algorithm, called DE/EDA. They designed DE algorithm from a new aspect, which utilized local information and global information respectively. The local information was obtained by modified mutation operation, while the global information was acquired from population’s solution by the proposed model. Three different learning strategies for conventional DE, one is for selecting the base vector and the other two are for constructing the difference vectors that were proposed by Wang and Xiang[18]. Zhao et al.[19]proposed a new hybrid differential evolution with simulated annealing and self-adaptive immune operation which introduced simulated annealing idea to escape from possible local optimum attraction. Lu et al.[20]combined corpus-based and Word Net-based similarity methods based on differential evolution algorithm and assessed semantic similarity between terms in a continuous vector space to improve similarity computation in terms of accuracy. Michael et al.[21]illustrated how the relative simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3, can assist the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The robustness and convergence speed of the algorithm are investigated using different optimization control parameter settings and it is concluded that Generalized Differential Evolution 3 is a reliable optimization tool that can assist the mechatronic engineers in the design and decision making process. Shilpi and Karambir[22]implemented an optimizing technique called Differential Evolution to improve the effectiveness of test cases using Average Percentage of Fault Detection (APFD) metric. Wei Du et al.[23]proposed an Event-Triggered Impulsive (ETI) control scheme to improve the performance of DE. By introducing Impulsive control and event-triggered mechanism into DE, they hope to change the search performance of the population in a positive way after revising the positions of some individuals at certain moments.

    In this paper, the second order differential evolution algorithm is proposed. What’s more, the optimal second order differential mechanisms are proposed for DE/rand/1 and DE/best/1. The major contributions of this paper are as follows:

    ? The second order difference vector mechanism is proposed: Introducing the second order difference vector which is based on the classical mutation strategy and analyze the effect of the proposed mechanism through the experiment.

    ? Different optimal second order differential mechanisms for DE/rand/1 and DE/best/1 is proposed: Two difference vectors of the second order difference vector are associated with each individual, which can be individually selected according to different classical mutation strategies.

    This idea is powered by making use of the beneficial exploration direction of individual and employing different mutation strategies that support the production of new search moves that promote the detection of promising regions.

    The rest of the paper is structured as follows. The basic concepts and formulations of differential evolution are described in Section 2. The proposed DE algorithm with new strategies is presented in Section 3. Section 4 presents the experimental results, analysis and evolutionary behavior comparisons. Finally, concluding remarks and future researches are summarized in Section 5.

    2 Classical Differential Evolution

    In this section, the basic operations of differential evolution will be introduced to better understand our new algorithm, which is proposed in Section 4. DE is an optimization algorithm based on the principles of natural evolution, using a population P with individuals encoded in floating point, as indicated in Eq.(1).

    (1)

    (2)

    The four main steps in DE are initialization, mutation, crossover and selection.

    2.1 Initialization

    i=1,2,…,Np,j=1,2,…,D

    (3)

    2.2 Mutation operation

    “DE/rand/1:”

    Vi=Xr1+F(Xr2-Xr3)

    (4)

    “DE/best/1:”

    Vi=Xbest+F(Xr2-Xr3)

    (5)

    “DE/best/2:”

    Vi=Xbest+F(Xr2-Xr3)+F(Xr4-Xr5)

    (6)

    “DE/rand/2:”

    Vi=Xr1+F(Xr2-Xr3)+F(Xr4-Xr5)

    (7)

    “DE/current-to-best/1:”

    Vi=Xi+F(Xbest-Xi)+F(Xr2-Xr3)

    (8)

    “DE/rand-to-best/1:”

    Vi=Xr1+F(Xbest-Xr1)+F(Xr2-Xr3)

    (9)

    wherei=1,2,…,Np,rk∈[1,Np],k=1,2,…,5,k≠i, are different random integers, and they are also different from vector indexi. The scaling parameterFis usually in [0.4, 1] and is used to adjust the exploration or exploitation step size. Eqs.(5&6) generate a new individual around the current best solution to exploit the current neighborhood. In order to enlarge the exploring region, Eqs.(7,8,9) provide two different vectors which are randomly selected to obtain a new solution. In this way, the population diversity can be maintained and more heuristic information can be utilized.

    2.3 Crossover operation

    (10)

    2.4 Selection operation

    Selection operator contains a greedy mechanism according to their fitness of the trial vector and the parent individual. Then the better one, whose fitness is higher, is selected to survive for next generation. This operation is shown in Eq.(11) for minimization.

    (11)

    The above three operations repeat until the termination condition is met and a final solution is given.

    3 SODE Algorithm

    A novel second order differential evolution optimization algorithm, SODE, is proposed. The aim of proposing second order difference vector is to better utilize the search direction information. There is one word to say that, the motivation of this paper is not to propose a DE variant with powerful performance, but a distinct second order differential evolution algorithm model for the extensive subsequent research.

    3.1Thesecondorderdifferencevectormechanism

    Both classical mutation operations DE/rand/1 and DE/best/1 are used as the analytic generation strategies, which are the most successful and widely used schemes. Now, the beneficial heuristic direction information of the second order difference vector will be exploited. The second order difference vector information is indicated in Eqs.(12)-(16), which are based on the two classical mutation strategies.

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    (18)

    3.2AddthesecondorderdifferencevectortoDE/rand/1

    The first component pattern ofdrGis made by Eqs.(14) and (15). The second component pattern ofdrGis made by Eqs.(13) and (15). In order to evaluate the performance of the proposed mechanism for DE/rand/1, a suit of benchmark functions[13] [20] [21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/rand/1 will be presented in section 4.4.

    3.3AddthesecondorderdifferencevectortoDE/best/1

    The first component pattern ofdrGis made up by Eqs.(14&15). The second component pattern ofdrGis made up by Eqs.(13&15). In order to evaluate the performance of the proposed mechanism for DE/best/1, a suit of benchmark functions[13,20,21]are selected as the test suit. The discussion on the performance of second order difference vector to DE/best/1 will be presented in section 4.5.

    4 Performance Comparison and Analysis

    In order to discuss the performance of the proposed second difference strategy, 20 functions[13,20,21]with dimension 30 are used as the test suite and three DE variants are also adopted.

    4.1 Benchmark functions

    The test suit contains 6 unimodal functions and 14 multimodal functions. Functionsf1-f7, butf5, are unimodal functions, because Rosenbrock’s functionf5is a multimodal function when its dimension is larger than three.f8-f20are multimodal functions, and the number of local minima increases exponentially with the increase of problem dimension.f19is an unimodal, separable, scalable function.f20is a multi-modal, non-separable, scalable function. They are described in Table 1.

    Table 1 Benchmark functions.

    Continue table 1

    4.2 Parameters setting

    The parameters in this paper are as follows without the special situation.

    ? Number of independent runs: RUN=30

    ? Population size: SIZE=50

    ? Benchmark dimension: D=30 ? Maximal iteration number: MAXFUNNUM=100000

    Both parameters, scale factorFand crossover probabilityCRClassical DE are initialized to 0.5 for all the algorithms[22,23]. Parameterλis also simply initialized as 0.1 according to our experiments for parameterλ, which will be discussed in the next part.

    4.3 Simulation results of parameter λ

    The influence of the selection of parameterλwill be discussed in this section. The parameter ofλmay have an important influence on the population evolving for the current solutions. 5 unimodal functions(f1,f2,f3,f4,f6) and 3 multimodal functions(f5,f19,f20)are chosen to empirically analyze its effects. In order to achieve more reliable results and rule out other interference factors, the conventional parameters are set as 0.1, 0.3, 0.5, 0.7 and 0.9 respectively. Then the comparison ofλfor DE/best/1 among five different selections is plotted in Fig. 1 and indicated in Table 2. The comparison ofλfor DE/rand/1 among five different selections is plotted in Fig. 2 and summarized in Table 3.

    Fig.1 indicates that parameterλfor DE/best/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 6 functions for all 8 functions. At the same time, numerical results in Table 2 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 2 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of the paper for DE/best/1.

    Fig.2 indicates that parameterλfor DE/rand/1 is very sensitive to the algorithmic performance. It can also be found that the evolving line ofλbeing 0.1 is located at the bottom of 7 functions for all 8 functions. At the same time, numerical results in Table 3 present the item comparisons for the parameterλ=0.1, 0.3, 0.5, 0.7 and 0.9 respectively. The first column gives the test functions for the experiments and the second column gives five different values ofλ. In order to clearly compare the results, the items of “min”, “median”, “mean” and “std” are presented, which are the minimal, median, average and standard deviation of all the final results in multiple runs. The experimental comparison in Table 3 clearly indicates that the algorithm withλ=0.1 performs best among all five choices for benchmark functions. Therefore, parameterλwill be chosen 0.1 in the following parts of this paper for DE/rand/1.

    Fig.1 The comparative results of five parameters for DE/best/1.

    λminmedianmeanstdf10.17.6280E-883.7454E-834.2049E-811.5281E-800.31.0475E-672.3247E-667.7773E-661.6136E-650.52.6880E-421.0036E-402.0878E-402.8538E-400.75.1106E-226.1659E-202.5106E-197.9992E-190.91.5754E-081.8418E-074.0466E-075.6518E-07f20.100000.300000.503.6999E-1454.2169E-582.1639E-570.71.3860E-667.2021E-441.9170E-396.5289E-390.91.4098E-432.8229E-398.2623E-374.3042E-36f30.14.5662E-872.3404E-835.4124E-792.6894E-780.32.6757E-691.9110E-678.4957E-671.6537E-660.51.1221E-438.1183E-425.3251E-411.1465E-400.71.0777E-224.2005E-211.3310E-201.8184E-200.94.7704E-092.9580E-083.4931E-082.5498E-08f40.12.7243E-155.9614E-129.4215E-129.8802E-120.34.2264E-152.1585E-121.0855E-111.6199E-110.53.2122E-151.5035E-123.7824E-127.7762E-120.72.7415E-151.3349E-127.0320E-121.8126E-110.91.1311E-141.0752E-124.2807E-127.8175E-12f50.12.2961E-488.0137E-461.6030E-434.0219E-430.31.2503E-371.1379E-361.8007E-362.1690E-360.55.2571E-248.1466E-231.0110E-229.9515E-230.75.9604E-133.4265E-124.6367E-124.0468E-120.91.1712E-052.8896E-053.2185E-051.7502E-05f60.12.9851E-032.1524E-023.5706E-024.0382E-020.31.8904E+001.1480E+011.8764E+011.7771E+010.53.8857E+021.2201E+031.5098E+039.6477E+020.73.3185E+038.5714E+039.1987E+033.2159E+030.98.3880E+031.5735E+041.5399E+043.1669E+03f190.11.8000E+013.1500E+013.1948E+017.8176E+000.33.0394E+016.2696E+015.9496E+011.4822E+010.56.6305E+018.7471E+018.5458E+011.0208E+010.77.4042E+019.7326E+019.6190E+011.1099E+010.98.4952E+011.0724E+021.0759E+021.0986E+01f200.11.0794E-034.4602E-019.2243E-011.0634E+000.301.9998E-022.9057E-015.4398E-010.5001.5462E-028.3828E-020.73.2024E-095.9876E-083.6123E-079.4670E-070.99.6550E-033.4770E-023.4410E-021.2583E-02

    Fig.2 The comparative results of five parameters for DE/rand/1.

    minmedianmeanstdf10.12.3748E-248.9364E-241.0791E-237.4357E-240.32.2481E-201.7031E-191.9115E-191.3418E-190.57.7264E-142.5173E-132.8213E-131.4254E-130.71.1364E-073.0378E-073.1974E-071.2165E-070.95.2271E-031.1470E-021.2312E-024.2024E-03f20.12.5920E-842.0303E-545.5454E-443.0339E-430.32.7092E-492.8089E-423.7573E-409.9621E-400.59.4267E-446.3708E-394.1188E-371.7745E-360.75.8460E-421.3581E-373.5245E-361.6267E-350.91.3643E-422.2592E-381.6980E-365.2681E-36f30.15.6101E-251.2114E-241.5209E-248.7373E-250.36.9903E-211.8458E-202.2353E-201.4554E-200.55.6471E-152.4238E-142.6119E-141.6640E-140.71.2183E-082.5242E-082.8771E-081.2787E-080.93.8878E-049.3069E-041.0003E-033.7333E-04f40.13.7035E-153.4163E-121.8382E-113.7888E-110.35.1973E-171.4428E-126.4210E-121.0733E-110.51.8682E-135.7236E-121.4242E-112.2713E-110.75.4746E-154.3894E-121.0482E-111.5998E-110.92.1840E-157.4248E-137.1842E-121.3502E-11f50.11.0619E-142.5203E-142.9253E-141.3661E-140.33.0948E-126.5844E-126.7447E-121.6803E-120.51.2988E-082.3529E-082.4017E-086.8930E-090.73.2190E-055.0411E-055.5018E-051.4460E-050.91.0708E-021.9155E-021.9515E-024.2629E-03f60.17.1855E+031.0725E+041.0462E+041.9158E+030.38.8619E+031.2352E+041.2469E+041.6214E+030.59.1152E+031.4289E+041.4252E+042.2462E+030.71.4035E+041.6941E+041.6884E+041.7970E+030.91.1992E+041.8700E+041.8360E+042.8819E+03f190.15.3188E+018.2814E+018.2523E+018.6160E+000.36.4938E+019.1962E+018.8314E+011.0019E+010.56.2106E+019.6627E+019.3259E+011.2688E+010.78.4442E+011.0173E+021.0276E+027.7944E+000.98.2279E+011.0524E+021.0671E+029.6852E+00f200.15.6843E-141.7764E-132.0440E-131.3113E-130.31.4024E-097.3160E-099.6733E-097.1346E-090.53.3792E-045.2640E-045.5936E-041.3135E-040.73.1780E-024.3001E-024.4544E-027.9437E-030.97.2583E-019.2463E-019.2312E-011.1465E-01

    4.4SimulationresultsandcomparisonanalysisforDE/rand/1

    In this paper, we propose the second order difference vector differential evolution. The new proposed algorithm is analyzed and verified with different algorithm variants and various benchmark functions.

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, three DE algorithms are chosen to compare each other, and are described as follows:

    ? DE1: differential evolution using generation strategy “DE/rand/1”

    ? SODE11: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/rand/1”.

    ? SODE12: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/rand /1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 4, which includes the items of Min, Median, Mean and STD in multiple runs. Observed from Table 4, it can be found that SODE11 and SODE12 algorithms outperform the classical DE1 algorithms. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    Table 4 Results of three algorithms for DE/rand/1.

    functionItemDE1SODE11SODE12f6min000medi?an000mean000std000f7min1.1215E-027.3852E-034.6170E-03medi?an2.0762E-021.1231E-021.1918E-02mean2.0471E-021.1229E-021.1493E-02std4.5320E-032.2653E-033.0677E-03f8min2.1673E+0200medi?an4.2394E+031.3642E-111.3642E-11mean3.8753E+033.9479E+001.8596E-09std1.1944E+032.1624E+017.7577E-09f9min1.4425E+021.0046E+021.0216E+02medi?an1.8032E+021.1750E+021.1815E+02mean1.7831E+021.1711E+021.1711E+02std1.2415E+018.5869E+007.2292E+00f10min3.7434E-063.3129E-133.9879E-13medi?an7.9597E-067.1854E-136.8123E-13mean9.1488E-068.5674E-137.3369E-13std4.4827E-063.1726E-132.7606E-13

    Continue table 4

    functionItemDE1SODE11SODE12f16min-7.8332E+01-7.8332E+01-7.8332E+01medi?an-7.8332E+01-7.8332E+01-7.8332E+01mean-7.8332E+01-7.8332E+01-7.8332E+01std1.1574E-083.8332E-143.5108E-14f17min9.8575E+016.7058E+016.3962E+01medi?an1.5142E+028.5857E+018.0006E+01mean1.4583E+028.5083E+018.2750E+01std1.6545E+017.9043E+009.2737E+00f18min1.3254E-022.8422E-141.4211E-14medi?an2.1337E-021.4566E-131.5277E-13mean2.2176E-021.8143E-131.6366E-13std5.4823E-031.7485E-131.2841E-13f19min4.1448E-149.2787E-286.7387E-28medi?an1.9896E-132.9217E-273.1668E-27mean2.6145E-133.2166E-273.7943E-27std1.9673E-131.4735E-273.4331E-27f20min6.2181E-163.5249E-141.2903E-14medi?an5.0791E-115.9096E-111.8509E-11mean1.9275E-101.0588E-101.6550E-10std2.8449E-101.4707E-102.9653E-10

    In general, SODE11 and SODE12 perform better than DE1 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE11 and SODE12 being better than DE1 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verifies the excellent effects of the proposed second order difference information strategy.

    (3) Online evolving performance comparison and analysis:

    The online performance comparison among four DE algorithms is shown in Fig. 3, which further supports the previous numerical results and the related analysis. Observed from Fig. 3, SODE11 and SODE12 based on DE1 algorithm performs better for 16 from 20 benchmarks for the final results, except forf3,f5,f15,f16. The evolving lines of SODE11 and SODE12 decline faster than DE1 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As the results shown, SODE11 performs best for 7 functions and SODE12 performs best for 9 functions for all functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE11 and SODE12 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    Fig.3 The comparative results of three algorithms for DE/rand/1.

    4.5SimulationresultsandcomparisonanalysisforDE/best/1

    (1) algorithms for comparison: In order to show the performance of the proposed algorithm, four DE algorithms are chosen to compare each other, which are described as follows:

    ? DE2: differential evolution using generation strategy “DE/best/1”

    ? SODE21: adding the second order difference vector as Eqs.(14) (15) to differential evolution using generation strategy “DE/best/1”.

    ? SODE22: adding the second order difference vector as Eqs.(13) (15) to differential evolution using generation strategy “DE/best/1”.

    (2) Results analysis and performance comparison:

    All of the above algorithms are executed 30 independent runs on 20 functions. The final numeric comparison is presented in Table 5, which includes the items of Min, Median, Mean and Std in multiple runs. Observed from Table 5, it can be found that SODE21 and SODE22 algorithms outperform the classical DE2 algorithms. As the results shown, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions for all functions. These results sufficiently indicate that the second order difference vector greatly benefits the search for the optimization process.

    In general, SODE21 and SODE22 perform better than DE2 which indicates that the second order difference vector has a significant influence on the convergence ability and accuracy. The fact of SODE21 and SODE22 being better than DE2 indicates that the second order difference vector has a significant influence on the expansion of population’s diversity. These progressive phenomena verify the excellent effects of the proposed second order difference information strategy.

    Table 5 Results of three algorithms.

    functionItemDE2SODE21SODE22f9min3.0844E+011.6914E+018.9546E+00medi?an4.8753E+012.7859E+012.3879E+01mean50.90882.8721E+012.4907E+01std14.71618.9859E+009.2249E+00f10min4.2419E-054.4409E-157.9936E-15medi?an2.6592E+009.3130E-011.3404E+00mean2.6462E+008.3009E-011.0513E+00std1.3577E+007.2911E-017.7577E-01f11min2.7850E-0900medi?an1.7235E-027.3960E-038.6267E-03mean4.6388E-021.0407E-022.3740E-02std7.6763E-021.4420E-024.0320E-02f12min1.7399E-051.5705E-321.5705E-32medi?an2.9201E+001.0367E-011.0367E-01mean3.9499E+004.6011E-013.0457E-01std4.1432E+009.2490E-014.4431E-01f13min1.0988E-021.3498E-321.3498E-32medi?an3.9747E+001.0987E-021.6006E-02mean5.7266E+006.7217E-016.8796E-01std5.8384E+001.0854E+001.2302E+00f14min-2.6750E+01-2.8102E+01-2.8405E+01medi?an-2.5150E+01-2.3511E+01-2.3859E+01mean-2.5104E+01-2.3378E+01-2.3943E+01std9.1336E-012.2108E+002.3589E+00f15min1.8645E+031.5039E+035.3399E+03medi?an1.6296E+041.0190E+041.6617E+04mean1.9935E+041.5895E+041.9065E+04std1.5947E+041.8682E+041.1499E+04f16min-7.2678E+01-7.5505E+01-7.5505E+01medi?an-6.8908E+01-7.1264E+01-7.0793E+01mean-6.8876E+01-7.1295E+01-7.1076E+01std2.5177E+002.2648E+002.6674E+00

    Continue table 5

    functionItemDE2SODE21SODE22f19min1.2313E-209.9433E-909.1163E-92medi?an6.8305E-121.0004E-862.8009E-84mean6.8196E-069.4213E-848.4675E-75std2.5980E-053.7331E-834.6378E-74f20min1.0139E-131.8771E-142.9769E-13medi?an1.9232E-113.6794E-113.6652E-11mean3.5644E-111.6194E-101.0081E-10std5.4285E-112.3891E-101.3582E-10

    (3)Online evolving performance comparison and analysis:

    The evolutionary performance comparison among several DE variants can be found in Fig. 4, which will further support the previous numerical comparison and the relative analysis. Observed from Fig. 4, SODE21 and SODE22 based on DE1 outperforms its competitors for 17 from 20 benchmarks for the final results. The evolulary curves of SODE21, SODE22 decline faster than DE2 and they steadily obtain even better function values than the classical DE algorithms for all the functions. As shown in the results, SODE21 performs best for 15 functions and SODE22 performs best for 3 functions. What’s more, it can be seen that DE1 suffers from frequent premature convergence for several functions significantly. In general, SODE21 and SODE22 present more robust performance and faster convergence speed when the second order difference information is considered, which shows the necessity and validity of the proposed strategy.

    5 Conclusion and Future Work

    In this paper, a novel DE variant, SODE, with the second order information of the difference vector, is proposed and investigated which expands the current research scope of the classical (first order) DE algorithms effectively. It is possible to efficiently utilize the second order direction information of difference vector and the beneficial population information for even better solution location and to enhance the adaptability of DE search mechanism. It is possible to spark even more interesting and challenging research topics in future. This strategy has distinct advantages on avoiding premature convergence. SODE is verified on some classic benchmark functions when compared with other DE algorithms. The simulation results indicate that its performance is very competitive and better than other classical algorithms. It also indicates the proposed strategies’ effectiveness and cooperation.

    The better utilization of the second order information from the difference vector is an interesting topic for future research.

    Fig.4 The comparative results of three algorithms for DE/best/1.

    Acknowledgment

    This research is supported by National Natural Science Foundation of China (61375066, 61374204). We will express our awfully thanks to our Swarm Intelligence Research Team of BeiYou University.

    [1]T.Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, New York, USA:Oxford University Press, 1996.

    [2]J.Kennedy, R.Poli, and T.Blackwell, Particle swarm optimization,SwarmIntelligence, vol.1,no.1, pp.33-57, 2007.

    [3]S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, Optimization by simulated annealing,Science, vol.220,no.4598.pp.671-680, 1983.

    [4]M.Dorigo, V.Maniezzo, and A.Colorni, Ant system: optimization by a colony of cooperating agents,IEEETransactionsonSystems,Man,andCybernetics-PartB, vol.26,no.1,pp.29-41, 1996.

    [5]R.Storn and K.Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces,JournalofGlobalOptimization, vol.11,no.4, pp.341-359, 1997.

    [6]O.Hrstka and A.Kucerova, Improvement of real coded genetic algorithm based on differential operators preventing premature convergence,AdvancesinEngineeringSoftware, vol.35,no.3,pp.237-246, 2004.

    [7]J.J.Liang, A.K.Qin, P.N.Suganthan, and S.Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,IEEETransactionsonEvolutionaryComputation, vol.10.no.3,pp.281-295, 2006.

    [8]W.F.Sacco, N.Henderson, and A.C.Rios-Coelho, Topographical clearing differential evolution: A new method to solve multimodal optimization problems,ProgressinNuclearEnergy, vol.71,pp.269-278, 2014.

    [9]Y.Wang, B.Li, and T.Weise, Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of powers systems,InformationSciences, vol.180,no.12, pp.2405-2420, 2010.

    [10] M.Zhang, W.Luo, and X.Wang, Differential evolution with dynamic stochastic selection for constrained optimization,InformationSciences, vol.178,no.15,pp.3043-3074, 2008.

    [11] K.Zielinski, P.Weitkemper, R.Laur, and K.D.Kammeyer, Parameter study for differential evolution using a power allocation problem including interference cancellation,InProceedingsofIEEEInternationalConferenceonEvolutionaryComputation,pp.1857-1864, 2009.

    [12] J.Zhang and A.C.Sanderson, An approximate Gaussian model of differential evolution with spherical fitness functions, InProceedingsoftheIEEECongressonEvolutionaryComputation, Singapore, pp.2220-2228,2007.

    [13] H.Y.Fan and J.Lampinen, A trigonometric mutation operation to differential evolution,JournalofGlobalOptimization, vol.27, no.1, pp.105-129, 2003.

    [14] J.Y.Sun, Q.F.Zhang, and E.P.K.Tsang, DE/EDA: A new evolutionary algorithm for global optimization,InformationSciences, vol.169,no: 3-4, pp.249-262, 2005.

    [15] Y.X.Wang and Q.L.Xiang, Exploring new learning strategies in differential evolution algorithm,IEEECongressonEvolutionaryComputation, pp.204-209, 2008.

    [16] X.C.Zhao, W.Q.Lin, C.C.Yu, J.Chen, and S.G.Wang, A new hybrid differential evolution with simulated annealing and self-adaptive immune operation,ComputersandMathematicswithApplications, vol.66, no.10, pp.1948-1960, 2013.

    [17] W.Lu, Y.Y.Cai, X.P.Chen, and K.L.Shi, Semantic similarity assessment using differential evolution algorithm in continuous vector space,JournalofVisualLanguagesandComputing, vol.31, pp.246-251, 2015.

    [18] W.H.Wei, J.H.Wang, and M.Tao, Constrained differential evolution with multi-objective sorting mutation operators for constrained optimization,AppliedSoftComputing,vol.33, pp.207-222, 2015.

    [19] J.Q.Zhang and A.C.Sanderson, JADE: Adaptive differential evolution with optional external archive,IEEETransactionsonEvolutionaryComputation, vol.13,no.5, pp.945-958, 2009.

    [20] Y.W.Leung and Y.P.Wang, An orthogonal genetic algorithm with quantization for global numerical optimization,IEEETransactionsonEvolutionaryComputation, vol.5, no.1,pp.41-53, 2001.

    [21] M.B.Michael, N.Christian, and B.Daniel, A global multi-objective optimization tool for design of mechatronic components using Generalized Differential Evolution, Inproceedingsof42ndAnnualConferenceoftheIEEEIndustrialElectronicsSociety, Florence, Italy: IEEE Press, pp.475-481,2016.

    [22] Shilpi and Karambir, Improvising the effectiveness of test suites using differential evolution technique,Inproceedingsof5thInternationalConferenceonReliability,InfocomTechnologiesandOptimization, Noida, India: IEEE Press, pp.52-56, 2016.

    [23] W.Du, S.Y.Leung, Y.Tang, A.V.Vasilakos, Differential Evolution with Event-Triggered Impulsive Control,IEEETransactionsonCybernetics, vol.47, no.1, pp.244-257, 2016.

    GuangzhiXuwas born in 1987.He is a Ph.D.in Beijing University of Posts and Telecommunications.He has visited University of Glasgow as joined Ph.D.student.His research interests are Evolutionary computation and intelligent control, big data system and industry 4.0.

    DongyueLiureceived the B.Sc. degree in Qilu normal university, Jinan, China, in 2014. She is currently working towards the M.Sc. degree in Swarm intelligence optimization from Beijing University of Posts and Telecommunications, Beijing, China. Her current research is focused on Differential evolution and global optimization.XingquanZuois currently an Associate Professor in Computer School, Beijing University of Posts and Telecommunications. He received the Ph.D. degree in control theory and control engineering from Harbin Institute of Technology, Harbin, China, in 2004. From 2004 to 2006, he was a Postdoctoral Research Fellow in Automation Department of Tsinghua University. From 2012 to 2013, he was a Visiting Scholar in Industrial and System Engineering Department, Auburn University, AL, USA. His research interests are in system optimization and scheduling, evolutionary computation, data mining with applications and intelligent transportation systems. He has published more than 70 research papers in journals and conferences, two books and several book chapters. He has led or participated in 20 research and industrial projects.

    2016-12-20; revised: 2017-01-20

    the Ph.D.degree in Applied Mathematics from the Chinese Academy of Sciences, Beijing, China, in 2005.He is currently with the School of Science, Beijing University of Posts and Telecommunications.His research interests include swarm intelligence, evolutionary computation, operations research and applications.

    ?Xinchao Zhao and Dongyue Liu are with School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.E-mail: xcbupt@126.com.

    ?Guangzhi Xu is with School of Automation,Beijing University of Posts and Telecommunications, Beijing 100876, China. E-mail: xgzegw@gmail.com.

    ?Xingquan Zuo is with School of Computer Science,Beijing University of Posts and Telecommunications, Beijing 100876, China.

    *To whom correspondence should be addressed. Manuscript

    欧美激情在线99| 日韩欧美三级三区| 中文精品一卡2卡3卡4更新| 长腿黑丝高跟| 久久久久久国产a免费观看| 国产成人91sexporn| 婷婷色综合大香蕉| 久久99精品国语久久久| 日本与韩国留学比较| 自拍偷自拍亚洲精品老妇| av国产免费在线观看| 亚洲国产精品专区欧美| 国产成人91sexporn| 欧美成人一区二区免费高清观看| 一本久久精品| 国语对白做爰xxxⅹ性视频网站| 国产精品熟女久久久久浪| 三级毛片av免费| 婷婷色av中文字幕| 直男gayav资源| videos熟女内射| 日韩一区二区视频免费看| 国产午夜精品论理片| 国产精品.久久久| 日本黄色视频三级网站网址| 成人毛片a级毛片在线播放| 日本五十路高清| 国产一区二区在线观看日韩| 久久久成人免费电影| 精品午夜福利在线看| 舔av片在线| 亚洲av熟女| 久久久久九九精品影院| 乱系列少妇在线播放| 亚洲一区高清亚洲精品| 亚洲图色成人| 99久久精品一区二区三区| av在线亚洲专区| 国产成人freesex在线| 在线天堂最新版资源| 日韩精品青青久久久久久| 少妇丰满av| 亚洲国产欧美在线一区| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久av不卡| 亚洲国产精品成人久久小说| 国产精品蜜桃在线观看| 男女那种视频在线观看| 18+在线观看网站| 精品酒店卫生间| 国内精品美女久久久久久| 自拍偷自拍亚洲精品老妇| 高清日韩中文字幕在线| 亚洲最大成人av| 性插视频无遮挡在线免费观看| 亚洲四区av| 亚洲一区高清亚洲精品| 国产成人a区在线观看| 国产精品不卡视频一区二区| 色综合色国产| 久久久久久九九精品二区国产| 97人妻精品一区二区三区麻豆| 亚洲国产欧美在线一区| 最近中文字幕高清免费大全6| 国产精华一区二区三区| 婷婷色av中文字幕| 亚洲av成人精品一区久久| 色5月婷婷丁香| 九九在线视频观看精品| 久久99精品国语久久久| 99久久中文字幕三级久久日本| 麻豆国产97在线/欧美| 一二三四中文在线观看免费高清| 成人性生交大片免费视频hd| 久热久热在线精品观看| 黄色欧美视频在线观看| 国产精品99久久久久久久久| 精品熟女少妇av免费看| av播播在线观看一区| 高清日韩中文字幕在线| 一级二级三级毛片免费看| 日韩欧美精品免费久久| 青春草国产在线视频| 老师上课跳d突然被开到最大视频| 在线播放无遮挡| 国产老妇女一区| 久久久午夜欧美精品| 亚洲伊人久久精品综合 | 欧美精品国产亚洲| 乱人视频在线观看| 一级毛片我不卡| 久久99热6这里只有精品| 最近最新中文字幕大全电影3| 欧美+日韩+精品| 亚洲欧美精品自产自拍| 欧美bdsm另类| 久久精品综合一区二区三区| 毛片一级片免费看久久久久| 国产乱来视频区| 极品教师在线视频| 夜夜爽夜夜爽视频| 免费无遮挡裸体视频| 2022亚洲国产成人精品| 黄片wwwwww| 亚洲熟妇中文字幕五十中出| 综合色丁香网| av女优亚洲男人天堂| 中文字幕制服av| 看片在线看免费视频| 亚洲经典国产精华液单| 亚洲真实伦在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 如何舔出高潮| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看 | 国产成人精品久久久久久| 免费观看a级毛片全部| 激情 狠狠 欧美| 少妇人妻精品综合一区二区| 亚洲天堂国产精品一区在线| 国产一区二区在线av高清观看| 国产国拍精品亚洲av在线观看| 欧美性猛交黑人性爽| 男插女下体视频免费在线播放| 免费看日本二区| 成人一区二区视频在线观看| 欧美高清成人免费视频www| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 国产精品一区二区在线观看99 | 人人妻人人看人人澡| 国产熟女欧美一区二区| 欧美日韩在线观看h| 亚洲内射少妇av| 97热精品久久久久久| 在线免费观看不下载黄p国产| 久久久久久久亚洲中文字幕| 精品酒店卫生间| 只有这里有精品99| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 一级av片app| 久久久久久久久中文| 午夜福利在线观看免费完整高清在| 久久精品夜夜夜夜夜久久蜜豆| 成人漫画全彩无遮挡| 麻豆成人午夜福利视频| 亚洲天堂国产精品一区在线| 看免费成人av毛片| 国产精品福利在线免费观看| 日本猛色少妇xxxxx猛交久久| 日韩av在线大香蕉| 久久99热6这里只有精品| 国产精品一二三区在线看| 久久精品国产鲁丝片午夜精品| 久久久欧美国产精品| 大话2 男鬼变身卡| 久久这里只有精品中国| 观看美女的网站| 国产精品久久久久久精品电影小说 | www.色视频.com| 少妇的逼好多水| videossex国产| 男人狂女人下面高潮的视频| 夜夜爽夜夜爽视频| 老司机影院毛片| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 在现免费观看毛片| 国产在视频线在精品| 人人妻人人看人人澡| 麻豆久久精品国产亚洲av| 草草在线视频免费看| 午夜亚洲福利在线播放| 51国产日韩欧美| 国产成人a区在线观看| 在线a可以看的网站| 日本色播在线视频| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区 | 亚洲av免费高清在线观看| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 亚洲精品久久久久久婷婷小说 | 国产中年淑女户外野战色| 夜夜爽夜夜爽视频| 国产一级毛片七仙女欲春2| 亚洲av.av天堂| 国产精品久久视频播放| 中文字幕制服av| 亚洲欧美日韩东京热| 2021少妇久久久久久久久久久| 亚洲精品色激情综合| 91久久精品国产一区二区成人| 久久草成人影院| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 亚洲av福利一区| 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产乱人视频| 久久久久性生活片| 久久精品熟女亚洲av麻豆精品 | 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 国产毛片a区久久久久| 亚洲国产精品sss在线观看| 乱人视频在线观看| a级毛色黄片| 国产精品人妻久久久久久| 日本黄大片高清| 亚洲18禁久久av| 春色校园在线视频观看| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 亚洲精品,欧美精品| 嫩草影院精品99| 99热6这里只有精品| 午夜视频国产福利| 男的添女的下面高潮视频| 欧美一区二区国产精品久久精品| 51国产日韩欧美| 亚洲精华国产精华液的使用体验| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| av在线老鸭窝| 九九在线视频观看精品| 亚洲av男天堂| 欧美xxxx黑人xx丫x性爽| 高清在线视频一区二区三区 | 日韩欧美三级三区| 美女cb高潮喷水在线观看| 观看免费一级毛片| 国产熟女欧美一区二区| 亚洲18禁久久av| 大香蕉97超碰在线| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| av黄色大香蕉| 色网站视频免费| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| videos熟女内射| 色网站视频免费| 色吧在线观看| 午夜福利视频1000在线观看| 亚洲三级黄色毛片| 91久久精品电影网| 亚洲国产欧美人成| 午夜激情欧美在线| 国产伦理片在线播放av一区| 深夜a级毛片| 久久精品久久精品一区二区三区| 亚洲久久久久久中文字幕| 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 插阴视频在线观看视频| 天堂网av新在线| 国产精品综合久久久久久久免费| 欧美一区二区国产精品久久精品| 啦啦啦啦在线视频资源| 联通29元200g的流量卡| 日韩一本色道免费dvd| 激情 狠狠 欧美| 极品教师在线视频| 国产精品一区二区在线观看99 | 91av网一区二区| 一个人观看的视频www高清免费观看| 色尼玛亚洲综合影院| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 国产亚洲一区二区精品| 国产精品国产高清国产av| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 十八禁国产超污无遮挡网站| 永久网站在线| 国产亚洲最大av| 嘟嘟电影网在线观看| 久久久久久久久久久免费av| 亚洲精品久久久久久婷婷小说 | 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区人妻视频| 国产视频首页在线观看| 如何舔出高潮| 熟女电影av网| 男女边吃奶边做爰视频| 国产精品一二三区在线看| 少妇高潮的动态图| 国产精品,欧美在线| 最近2019中文字幕mv第一页| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 91精品一卡2卡3卡4卡| 黄片wwwwww| 免费观看的影片在线观看| 青春草视频在线免费观看| 国产精品福利在线免费观看| 亚洲国产精品成人综合色| 久久人妻av系列| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 久久久久久久久久久丰满| 永久免费av网站大全| 国产成人福利小说| 91精品国产九色| 国产av码专区亚洲av| 国产精品一及| 免费黄色在线免费观看| 天堂av国产一区二区熟女人妻| 国产精品无大码| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 久久99蜜桃精品久久| 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 国产成人精品一,二区| 国产精品一区二区性色av| 欧美性感艳星| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| 一级毛片电影观看 | 久久久久久久久久久丰满| 国产免费一级a男人的天堂| 舔av片在线| 色视频www国产| 黄色配什么色好看| 七月丁香在线播放| 国产成人aa在线观看| 亚洲性久久影院| 亚洲精品日韩av片在线观看| 国产精品一区二区三区四区久久| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 亚洲精品日韩av片在线观看| 六月丁香七月| 日韩视频在线欧美| 日日啪夜夜撸| 岛国在线免费视频观看| 中文在线观看免费www的网站| 国产高潮美女av| or卡值多少钱| 久久草成人影院| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 老司机影院成人| 日韩在线高清观看一区二区三区| 亚洲精品日韩av片在线观看| 欧美成人a在线观看| 国产色爽女视频免费观看| 日韩人妻高清精品专区| av在线播放精品| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 亚洲av不卡在线观看| 三级经典国产精品| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 老司机影院毛片| 黑人高潮一二区| 99热这里只有是精品在线观看| 黄色日韩在线| 少妇的逼好多水| 婷婷色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 高清av免费在线| 人妻少妇偷人精品九色| 久久久久免费精品人妻一区二区| 亚洲欧美成人综合另类久久久 | 久久精品熟女亚洲av麻豆精品 | 97超碰精品成人国产| 久久这里只有精品中国| 人妻少妇偷人精品九色| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 久久久国产成人精品二区| 国产精品久久久久久久电影| 亚洲欧洲日产国产| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 亚洲av不卡在线观看| 熟女电影av网| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| 免费黄网站久久成人精品| 日本黄色视频三级网站网址| 超碰av人人做人人爽久久| 老女人水多毛片| 国产av在哪里看| 97热精品久久久久久| 青春草视频在线免费观看| 村上凉子中文字幕在线| 一个人观看的视频www高清免费观看| 国产高清三级在线| 国产三级在线视频| 亚洲最大成人手机在线| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 精品久久久久久成人av| 蜜臀久久99精品久久宅男| 午夜精品在线福利| 成年版毛片免费区| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 亚洲精品乱码久久久久久按摩| 插阴视频在线观看视频| 看免费成人av毛片| 激情 狠狠 欧美| 夜夜爽夜夜爽视频| 色综合亚洲欧美另类图片| 成人鲁丝片一二三区免费| ponron亚洲| 日本一二三区视频观看| 伦理电影大哥的女人| 免费大片18禁| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 如何舔出高潮| 久久99精品国语久久久| 水蜜桃什么品种好| 日本黄色视频三级网站网址| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 久久久久久国产a免费观看| 国产高清三级在线| 草草在线视频免费看| 超碰97精品在线观看| 男人舔奶头视频| 在现免费观看毛片| 看十八女毛片水多多多| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 99热网站在线观看| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 久久久久网色| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 永久网站在线| 日韩高清综合在线| 亚洲第一区二区三区不卡| 美女国产视频在线观看| 成人亚洲精品av一区二区| 国产三级在线视频| 偷拍熟女少妇极品色| 久久久久久久久中文| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 国产大屁股一区二区在线视频| 久久精品久久久久久噜噜老黄 | 日日啪夜夜撸| 51国产日韩欧美| 中文天堂在线官网| 毛片女人毛片| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 亚洲成色77777| 亚洲av熟女| 看片在线看免费视频| 婷婷六月久久综合丁香| 欧美极品一区二区三区四区| 亚洲乱码一区二区免费版| 99热全是精品| 日韩一本色道免费dvd| 简卡轻食公司| 成人毛片a级毛片在线播放| 中文乱码字字幕精品一区二区三区 | 黄色欧美视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 99久国产av精品国产电影| 一级黄色大片毛片| 一个人观看的视频www高清免费观看| 国产探花极品一区二区| 久久久久久大精品| 亚洲av中文字字幕乱码综合| 亚洲欧美成人精品一区二区| 亚洲国产欧洲综合997久久,| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影| 九九爱精品视频在线观看| 少妇丰满av| 中文字幕亚洲精品专区| 日本黄色视频三级网站网址| 精品久久久久久久末码| 老司机影院毛片| videossex国产| 欧美日韩综合久久久久久| 亚洲综合精品二区| 国产熟女欧美一区二区| 国产在视频线精品| 国产精品久久久久久久电影| 春色校园在线视频观看| 成年女人看的毛片在线观看| 毛片女人毛片| 人妻夜夜爽99麻豆av| 久久久国产成人免费| 纵有疾风起免费观看全集完整版 | 免费观看性生交大片5| 国产免费男女视频| 国产黄片视频在线免费观看| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 女人久久www免费人成看片 | 欧美不卡视频在线免费观看| 久久韩国三级中文字幕| 看免费成人av毛片| 日韩av在线大香蕉| 亚洲经典国产精华液单| 国模一区二区三区四区视频| 精品国产露脸久久av麻豆 | 国产黄片视频在线免费观看| 人妻制服诱惑在线中文字幕| 女人十人毛片免费观看3o分钟| 伦理电影大哥的女人| 男女视频在线观看网站免费| 久久久久久久久久久免费av| 国产精品久久视频播放| 在线天堂最新版资源| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版 | 亚洲五月天丁香| 亚洲成人av在线免费| 大香蕉97超碰在线| 精品一区二区三区人妻视频| 成人av在线播放网站| 在线观看av片永久免费下载| 水蜜桃什么品种好| 日日啪夜夜撸| 成人二区视频| 免费播放大片免费观看视频在线观看 | 国产亚洲av片在线观看秒播厂 | 中文亚洲av片在线观看爽| 卡戴珊不雅视频在线播放| 亚洲成色77777| 一个人免费在线观看电影| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久 | 国产淫片久久久久久久久| 又粗又爽又猛毛片免费看| 国产乱来视频区| 亚洲精品成人久久久久久| 色尼玛亚洲综合影院| 国产精品人妻久久久影院| 国产精品电影一区二区三区| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区性色av| 久久精品夜色国产| 日本色播在线视频| 别揉我奶头 嗯啊视频| 黑人高潮一二区| 国产午夜精品一二区理论片| 观看美女的网站| .国产精品久久| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 日本午夜av视频| 高清在线视频一区二区三区 | 免费黄色在线免费观看| 精品人妻视频免费看| 亚洲人成网站在线播| 97超视频在线观看视频| 可以在线观看毛片的网站| 亚洲av一区综合| 欧美最新免费一区二区三区| 精品欧美国产一区二区三| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 久久亚洲精品不卡| 国产高清三级在线| 欧美一区二区国产精品久久精品| 伦精品一区二区三区| 亚洲精品影视一区二区三区av| 国产午夜福利久久久久久| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 国产高清国产精品国产三级 | 婷婷色综合大香蕉| 国产大屁股一区二区在线视频| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 成人特级av手机在线观看|