• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Objective Evolutionary Approach to Selecting Security Solutions

    2017-10-11 10:54:07YungheeLeeTaeJongChoiandChangWookAhn

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn

    AMulti-ObjectiveEvolutionaryApproachtoSelectingSecuritySolutions

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn*

    In many companies or organizations, owners want to deploy the most efficient security solutions at a low cost. In this paper, we propose a method of choosing the best security solution from various security solutions using multi-objective genetic algorithm considering cost and weakness-decrease. The proposed system can support the best security solutions in various aspects of security issues. We use the NSGA-II algorithm, which has been verified in a variety of fields, to provide a comparison with existing genetic algorithms. Our scheme has increased the dominant area by more than 30% compared with the previous scheme and can provide a more diverse solution set.

    security; evolutionary algorithm; multi-objective genetic algorithm; artificial intelligence

    1 Introduction

    As the information technology systems and the Internet grew, so did the number of malicious threats to information[1]. To prevent information threats like this, organizations and enterprises study security solutions to secure information separately from their usual work. Security solutions are generally physical and logical countermeasures to prevent the failure and destruction of the information systems[2]. But in most cases, companies do not want to spend a lot of money on improving security. Because investing in security solutions does not seem to be effiective in a short time. Moreover, in order to invest in security solutions, companies have to choose how much to invest in what measures, but it is very difficult to make such a choice without knowing the exact threats and the effiectiveness of countermeasures. In this paper, we describe the selection of a security solution using NSGA-II, a kind of multi-objective genetic algorithm. This will help any business or organization easily choose the best security solution. This paper is organized as follows. In Section 2, we talk about genetic algorithms (GA) and Pareto-optimization. In Section 3, we explain a multi-objective genetic algorithm. We design a creating security solution and Weakness Decrease Point (WDP) for experiment and explain the program code in Section 4. The system we propose is presented in Section 5. Section 6 concludes the paper.

    2 Related works

    In this section, we talk about Pareto-optimality after the simple description of genetic algorithm and knapsack problem.

    2.1GeneticalgorithmandKnapsackProblem

    Genetic algorithm is a kind of heuristic search based on the phenomenon of nature. It was firstly designed by John Holland in 1975. This is one of the techniques to solve the optimization problem by calculation based on the natural evolutionary process. In general, if it is impossible to obtain an optimized solution of a problem through a formal formula, or if it is too complicated, it may be efficient to solve the problem through a genetic algorithm. However,the genetic algorithm does not always find a global optimal solution. This only helps to find solutions that are close to the optimal solution in a short time. Therefore, genetic algorithms are generally useful for problems classified as non- deterministic polynomial (NP) time problems[3].

    The knapsack problem is one of the most suitable problems to solve with genetic algorithm. The knapsack problem is a matter of finding out what items we need to fill the bag to make it the most valuable. The size of the items that can be stored in the bag is fixed, and each item has a predetermined value and size. Therefore, if the item can be split, we can easily find the global optimal solution to this problem with the greedy algorithm. But if they can not break apart, this problem can not be solved with a formal formula. Thus, in this case, this problem becomes an NP-completeness problem[4,5]. If we use a genetic algorithm to solve the knapsack problem, we can find an efficient solution for a short time. Recently, various studies related to the research we are trying to do have been preceded[6].

    2.2 Pareto-optimality

    If you use a simple genetic algorithm to solve the knapsack problem, the sum of the sizes will naturally approach the maximum size. If you have a budget and do not have any problems with using your whole budget, you can solve this problem using the simple genetic algorithm. But companies and organizations want to find low-cost, high-efficiency solutions and deploy it. Therefore unlike a simple genetic algorithm that considers only one objective, in the real world, it is necessary to find the optimal solution considering both the cost and the WDP. Sometimes, a problem may have more than just two objectives. If that happens, the problem will be much more complicated than when considering only one objective. In this paper, we propose a method to solve the problem by considering two objectives: cost and WDP.

    In general, we use the concept of “Pareto-optimality” when there are multiple objectives to find the global optimal solution of the problem. For example, the cost and WDP of security solutions to address security flaws are shown in Table 1. As shown in Fig.1, the data in Table1 can be charted. In the Fig.1, the X axis represents (100-cost) and the y axis means WDP: Decrease of dangerous.

    In the Fig.1 the solution in the upper right is observed to be more effiective and better.The optimal solution is the top-most, right-most solution in the chart. However, in general, higher WDPs result in higher costs, making it difficult to find the ideal solution like that. Instead, we can find a Pareto- optimal that is superior to other solutions[7]. The squares on the chart show Pareto-dominance easily. For example, R2 has a very high WDP, which is very helpful in solving security problems, but solution R2 is not an optimal solution because there is a solution R5 with a lower cost and higher WDP. At this point, Solution R2 is said to be a Pareto-dominated entity. When we create a chart like the one shown in the Fig.1, we call the unconstrained solution Pareto-optimal for any other solution, and call the set a Pareto-optimal set. The line that the pareto-optimal set forms is called the Pareto-frontier. Ultimately, what we are looking for is a Pareto-optimal set.

    Table 1 The list of solution sets that generated randomly.

    Fig.1Charttoselectbestsolutionfromvariouscandidates.

    3 Multi-objective genetic algorithm:NSGA-II

    There are many kinds of multi-objective genetic algorithms (MOGA) to solve many types of problems: NPGA, NSGA, SPEA, etc. All of them are very popular MOGA solutions and in this paper, we use the NSGA-II algorithm for solving the problem. Because NSGA-II is the lightest and fastest method of MOGA known so far. NSGA-II is a new advanced technique compared with NSGA, a conventional multi-objective genetic algorithm. It can finish the cal- culation in less time than NSGA and introduces the concept of non-dominant ranking. In addition, NSGA-II introduced a concept called Crowding Distance.Therefore, this scheme can distribute resources more efficiently than existing algorithms. Another thing that NSGA-II is diffierent from NSGA is Elitism. Elitism is the scheme of keeping the superior population among the population to the next generation. Therefore, solutions with a high fitness are not easily lost through generations[8]. The NSGA-II algorithm is easy to use and can quickly find solutions with a high fitness. And it has very high performance so that this algorithm is very popular[9].

    Fig.2 Flowchart for NSGA-II algorithm.

    The NSGA-II algorithm is shown in Fig.2[10]. Non-dominated rand means the rank that how many other solutions are dominating the solution. In other words, a lower non-dominated rank is a better solution. For example, there is a solution named A. If any solution is a dominating solution A, the non- dominated rank of solution A is zero. Thus, in the same generation, the Pareto optimal solution has the highest priority, and the solution farther from it has an increasingly lower priority. Like this, the non-dominated rank alignment process allows solutions to converge on the Pareto-optimal set. And Crowding Distance is a solution to see how many solutions are gathered in a small area when the charts are shown like Fig.1. This is a value that is calculated to help the solutions with the same non-dominated rank have diversity. Each solution has a high Crowding Distance value if it is less similar to the neighboring solution. This is an element for selecting an object with a diffierent property from the set of genetic entities belonging to the same non-dominated rank[8].

    3.1 Performance improvement

    We used diffierent mutations and crossover types to improve performance. Mutation and crossover are very important components in the genetic algo rithm. There are many types of mutation and crossover: Uniform Mutation, Parent-Centric Crossover, Bit Flip Mutation, Half-Uniform Crossover and etc. In this paper, we use the Simulated Binary Crossover (SBX) for crossover process and Polynomical Mutation (PM) for mutation process in NSGA-II. SBX is the operator that has the search ability similar to that of a single-point binary-coded crossover operator[11]. And the PM is the operator that is widely used in evolutionary optimization algorithms as a variation operator[12]. It attempts to simulate the offispring distribution of binary-encoded bit-flip mutation on real-valued decision variables. In this paper, the type of the value to be calculated was binary, but we used PM because the PM showed better performance than the bit flip mutation. PM is similar to SBX, it favors offispring nearer to the parent[13].

    And we set the population size for the genetic algorithm to 500 and the number of generations to 15000.

    4 Creating security solution and WDP

    We need to create a variety of virtual security solutions for the experiment, each with an introduction cost and a WDP. However, WDP is a value that can not be easily quantified. Therefore, in this paper, we use a reasonable random number as a WDP to create a sample virtual security solution.

    First, we need to create 500 random numbers to be used as the cost of introducing a virtual security solution. The total sum of 500 random numbers is 1000000. After doing that, we sort 100 random random numbers and put them into the array arr [ ]. Then we use the source code below to create a WDP corresponding to each cost, and place it in the array arr2 [ ].

    for (i=0;i<500; i++)

    {

    arr2[i]=gaussianRand(arr[i], STD);

    // STD is the standard deviation of gaussian random function

    // We setted STD to 50

    if (arr2[i] <=0)

    arr2[i] = rand()% arr[i] +1;

    }

    double gaussianRand(double mean, double stddev)

    { // gaussian random number generater function static double n2= 0.0;

    static int n2_cached = 0;

    if (!n2_cached)

    {

    doublex,y,r;

    do

    {

    x=2.0*rand()/RAND_MAX-1;

    y=2.0*rand()/RAND_MAX-1;

    r=x*x+y*y;

    } while (r==0.0 ||r> 1.0);

    {

    double d=sqrt(-2.0*log(r)/r);

    double n1=x*d;

    n2=y*d;

    double result = n1*stddev + mean;

    n2_cached = 1;

    return result;

    }

    {

    else

    {

    n2_cached= 0;

    return n2*stddev+ mean;

    }

    }

    So we can make the meaningful random WDP. Weakness decrease point will almost be proportional to security solutions cost. But there can be rarely too high Weakness Decrease Pointcsecurity solutions cost or the opposite case.

    5 Proposed scheme

    In this section, we suggest techniques for selecting the best security solution using NSGA-II, the MOGA mentioned in the previous section. As we mentioned in Section 1, businesses and organizations want security solutions that can get the most out of their business with minimal cost. Park et al. have released a solution for this problem[14]. They tried to solve this problem using the simple genetic algorithm and used a list of 10 virtual security solutions in the experiment. In order to compare the two schemes, we have coded programs that perform as well as the simple genetic algorithms used in Park et al.’s paper[14], and have created more new virtual security solution lists and experimented. We compared the results obtained using our scheme with those obtained using Park et al.’s scheme[14]. As a result of using the scheme of Park et al.[14], we could find three optimal solutions.

    And also important in the genetic algorithm is the fitness evaluation function. It is called as the fitness function. In the simple genetic algorithm used by Park et al.[14], the fitness function considers only one objective: WDP. In MOGA, however, we can use multiple objectives for fitness functions.

    (1)

    (2)

    In this paper, we used two fitness functions as shown in Equations 1 and 2.Equation 1 uses (100000-the total cost of the solution) values for fitness calculations, and Equation 2 uses the entire WDP of the solution for fitness calculations.nis the number of the whole chromosomes, in other words,nmeans the number of solutions.vcmeans each chromosome structure.vc.dincludes the decrease point of security weakness, andvc.cincludes the cost for selecting that solution.vc.sincludes the binary number for checking whether each solution was selected or not selected. So ifvc.s’s value is 0, that means the solution was not selected.

    Fig.3ThegraphaboutselectingsecuritysolutionusingNSGA-II.

    Fig.3 compares the best virtual security solutions selected using the NSGA-II algorithm to the best virtual security solutions selected using the simple genetic algorithm. The horizontal axis indicates the value off1, and the vertical axis indicates the value off2. The results of using the existing Park et al.’s scheme[14]have reversed the cost value for easy comparison. Therefore, the cost of the original research is actually 100000 times the original cost. For the sake of clarity, we plotted the results of original research as red squares and the results of our research as black dots. Using the NSGA-II-based security solution selection scheme we have studied, we can confirm that the selected security solution set forms the Pareto-frontier and completely dominates the results of existing papers. The results of this paper provide a variety of choices, from low cost solution selection to high cost solution selection.

    6 Conclusion

    In this paper, we propose a scheme to efficiently select the security solutions required by corporations and organizations using NSGA-II in terms of various objectives: cost and value. The proposed method was able to find optimal solutions considering various objectives and showed superiority in the process and performance of fitness evaluation compared to existing papers using simple genetic algorithm. More detailed study on how to quantify the Weakness Decrease Point (WDP) should be conducted and the stability and performance of NSGA-III developed by NSGA-II should be verified.

    Acknowledgment

    This research was supported by X-Project funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1E1A2A02946533) and also supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.B0717-17-0070).

    [1]S.W.Chai, Economic effiects of personal information protection, Korea Consumer Agency,vol.33, pp.43-64,2008.

    [2]Y.O.Kwon and B.D.Kim, The effiect of information security breach and security investment announcement on the market value of korean firms,InformationSystemReview, vol.9,no.1, pp.105-120, 2007.

    [3]M.Mitchell,Anintroductiontogeneticalgorithms,USA: MIT press,1996.

    [4]Kellerer and Hans,Knapsackproblems, Berlin, Germany: Springling Press,2004.

    [5]S.Martello and P.Toth, Knapsack problems: Algorithms and computer implementations,JournaloftheOperationalResearchSociety, 42(6), 513-513.

    [6]P.C.Chu and J.E.Beasley, A genetic algorithm for the multidimensional knapsack problem,Journalofheuristics,vol.4, no.1, pp.63-86, 1998.

    [7]J.Horn, N.Nafpliotis, and D.Goldberg, A niched pareto genetic algorithm for multiobjective optimization, inProceedingsof1stIEEEConferenceonEvolutionaryComputation, Florida,USA,1994, pp.82-87.

    [8]J.Yoon, J.Lee, and D.Kim, Feature selection in multi-label classification using nsga-ii algorithm,JournalofKIISE:SoftwareandApplications,vol.40,no.3, pp.133-140, 2013.

    [9]K.Deb, A.Pratap, S.Agarwal, and T.Meyarivan, A fast and elitist multi objective genetic algorithm: Nsga-ii,IEEETransactionsonEvolutionaryCompution,vol.6,no.2,pp.182-197,2002.

    [10] S.T.Khu and H.Madsen, Multi-objective calibration with pareto preference ordering: An application to rainfall-runoffi model calibration,WaterRe-wourcesResearch,vol.41,no.3,pp.1-14,2005.

    [11] D.Kalyanmoy and K.Amarendra, Real-coded genetic algorithms with simulated binary crossover: studies on multimodel and multiobjective problems,ComplexSystems, vol.9,no.6,pp.431-454, 1995.

    [12] M.Hamdan, A dynamic polynomial mutation for evolutionary multi-objective optimization algorithms,InternationalJounalonArtificialIntelligenceTools,vol.20,no.1,pp.209-219, 2011.

    [13] K.Deb and D.Deb, Analysing mutation schemes for real-parameter genetic algorithms,InternationalJournalofArtificialIntelligenceandSoftComputting, vol.4,no.1,pp.1-28, 2014.

    [14] J.Park, Y.Bang, G.Lee, and K.Nam, Generation of security measure by using simple genetic algorithm, inProceedingsofKIISEConference30, 2003,vol.21,pp.769-771.

    TaeJongChoiis working as a postdoctoral researcherin at Sungkyunkwan University (SKKU), Republic of Korea. He received Ph.D. degree from the Department of Electrical and Computer Engineering at SKKU in 2017. His research interests include evolutionary algorithms, machine learning, deep learning, and the applications of artificial intelligence.ChangWookAhnis working as a Professor in the School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea. From 2008 to 2016, he was an Assistant/Associate Professor at the Department of Computer Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea. He received his PH.D. degree from the Department of Information and Communications, GIST. His research interests include genetic algorithms, multi-objective optimization, neural networks, and the applications of evolutionary machine learning techniques.

    2016-12-20; accepted:2017-01-20

    B.S. degree from the Department of Cyber Security at Kyung-Il University, Kyungsan, Republic of Korea, in 2012. He is currently a M.S. candidate in the Department of Computer Engineering at Sungkyunkwan University, Suwon, Republic of Korea. Also, he is currently working as a researcher at Gwangju Institute of Science and Technology (GIST). His research interests include genetic algorithms, Artificial Intelligence, multi-objective optimization and the cyber security.

    ?Tae Jong Choi is with Department of Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.

    ?Yunghee Lee and Chang Wook Ahn are with School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST).E-mail: cwan@gist.ac.kr(Chang Wook Ahn).

    *To whom correspondence should be addressed. Manuscript

    亚洲天堂国产精品一区在线| 国产视频一区二区在线看| 国内少妇人妻偷人精品xxx网站| 黄片wwwwww| 免费高清视频大片| 亚洲精品久久国产高清桃花| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添av毛片| 久久热精品热| 热99在线观看视频| 人人妻,人人澡人人爽秒播| 老司机影院成人| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 99久国产av精品国产电影| 18禁在线无遮挡免费观看视频 | 久久精品综合一区二区三区| 国产高清视频在线观看网站| 亚洲av美国av| 有码 亚洲区| 国国产精品蜜臀av免费| 久久久久久久午夜电影| 久久久久久大精品| 亚洲最大成人av| 精品久久国产蜜桃| 国产伦精品一区二区三区视频9| 黑人高潮一二区| 欧美成人一区二区免费高清观看| 国产aⅴ精品一区二区三区波| .国产精品久久| 日本 av在线| 久久6这里有精品| 性欧美人与动物交配| 日韩在线高清观看一区二区三区| 午夜福利18| 亚洲最大成人av| 少妇熟女欧美另类| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久| 97热精品久久久久久| 成年av动漫网址| 黄色配什么色好看| 免费av毛片视频| 亚洲精品影视一区二区三区av| 色av中文字幕| 波野结衣二区三区在线| 日韩欧美一区二区三区在线观看| 性插视频无遮挡在线免费观看| 女的被弄到高潮叫床怎么办| 久久久久国产网址| 亚洲精品成人久久久久久| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 内射极品少妇av片p| 欧美日本亚洲视频在线播放| 亚洲av一区综合| 桃色一区二区三区在线观看| 日韩精品中文字幕看吧| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 18+在线观看网站| 午夜福利高清视频| 深爱激情五月婷婷| 性欧美人与动物交配| 成人永久免费在线观看视频| 午夜a级毛片| 亚洲国产日韩欧美精品在线观看| 亚洲精品成人久久久久久| 欧美激情在线99| 精品99又大又爽又粗少妇毛片| 免费无遮挡裸体视频| 成人国产麻豆网| 嫩草影院入口| 成人综合一区亚洲| 国产乱人视频| 日本爱情动作片www.在线观看 | 国产蜜桃级精品一区二区三区| 欧美成人a在线观看| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 五月伊人婷婷丁香| 久久久久九九精品影院| 99久久精品一区二区三区| 97碰自拍视频| 两个人视频免费观看高清| 人妻久久中文字幕网| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影| 中国美女看黄片| 午夜久久久久精精品| 欧美区成人在线视频| 99久久中文字幕三级久久日本| 日韩高清综合在线| 国产色婷婷99| 久久人人精品亚洲av| 日本爱情动作片www.在线观看 | 丰满的人妻完整版| 国产淫片久久久久久久久| 欧美最黄视频在线播放免费| 国产三级在线视频| 欧美成人一区二区免费高清观看| 国内精品久久久久精免费| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 国产私拍福利视频在线观看| 麻豆成人午夜福利视频| 日韩在线高清观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品影视一区二区三区av| 久久久a久久爽久久v久久| 久久精品91蜜桃| 国产av不卡久久| 久久精品夜色国产| 成人高潮视频无遮挡免费网站| 看非洲黑人一级黄片| 久久韩国三级中文字幕| 精品一区二区三区av网在线观看| 此物有八面人人有两片| 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 亚洲av一区综合| 国产日本99.免费观看| 免费av观看视频| 国产精品无大码| 嫩草影院新地址| 国产91av在线免费观看| 高清午夜精品一区二区三区 | 久久久色成人| 午夜日韩欧美国产| 深夜a级毛片| 我要看日韩黄色一级片| 成熟少妇高潮喷水视频| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区 | 国产成人a区在线观看| 国产在线男女| 成人永久免费在线观看视频| 亚洲欧美日韩东京热| 你懂的网址亚洲精品在线观看 | 日本黄色片子视频| 精品99又大又爽又粗少妇毛片| 色尼玛亚洲综合影院| 观看免费一级毛片| 免费观看精品视频网站| 日韩,欧美,国产一区二区三区 | 欧美成人一区二区免费高清观看| 在线免费十八禁| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 日韩高清综合在线| 久久久久免费精品人妻一区二区| 亚洲美女视频黄频| 国产麻豆成人av免费视频| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 在线免费十八禁| 久久久久免费精品人妻一区二区| 国产蜜桃级精品一区二区三区| 国产精品嫩草影院av在线观看| 亚洲丝袜综合中文字幕| 国产 一区精品| 日本a在线网址| 99久久成人亚洲精品观看| 国产精品亚洲一级av第二区| 精品久久国产蜜桃| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 性插视频无遮挡在线免费观看| 久久久精品大字幕| 午夜福利18| videossex国产| 成人欧美大片| 草草在线视频免费看| 在现免费观看毛片| 欧美激情久久久久久爽电影| 一级毛片电影观看 | 日本免费a在线| 日本三级黄在线观看| 悠悠久久av| 欧美日韩乱码在线| 联通29元200g的流量卡| 国产精品福利在线免费观看| 俺也久久电影网| 日韩一区二区视频免费看| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 免费看光身美女| 国产精品免费一区二区三区在线| 欧美丝袜亚洲另类| 国产视频一区二区在线看| 91在线观看av| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 我的老师免费观看完整版| 国产精品日韩av在线免费观看| 成人鲁丝片一二三区免费| .国产精品久久| 久久精品综合一区二区三区| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 久久综合国产亚洲精品| 国产成人a区在线观看| 免费看a级黄色片| 嫩草影院入口| 亚洲成av人片在线播放无| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 欧美人与善性xxx| 一进一出好大好爽视频| 国产亚洲欧美98| 欧美最新免费一区二区三区| 成人漫画全彩无遮挡| 欧美国产日韩亚洲一区| 欧美日韩在线观看h| 午夜福利视频1000在线观看| 国产毛片a区久久久久| 亚洲国产欧洲综合997久久,| 啦啦啦啦在线视频资源| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 国产三级中文精品| 18禁在线无遮挡免费观看视频 | 99久久无色码亚洲精品果冻| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 老司机福利观看| 身体一侧抽搐| 日韩av在线大香蕉| 欧美+日韩+精品| 日日撸夜夜添| 午夜精品国产一区二区电影 | 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 尾随美女入室| 国产高清视频在线观看网站| 男人狂女人下面高潮的视频| 悠悠久久av| 国产黄色小视频在线观看| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 我要看日韩黄色一级片| 亚洲欧美日韩高清在线视频| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 亚洲专区国产一区二区| a级毛片a级免费在线| 久久精品国产亚洲av天美| 大型黄色视频在线免费观看| 一本久久中文字幕| 国产午夜精品论理片| 99热只有精品国产| 国产日本99.免费观看| 99视频精品全部免费 在线| 乱人视频在线观看| av专区在线播放| 久久精品国产清高在天天线| 久久精品国产亚洲网站| 久久精品91蜜桃| 校园人妻丝袜中文字幕| 小蜜桃在线观看免费完整版高清| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 老司机福利观看| 两个人的视频大全免费| 国产成人a∨麻豆精品| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 如何舔出高潮| 国产乱人视频| 欧美成人一区二区免费高清观看| 国产午夜精品论理片| 日韩三级伦理在线观看| 精品无人区乱码1区二区| 亚洲电影在线观看av| 免费观看人在逋| 日韩大尺度精品在线看网址| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 中文亚洲av片在线观看爽| 日韩成人av中文字幕在线观看 | 噜噜噜噜噜久久久久久91| 国产综合懂色| 精华霜和精华液先用哪个| 最近在线观看免费完整版| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 中文字幕久久专区| 久久人人爽人人爽人人片va| 国产综合懂色| 久久婷婷人人爽人人干人人爱| 三级毛片av免费| 九九在线视频观看精品| 午夜福利在线观看吧| 午夜日韩欧美国产| 精品久久久久久久久av| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 免费在线观看影片大全网站| 免费搜索国产男女视频| 欧美人与善性xxx| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 精品久久久久久久久亚洲| 日本黄色片子视频| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 日韩人妻高清精品专区| 久久久国产成人免费| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 成年女人永久免费观看视频| 中文字幕久久专区| 欧美精品国产亚洲| 青春草视频在线免费观看| 久久久成人免费电影| 人妻久久中文字幕网| 久久国产乱子免费精品| 日本黄色片子视频| 亚洲乱码一区二区免费版| 在线免费观看不下载黄p国产| 精品不卡国产一区二区三区| 久久午夜福利片| 国产成人freesex在线 | 午夜福利在线观看免费完整高清在 | 给我免费播放毛片高清在线观看| 你懂的网址亚洲精品在线观看 | а√天堂www在线а√下载| 欧美日本视频| or卡值多少钱| 国产精品不卡视频一区二区| a级毛片a级免费在线| 成人欧美大片| 日韩强制内射视频| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 在线播放无遮挡| 色综合站精品国产| 真人做人爱边吃奶动态| 嫩草影院精品99| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 国产精品人妻久久久影院| 欧美国产日韩亚洲一区| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久亚洲av鲁大| 久久人人爽人人片av| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 熟女电影av网| 一边摸一边抽搐一进一小说| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| av福利片在线观看| 久久久久九九精品影院| 悠悠久久av| 99久国产av精品国产电影| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看| 内射极品少妇av片p| 国产黄色小视频在线观看| 日韩成人伦理影院| 日本免费a在线| 尾随美女入室| 日韩欧美免费精品| 国产探花极品一区二区| av在线播放精品| 亚洲性久久影院| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 麻豆一二三区av精品| 久久久久久久午夜电影| 人人妻人人看人人澡| 97在线视频观看| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 国产成人a区在线观看| 久久久久久久久久黄片| 国产色婷婷99| 长腿黑丝高跟| 99久久精品一区二区三区| 色综合站精品国产| av在线亚洲专区| 我要搜黄色片| 久久鲁丝午夜福利片| 亚洲av第一区精品v没综合| 大香蕉久久网| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 亚洲高清免费不卡视频| 女同久久另类99精品国产91| 午夜老司机福利剧场| 亚洲人成网站在线播放欧美日韩| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 不卡一级毛片| 51国产日韩欧美| 神马国产精品三级电影在线观看| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 村上凉子中文字幕在线| 免费看日本二区| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 日本色播在线视频| 欧美国产日韩亚洲一区| 99热网站在线观看| 乱码一卡2卡4卡精品| 美女黄网站色视频| 亚洲人成网站在线观看播放| 俄罗斯特黄特色一大片| 少妇高潮的动态图| 亚洲精品国产av成人精品 | 99热这里只有是精品在线观看| 亚洲成人精品中文字幕电影| 老司机福利观看| 婷婷六月久久综合丁香| 亚洲天堂国产精品一区在线| 日韩三级伦理在线观看| 午夜视频国产福利| 欧美日韩乱码在线| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 国产极品精品免费视频能看的| 日韩 亚洲 欧美在线| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 一进一出抽搐gif免费好疼| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 99热只有精品国产| 赤兔流量卡办理| 一级毛片久久久久久久久女| 变态另类成人亚洲欧美熟女| 久久九九热精品免费| 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 成人特级黄色片久久久久久久| 在线免费十八禁| 日本五十路高清| 日本黄色片子视频| 国产不卡一卡二| 亚洲第一电影网av| 波多野结衣高清作品| 午夜视频国产福利| 免费观看人在逋| 精品少妇黑人巨大在线播放 | 天天躁夜夜躁狠狠久久av| 亚洲成人久久爱视频| 久久精品人妻少妇| 国产精品伦人一区二区| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 久久精品综合一区二区三区| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 国产精品福利在线免费观看| 成年av动漫网址| 日韩三级伦理在线观看| 91狼人影院| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 国产 一区精品| 国产久久久一区二区三区| 国产精品一及| 99久久精品一区二区三区| 一个人免费在线观看电影| 成年版毛片免费区| 久99久视频精品免费| 日本与韩国留学比较| 成人二区视频| 色吧在线观看| 亚洲无线观看免费| 国模一区二区三区四区视频| 天天躁夜夜躁狠狠久久av| 午夜福利成人在线免费观看| 美女黄网站色视频| 赤兔流量卡办理| 成人午夜高清在线视频| 亚洲一区二区三区色噜噜| 最近2019中文字幕mv第一页| 村上凉子中文字幕在线| 天堂影院成人在线观看| 我要看日韩黄色一级片| 伦理电影大哥的女人| 国产亚洲av嫩草精品影院| 欧美日本亚洲视频在线播放| 又爽又黄a免费视频| 九色成人免费人妻av| 精品少妇黑人巨大在线播放 | av卡一久久| 国产午夜福利久久久久久| 麻豆精品久久久久久蜜桃| 婷婷六月久久综合丁香| 看黄色毛片网站| 亚洲国产精品成人综合色| 永久网站在线| 国产v大片淫在线免费观看| 99热只有精品国产| 国产免费男女视频| 嫩草影院入口| 人人妻,人人澡人人爽秒播| 亚洲不卡免费看| 亚洲精品粉嫩美女一区| 国产成人freesex在线 | 免费看a级黄色片| 久久久久久久久久久丰满| 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 亚洲欧美日韩高清专用| 3wmmmm亚洲av在线观看| 精品国内亚洲2022精品成人| 日韩av在线大香蕉| 国产爱豆传媒在线观看| 国产91av在线免费观看| 国产精品三级大全| 老熟妇乱子伦视频在线观看| 能在线免费观看的黄片| 午夜a级毛片| 波多野结衣巨乳人妻| 一个人观看的视频www高清免费观看| 22中文网久久字幕| 精品久久久久久成人av| 丰满乱子伦码专区| 白带黄色成豆腐渣| 亚洲欧美中文字幕日韩二区| 亚洲成人中文字幕在线播放| 日韩大尺度精品在线看网址| 91久久精品国产一区二区成人| 一区二区三区高清视频在线| 校园春色视频在线观看| 亚洲精品国产成人久久av| .国产精品久久| 日本撒尿小便嘘嘘汇集6| 久久久久久伊人网av| 91在线观看av| 一本久久中文字幕| 搡老岳熟女国产| 国产探花在线观看一区二区| 女人十人毛片免费观看3o分钟| ponron亚洲| 高清毛片免费看| 99riav亚洲国产免费| 国产av在哪里看| 老女人水多毛片| 我要看日韩黄色一级片| 全区人妻精品视频| 如何舔出高潮| 国产一区二区在线av高清观看| 久久久久国产网址| 三级毛片av免费| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| videossex国产| 亚洲自拍偷在线| 欧美一级a爱片免费观看看| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 色尼玛亚洲综合影院| 床上黄色一级片| 亚洲av二区三区四区| 久久人人爽人人片av| 色吧在线观看| 久久精品国产亚洲av涩爱 | 午夜日韩欧美国产| 高清毛片免费观看视频网站| av国产免费在线观看| 日韩一区二区视频免费看| 嫩草影院入口| 无遮挡黄片免费观看| 亚洲三级黄色毛片| 99久久无色码亚洲精品果冻| 日本五十路高清| 国产 一区 欧美 日韩| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在 | 亚洲国产精品久久男人天堂| 久久久精品欧美日韩精品| av.在线天堂| 热99re8久久精品国产| 日韩制服骚丝袜av| 欧美日韩国产亚洲二区| 国产欧美日韩一区二区精品| 国产一区二区在线观看日韩| 麻豆一二三区av精品| 免费观看的影片在线观看| 亚洲美女黄片视频| 国产探花在线观看一区二区| 亚洲精品久久国产高清桃花| 少妇人妻一区二区三区视频|