• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Objective Evolutionary Approach to Selecting Security Solutions

    2017-10-11 10:54:07YungheeLeeTaeJongChoiandChangWookAhn

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn

    AMulti-ObjectiveEvolutionaryApproachtoSelectingSecuritySolutions

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn*

    In many companies or organizations, owners want to deploy the most efficient security solutions at a low cost. In this paper, we propose a method of choosing the best security solution from various security solutions using multi-objective genetic algorithm considering cost and weakness-decrease. The proposed system can support the best security solutions in various aspects of security issues. We use the NSGA-II algorithm, which has been verified in a variety of fields, to provide a comparison with existing genetic algorithms. Our scheme has increased the dominant area by more than 30% compared with the previous scheme and can provide a more diverse solution set.

    security; evolutionary algorithm; multi-objective genetic algorithm; artificial intelligence

    1 Introduction

    As the information technology systems and the Internet grew, so did the number of malicious threats to information[1]. To prevent information threats like this, organizations and enterprises study security solutions to secure information separately from their usual work. Security solutions are generally physical and logical countermeasures to prevent the failure and destruction of the information systems[2]. But in most cases, companies do not want to spend a lot of money on improving security. Because investing in security solutions does not seem to be effiective in a short time. Moreover, in order to invest in security solutions, companies have to choose how much to invest in what measures, but it is very difficult to make such a choice without knowing the exact threats and the effiectiveness of countermeasures. In this paper, we describe the selection of a security solution using NSGA-II, a kind of multi-objective genetic algorithm. This will help any business or organization easily choose the best security solution. This paper is organized as follows. In Section 2, we talk about genetic algorithms (GA) and Pareto-optimization. In Section 3, we explain a multi-objective genetic algorithm. We design a creating security solution and Weakness Decrease Point (WDP) for experiment and explain the program code in Section 4. The system we propose is presented in Section 5. Section 6 concludes the paper.

    2 Related works

    In this section, we talk about Pareto-optimality after the simple description of genetic algorithm and knapsack problem.

    2.1GeneticalgorithmandKnapsackProblem

    Genetic algorithm is a kind of heuristic search based on the phenomenon of nature. It was firstly designed by John Holland in 1975. This is one of the techniques to solve the optimization problem by calculation based on the natural evolutionary process. In general, if it is impossible to obtain an optimized solution of a problem through a formal formula, or if it is too complicated, it may be efficient to solve the problem through a genetic algorithm. However,the genetic algorithm does not always find a global optimal solution. This only helps to find solutions that are close to the optimal solution in a short time. Therefore, genetic algorithms are generally useful for problems classified as non- deterministic polynomial (NP) time problems[3].

    The knapsack problem is one of the most suitable problems to solve with genetic algorithm. The knapsack problem is a matter of finding out what items we need to fill the bag to make it the most valuable. The size of the items that can be stored in the bag is fixed, and each item has a predetermined value and size. Therefore, if the item can be split, we can easily find the global optimal solution to this problem with the greedy algorithm. But if they can not break apart, this problem can not be solved with a formal formula. Thus, in this case, this problem becomes an NP-completeness problem[4,5]. If we use a genetic algorithm to solve the knapsack problem, we can find an efficient solution for a short time. Recently, various studies related to the research we are trying to do have been preceded[6].

    2.2 Pareto-optimality

    If you use a simple genetic algorithm to solve the knapsack problem, the sum of the sizes will naturally approach the maximum size. If you have a budget and do not have any problems with using your whole budget, you can solve this problem using the simple genetic algorithm. But companies and organizations want to find low-cost, high-efficiency solutions and deploy it. Therefore unlike a simple genetic algorithm that considers only one objective, in the real world, it is necessary to find the optimal solution considering both the cost and the WDP. Sometimes, a problem may have more than just two objectives. If that happens, the problem will be much more complicated than when considering only one objective. In this paper, we propose a method to solve the problem by considering two objectives: cost and WDP.

    In general, we use the concept of “Pareto-optimality” when there are multiple objectives to find the global optimal solution of the problem. For example, the cost and WDP of security solutions to address security flaws are shown in Table 1. As shown in Fig.1, the data in Table1 can be charted. In the Fig.1, the X axis represents (100-cost) and the y axis means WDP: Decrease of dangerous.

    In the Fig.1 the solution in the upper right is observed to be more effiective and better.The optimal solution is the top-most, right-most solution in the chart. However, in general, higher WDPs result in higher costs, making it difficult to find the ideal solution like that. Instead, we can find a Pareto- optimal that is superior to other solutions[7]. The squares on the chart show Pareto-dominance easily. For example, R2 has a very high WDP, which is very helpful in solving security problems, but solution R2 is not an optimal solution because there is a solution R5 with a lower cost and higher WDP. At this point, Solution R2 is said to be a Pareto-dominated entity. When we create a chart like the one shown in the Fig.1, we call the unconstrained solution Pareto-optimal for any other solution, and call the set a Pareto-optimal set. The line that the pareto-optimal set forms is called the Pareto-frontier. Ultimately, what we are looking for is a Pareto-optimal set.

    Table 1 The list of solution sets that generated randomly.

    Fig.1Charttoselectbestsolutionfromvariouscandidates.

    3 Multi-objective genetic algorithm:NSGA-II

    There are many kinds of multi-objective genetic algorithms (MOGA) to solve many types of problems: NPGA, NSGA, SPEA, etc. All of them are very popular MOGA solutions and in this paper, we use the NSGA-II algorithm for solving the problem. Because NSGA-II is the lightest and fastest method of MOGA known so far. NSGA-II is a new advanced technique compared with NSGA, a conventional multi-objective genetic algorithm. It can finish the cal- culation in less time than NSGA and introduces the concept of non-dominant ranking. In addition, NSGA-II introduced a concept called Crowding Distance.Therefore, this scheme can distribute resources more efficiently than existing algorithms. Another thing that NSGA-II is diffierent from NSGA is Elitism. Elitism is the scheme of keeping the superior population among the population to the next generation. Therefore, solutions with a high fitness are not easily lost through generations[8]. The NSGA-II algorithm is easy to use and can quickly find solutions with a high fitness. And it has very high performance so that this algorithm is very popular[9].

    Fig.2 Flowchart for NSGA-II algorithm.

    The NSGA-II algorithm is shown in Fig.2[10]. Non-dominated rand means the rank that how many other solutions are dominating the solution. In other words, a lower non-dominated rank is a better solution. For example, there is a solution named A. If any solution is a dominating solution A, the non- dominated rank of solution A is zero. Thus, in the same generation, the Pareto optimal solution has the highest priority, and the solution farther from it has an increasingly lower priority. Like this, the non-dominated rank alignment process allows solutions to converge on the Pareto-optimal set. And Crowding Distance is a solution to see how many solutions are gathered in a small area when the charts are shown like Fig.1. This is a value that is calculated to help the solutions with the same non-dominated rank have diversity. Each solution has a high Crowding Distance value if it is less similar to the neighboring solution. This is an element for selecting an object with a diffierent property from the set of genetic entities belonging to the same non-dominated rank[8].

    3.1 Performance improvement

    We used diffierent mutations and crossover types to improve performance. Mutation and crossover are very important components in the genetic algo rithm. There are many types of mutation and crossover: Uniform Mutation, Parent-Centric Crossover, Bit Flip Mutation, Half-Uniform Crossover and etc. In this paper, we use the Simulated Binary Crossover (SBX) for crossover process and Polynomical Mutation (PM) for mutation process in NSGA-II. SBX is the operator that has the search ability similar to that of a single-point binary-coded crossover operator[11]. And the PM is the operator that is widely used in evolutionary optimization algorithms as a variation operator[12]. It attempts to simulate the offispring distribution of binary-encoded bit-flip mutation on real-valued decision variables. In this paper, the type of the value to be calculated was binary, but we used PM because the PM showed better performance than the bit flip mutation. PM is similar to SBX, it favors offispring nearer to the parent[13].

    And we set the population size for the genetic algorithm to 500 and the number of generations to 15000.

    4 Creating security solution and WDP

    We need to create a variety of virtual security solutions for the experiment, each with an introduction cost and a WDP. However, WDP is a value that can not be easily quantified. Therefore, in this paper, we use a reasonable random number as a WDP to create a sample virtual security solution.

    First, we need to create 500 random numbers to be used as the cost of introducing a virtual security solution. The total sum of 500 random numbers is 1000000. After doing that, we sort 100 random random numbers and put them into the array arr [ ]. Then we use the source code below to create a WDP corresponding to each cost, and place it in the array arr2 [ ].

    for (i=0;i<500; i++)

    {

    arr2[i]=gaussianRand(arr[i], STD);

    // STD is the standard deviation of gaussian random function

    // We setted STD to 50

    if (arr2[i] <=0)

    arr2[i] = rand()% arr[i] +1;

    }

    double gaussianRand(double mean, double stddev)

    { // gaussian random number generater function static double n2= 0.0;

    static int n2_cached = 0;

    if (!n2_cached)

    {

    doublex,y,r;

    do

    {

    x=2.0*rand()/RAND_MAX-1;

    y=2.0*rand()/RAND_MAX-1;

    r=x*x+y*y;

    } while (r==0.0 ||r> 1.0);

    {

    double d=sqrt(-2.0*log(r)/r);

    double n1=x*d;

    n2=y*d;

    double result = n1*stddev + mean;

    n2_cached = 1;

    return result;

    }

    {

    else

    {

    n2_cached= 0;

    return n2*stddev+ mean;

    }

    }

    So we can make the meaningful random WDP. Weakness decrease point will almost be proportional to security solutions cost. But there can be rarely too high Weakness Decrease Pointcsecurity solutions cost or the opposite case.

    5 Proposed scheme

    In this section, we suggest techniques for selecting the best security solution using NSGA-II, the MOGA mentioned in the previous section. As we mentioned in Section 1, businesses and organizations want security solutions that can get the most out of their business with minimal cost. Park et al. have released a solution for this problem[14]. They tried to solve this problem using the simple genetic algorithm and used a list of 10 virtual security solutions in the experiment. In order to compare the two schemes, we have coded programs that perform as well as the simple genetic algorithms used in Park et al.’s paper[14], and have created more new virtual security solution lists and experimented. We compared the results obtained using our scheme with those obtained using Park et al.’s scheme[14]. As a result of using the scheme of Park et al.[14], we could find three optimal solutions.

    And also important in the genetic algorithm is the fitness evaluation function. It is called as the fitness function. In the simple genetic algorithm used by Park et al.[14], the fitness function considers only one objective: WDP. In MOGA, however, we can use multiple objectives for fitness functions.

    (1)

    (2)

    In this paper, we used two fitness functions as shown in Equations 1 and 2.Equation 1 uses (100000-the total cost of the solution) values for fitness calculations, and Equation 2 uses the entire WDP of the solution for fitness calculations.nis the number of the whole chromosomes, in other words,nmeans the number of solutions.vcmeans each chromosome structure.vc.dincludes the decrease point of security weakness, andvc.cincludes the cost for selecting that solution.vc.sincludes the binary number for checking whether each solution was selected or not selected. So ifvc.s’s value is 0, that means the solution was not selected.

    Fig.3ThegraphaboutselectingsecuritysolutionusingNSGA-II.

    Fig.3 compares the best virtual security solutions selected using the NSGA-II algorithm to the best virtual security solutions selected using the simple genetic algorithm. The horizontal axis indicates the value off1, and the vertical axis indicates the value off2. The results of using the existing Park et al.’s scheme[14]have reversed the cost value for easy comparison. Therefore, the cost of the original research is actually 100000 times the original cost. For the sake of clarity, we plotted the results of original research as red squares and the results of our research as black dots. Using the NSGA-II-based security solution selection scheme we have studied, we can confirm that the selected security solution set forms the Pareto-frontier and completely dominates the results of existing papers. The results of this paper provide a variety of choices, from low cost solution selection to high cost solution selection.

    6 Conclusion

    In this paper, we propose a scheme to efficiently select the security solutions required by corporations and organizations using NSGA-II in terms of various objectives: cost and value. The proposed method was able to find optimal solutions considering various objectives and showed superiority in the process and performance of fitness evaluation compared to existing papers using simple genetic algorithm. More detailed study on how to quantify the Weakness Decrease Point (WDP) should be conducted and the stability and performance of NSGA-III developed by NSGA-II should be verified.

    Acknowledgment

    This research was supported by X-Project funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1E1A2A02946533) and also supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.B0717-17-0070).

    [1]S.W.Chai, Economic effiects of personal information protection, Korea Consumer Agency,vol.33, pp.43-64,2008.

    [2]Y.O.Kwon and B.D.Kim, The effiect of information security breach and security investment announcement on the market value of korean firms,InformationSystemReview, vol.9,no.1, pp.105-120, 2007.

    [3]M.Mitchell,Anintroductiontogeneticalgorithms,USA: MIT press,1996.

    [4]Kellerer and Hans,Knapsackproblems, Berlin, Germany: Springling Press,2004.

    [5]S.Martello and P.Toth, Knapsack problems: Algorithms and computer implementations,JournaloftheOperationalResearchSociety, 42(6), 513-513.

    [6]P.C.Chu and J.E.Beasley, A genetic algorithm for the multidimensional knapsack problem,Journalofheuristics,vol.4, no.1, pp.63-86, 1998.

    [7]J.Horn, N.Nafpliotis, and D.Goldberg, A niched pareto genetic algorithm for multiobjective optimization, inProceedingsof1stIEEEConferenceonEvolutionaryComputation, Florida,USA,1994, pp.82-87.

    [8]J.Yoon, J.Lee, and D.Kim, Feature selection in multi-label classification using nsga-ii algorithm,JournalofKIISE:SoftwareandApplications,vol.40,no.3, pp.133-140, 2013.

    [9]K.Deb, A.Pratap, S.Agarwal, and T.Meyarivan, A fast and elitist multi objective genetic algorithm: Nsga-ii,IEEETransactionsonEvolutionaryCompution,vol.6,no.2,pp.182-197,2002.

    [10] S.T.Khu and H.Madsen, Multi-objective calibration with pareto preference ordering: An application to rainfall-runoffi model calibration,WaterRe-wourcesResearch,vol.41,no.3,pp.1-14,2005.

    [11] D.Kalyanmoy and K.Amarendra, Real-coded genetic algorithms with simulated binary crossover: studies on multimodel and multiobjective problems,ComplexSystems, vol.9,no.6,pp.431-454, 1995.

    [12] M.Hamdan, A dynamic polynomial mutation for evolutionary multi-objective optimization algorithms,InternationalJounalonArtificialIntelligenceTools,vol.20,no.1,pp.209-219, 2011.

    [13] K.Deb and D.Deb, Analysing mutation schemes for real-parameter genetic algorithms,InternationalJournalofArtificialIntelligenceandSoftComputting, vol.4,no.1,pp.1-28, 2014.

    [14] J.Park, Y.Bang, G.Lee, and K.Nam, Generation of security measure by using simple genetic algorithm, inProceedingsofKIISEConference30, 2003,vol.21,pp.769-771.

    TaeJongChoiis working as a postdoctoral researcherin at Sungkyunkwan University (SKKU), Republic of Korea. He received Ph.D. degree from the Department of Electrical and Computer Engineering at SKKU in 2017. His research interests include evolutionary algorithms, machine learning, deep learning, and the applications of artificial intelligence.ChangWookAhnis working as a Professor in the School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea. From 2008 to 2016, he was an Assistant/Associate Professor at the Department of Computer Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea. He received his PH.D. degree from the Department of Information and Communications, GIST. His research interests include genetic algorithms, multi-objective optimization, neural networks, and the applications of evolutionary machine learning techniques.

    2016-12-20; accepted:2017-01-20

    B.S. degree from the Department of Cyber Security at Kyung-Il University, Kyungsan, Republic of Korea, in 2012. He is currently a M.S. candidate in the Department of Computer Engineering at Sungkyunkwan University, Suwon, Republic of Korea. Also, he is currently working as a researcher at Gwangju Institute of Science and Technology (GIST). His research interests include genetic algorithms, Artificial Intelligence, multi-objective optimization and the cyber security.

    ?Tae Jong Choi is with Department of Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.

    ?Yunghee Lee and Chang Wook Ahn are with School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST).E-mail: cwan@gist.ac.kr(Chang Wook Ahn).

    *To whom correspondence should be addressed. Manuscript

    午夜老司机福利剧场| 国产欧美日韩精品一区二区| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 久久精品影院6| 插阴视频在线观看视频| 一级av片app| 国产成人午夜福利电影在线观看| 狂野欧美白嫩少妇大欣赏| 精品人妻一区二区三区麻豆| 老司机影院毛片| 亚洲乱码一区二区免费版| 欧美精品国产亚洲| 能在线免费看毛片的网站| 18禁动态无遮挡网站| 免费av观看视频| 日本-黄色视频高清免费观看| 日本wwww免费看| 一夜夜www| 国产亚洲一区二区精品| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 国产片特级美女逼逼视频| 真实男女啪啪啪动态图| 精品熟女少妇av免费看| 国产私拍福利视频在线观看| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站| 日韩三级伦理在线观看| 麻豆成人午夜福利视频| 99热这里只有是精品50| 一区二区三区高清视频在线| 国产av不卡久久| 成人无遮挡网站| 亚洲图色成人| 精品国内亚洲2022精品成人| 久久鲁丝午夜福利片| 人体艺术视频欧美日本| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 欧美又色又爽又黄视频| 两个人视频免费观看高清| 免费看日本二区| 欧美激情国产日韩精品一区| 精品久久久久久久久亚洲| 精品免费久久久久久久清纯| 99久久人妻综合| 黄色日韩在线| 美女国产视频在线观看| 春色校园在线视频观看| 青春草视频在线免费观看| 99久久精品一区二区三区| 中文天堂在线官网| 变态另类丝袜制服| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验| 日日啪夜夜撸| 久久久精品欧美日韩精品| 国产中年淑女户外野战色| 免费观看精品视频网站| 日韩人妻高清精品专区| 观看美女的网站| 免费看日本二区| 看免费成人av毛片| 在线观看一区二区三区| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 日本色播在线视频| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 伊人久久精品亚洲午夜| 99热网站在线观看| 国产淫片久久久久久久久| 青春草视频在线免费观看| 男的添女的下面高潮视频| 久久久久久国产a免费观看| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 天堂影院成人在线观看| 久久久久久九九精品二区国产| 色哟哟·www| 在线免费观看不下载黄p国产| 赤兔流量卡办理| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 国产亚洲av片在线观看秒播厂 | 十八禁国产超污无遮挡网站| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区三区| 精品无人区乱码1区二区| 国产亚洲精品av在线| 国产真实伦视频高清在线观看| 一夜夜www| 精品久久久久久成人av| 老司机影院毛片| 免费电影在线观看免费观看| 久久精品夜色国产| 精品少妇黑人巨大在线播放 | 精品久久久久久久久久久久久| 最近中文字幕2019免费版| 亚洲av.av天堂| 美女cb高潮喷水在线观看| 精品不卡国产一区二区三区| 精品午夜福利在线看| 亚洲国产最新在线播放| 成人综合一区亚洲| 日韩精品青青久久久久久| av在线天堂中文字幕| 嘟嘟电影网在线观看| 国产白丝娇喘喷水9色精品| 国产精品一及| 亚洲国产精品成人久久小说| kizo精华| 黄片wwwwww| videossex国产| 亚洲在线自拍视频| 国产精品福利在线免费观看| 97热精品久久久久久| 夜夜爽夜夜爽视频| 亚洲精品成人久久久久久| 毛片一级片免费看久久久久| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 一个人免费在线观看电影| 精品99又大又爽又粗少妇毛片| 小说图片视频综合网站| 男女国产视频网站| 蜜桃久久精品国产亚洲av| 国产av码专区亚洲av| 国产男人的电影天堂91| 三级国产精品片| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 在线免费十八禁| 国产精品人妻久久久久久| 久久国产乱子免费精品| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 亚洲成人中文字幕在线播放| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看| 久久久久精品久久久久真实原创| 成人av在线播放网站| av在线亚洲专区| 色噜噜av男人的天堂激情| av国产久精品久网站免费入址| 精品久久久噜噜| 2022亚洲国产成人精品| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 欧美bdsm另类| 日本欧美国产在线视频| 亚洲最大成人中文| 国产av不卡久久| 干丝袜人妻中文字幕| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 亚洲一区高清亚洲精品| 日本黄大片高清| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 成年女人看的毛片在线观看| 视频中文字幕在线观看| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 国产在视频线精品| 伊人久久精品亚洲午夜| 亚洲国产欧美人成| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 97在线视频观看| 国产精品蜜桃在线观看| 天堂中文最新版在线下载 | 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 天堂影院成人在线观看| 亚洲精品久久久久久婷婷小说 | 国产在线男女| 热99在线观看视频| 免费在线观看成人毛片| 一级黄色大片毛片| 超碰av人人做人人爽久久| 高清在线视频一区二区三区 | 99久久精品国产国产毛片| 久久久久久久久中文| 3wmmmm亚洲av在线观看| 久久人人爽人人片av| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 天堂影院成人在线观看| 婷婷色综合大香蕉| 一级黄片播放器| 国产精品一区二区在线观看99 | 嫩草影院新地址| 又黄又爽又刺激的免费视频.| 神马国产精品三级电影在线观看| 毛片女人毛片| 亚洲欧美日韩东京热| 国产精品一区二区三区四区久久| 18禁动态无遮挡网站| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 国产精品电影一区二区三区| av免费在线看不卡| 成人亚洲精品av一区二区| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生 | 少妇被粗大猛烈的视频| 韩国av在线不卡| 色网站视频免费| 九九热线精品视视频播放| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 最近手机中文字幕大全| 国产精品.久久久| 丰满乱子伦码专区| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 春色校园在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美在线一区| 国产久久久一区二区三区| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 国产成人freesex在线| 又粗又硬又长又爽又黄的视频| 91精品国产九色| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 九色成人免费人妻av| 中文字幕亚洲精品专区| 日日啪夜夜撸| 好男人在线观看高清免费视频| 国产精品电影一区二区三区| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 国产真实伦视频高清在线观看| 1024手机看黄色片| 美女脱内裤让男人舔精品视频| 免费大片18禁| 国产在视频线在精品| 亚洲精品亚洲一区二区| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 国产成人福利小说| 99热这里只有是精品50| 高清日韩中文字幕在线| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 水蜜桃什么品种好| 国产老妇女一区| 观看美女的网站| 一级毛片aaaaaa免费看小| 午夜a级毛片| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 成人性生交大片免费视频hd| 免费观看在线日韩| 一边摸一边抽搐一进一小说| 国产黄片美女视频| 国产黄片视频在线免费观看| 欧美人与善性xxx| 国产黄a三级三级三级人| av黄色大香蕉| 色噜噜av男人的天堂激情| 一级黄片播放器| 国产成人精品久久久久久| 视频中文字幕在线观看| av在线亚洲专区| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 久久精品夜夜夜夜夜久久蜜豆| 国产视频内射| 天天躁夜夜躁狠狠久久av| 春色校园在线视频观看| 精品不卡国产一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲色图av天堂| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 亚洲在久久综合| 久久久成人免费电影| 亚洲国产色片| 国产在视频线在精品| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| 国产黄片视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区在线观看99 | 久久久久国产网址| 国内揄拍国产精品人妻在线| 欧美成人一区二区免费高清观看| 夜夜爽夜夜爽视频| 男人舔奶头视频| av在线播放精品| 男女视频在线观看网站免费| 国产精品蜜桃在线观看| 身体一侧抽搐| 最近视频中文字幕2019在线8| 免费看日本二区| 99视频精品全部免费 在线| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 亚洲成av人片在线播放无| 97人妻精品一区二区三区麻豆| 午夜老司机福利剧场| 国产精品野战在线观看| 亚洲精品,欧美精品| 久久韩国三级中文字幕| 青春草视频在线免费观看| 久久国产乱子免费精品| 男人的好看免费观看在线视频| 国内精品一区二区在线观看| 久久6这里有精品| 色5月婷婷丁香| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 男女国产视频网站| kizo精华| 中国国产av一级| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 在线免费观看的www视频| 高清毛片免费看| 久久精品国产自在天天线| 亚洲精品456在线播放app| 2021天堂中文幕一二区在线观| videossex国产| 国产精品野战在线观看| 男女边吃奶边做爰视频| 国产成人a区在线观看| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 精品国产一区二区三区久久久樱花 | 国产精品.久久久| 免费观看性生交大片5| 色5月婷婷丁香| 乱人视频在线观看| 国产免费男女视频| 欧美zozozo另类| 两性午夜刺激爽爽歪歪视频在线观看| 久久99热这里只频精品6学生 | 国产一区二区亚洲精品在线观看| 欧美变态另类bdsm刘玥| 中文字幕熟女人妻在线| 亚洲国产日韩欧美精品在线观看| 激情 狠狠 欧美| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 大又大粗又爽又黄少妇毛片口| 亚洲av福利一区| 99热这里只有是精品50| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 又粗又硬又长又爽又黄的视频| 欧美一级a爱片免费观看看| 亚洲国产欧洲综合997久久,| 成人美女网站在线观看视频| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 欧美变态另类bdsm刘玥| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 69人妻影院| 日本熟妇午夜| 99久久无色码亚洲精品果冻| 人体艺术视频欧美日本| 国产在视频线精品| 亚洲精品aⅴ在线观看| 国产真实乱freesex| 久久热精品热| 一级黄片播放器| 国产三级在线视频| 嘟嘟电影网在线观看| 3wmmmm亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| 国产成人午夜福利电影在线观看| 一个人免费在线观看电影| 国产成人freesex在线| 日日摸夜夜添夜夜爱| 一个人看的www免费观看视频| 国产精品久久久久久av不卡| 日本黄色视频三级网站网址| 能在线免费观看的黄片| 亚洲乱码一区二区免费版| 亚洲精品456在线播放app| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 美女国产视频在线观看| 青春草视频在线免费观看| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| av在线亚洲专区| 久久99热这里只频精品6学生 | 欧美一区二区亚洲| 久久久久国产网址| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 免费看a级黄色片| 99久国产av精品| 婷婷六月久久综合丁香| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美| 91精品一卡2卡3卡4卡| 日本av手机在线免费观看| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 91av网一区二区| 99热这里只有精品一区| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 天美传媒精品一区二区| 亚洲成人av在线免费| 日韩亚洲欧美综合| 欧美又色又爽又黄视频| 午夜精品国产一区二区电影 | 欧美激情久久久久久爽电影| 亚洲欧美成人综合另类久久久 | 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 搡老妇女老女人老熟妇| 九九在线视频观看精品| 国产美女午夜福利| 91av网一区二区| 在线播放国产精品三级| 国产亚洲91精品色在线| 国产午夜精品论理片| 免费搜索国产男女视频| 亚洲成人av在线免费| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 18禁动态无遮挡网站| 国产私拍福利视频在线观看| 国产在线男女| 久久6这里有精品| 在线天堂最新版资源| 能在线免费观看的黄片| 日本午夜av视频| 亚洲天堂国产精品一区在线| 一级毛片电影观看 | 色哟哟·www| 国产成人一区二区在线| 亚洲精品影视一区二区三区av| 国产极品精品免费视频能看的| 免费黄色在线免费观看| 免费观看a级毛片全部| 在线播放国产精品三级| 国产精品日韩av在线免费观看| 欧美激情国产日韩精品一区| 性色avwww在线观看| 午夜福利高清视频| 国产精品蜜桃在线观看| 国产一区亚洲一区在线观看| 久久久久免费精品人妻一区二区| 99久久无色码亚洲精品果冻| 成人毛片60女人毛片免费| a级毛色黄片| 日韩精品有码人妻一区| 亚洲三级黄色毛片| 日本av手机在线免费观看| 人体艺术视频欧美日本| 中文字幕精品亚洲无线码一区| 精品久久久久久久久亚洲| 国产色爽女视频免费观看| 丰满乱子伦码专区| 网址你懂的国产日韩在线| 99在线视频只有这里精品首页| 亚洲欧美精品专区久久| 国产在线一区二区三区精 | 国产又黄又爽又无遮挡在线| 淫秽高清视频在线观看| 亚洲成色77777| 在线免费十八禁| 成人三级黄色视频| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久| 欧美色视频一区免费| 国产一区二区三区av在线| 精品人妻一区二区三区麻豆| 淫秽高清视频在线观看| 夫妻性生交免费视频一级片| 乱系列少妇在线播放| 欧美日韩精品成人综合77777| 国产精品麻豆人妻色哟哟久久 | 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| 亚洲av中文字字幕乱码综合| 少妇猛男粗大的猛烈进出视频 | 小说图片视频综合网站| 久久人人爽人人片av| 九九久久精品国产亚洲av麻豆| 日韩一区二区视频免费看| 久久6这里有精品| 1000部很黄的大片| 国产v大片淫在线免费观看| 黑人高潮一二区| av在线亚洲专区| 18禁裸乳无遮挡免费网站照片| 亚洲激情五月婷婷啪啪| 直男gayav资源| 91久久精品国产一区二区三区| 三级经典国产精品| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久 | 99国产精品一区二区蜜桃av| 一区二区三区高清视频在线| 99热这里只有精品一区| 久久久久久久午夜电影| h日本视频在线播放| 在线免费十八禁| 26uuu在线亚洲综合色| 欧美潮喷喷水| 毛片一级片免费看久久久久| 亚洲激情五月婷婷啪啪| 99久久成人亚洲精品观看| 淫秽高清视频在线观看| 人体艺术视频欧美日本| 国产69精品久久久久777片| 日韩大片免费观看网站 | 男女边吃奶边做爰视频| 国语自产精品视频在线第100页| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 人人妻人人看人人澡| av国产久精品久网站免费入址| 久久久午夜欧美精品| av线在线观看网站| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 欧美丝袜亚洲另类| 亚洲av男天堂| 亚洲无线观看免费| 日本一二三区视频观看| 91aial.com中文字幕在线观看| 国产一区有黄有色的免费视频 | 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| videos熟女内射| 国产精品精品国产色婷婷| 全区人妻精品视频| 国产精品久久久久久久久免| 国产黄a三级三级三级人| 亚洲经典国产精华液单| 韩国av在线不卡| 国产精品国产三级国产av玫瑰| 精品少妇黑人巨大在线播放 | 哪个播放器可以免费观看大片| 大又大粗又爽又黄少妇毛片口| 日韩av在线大香蕉| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全电影3| 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 亚洲精品一区蜜桃| 我要搜黄色片| 一区二区三区高清视频在线| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 国产视频首页在线观看| 99视频精品全部免费 在线| 国产单亲对白刺激| 床上黄色一级片| 成人亚洲欧美一区二区av| 超碰97精品在线观看| 国产亚洲91精品色在线| 黄色日韩在线| 免费看av在线观看网站| 麻豆国产97在线/欧美| 欧美日韩综合久久久久久| 久久精品国产99精品国产亚洲性色| 床上黄色一级片| 国产老妇女一区| 如何舔出高潮| 国产亚洲最大av| 精品熟女少妇av免费看| 成年av动漫网址| 听说在线观看完整版免费高清| 三级国产精品欧美在线观看| 别揉我奶头 嗯啊视频| 久久综合国产亚洲精品| 欧美一区二区精品小视频在线| 亚洲国产精品国产精品| 久久综合国产亚洲精品| 国产爱豆传媒在线观看| 国产又黄又爽又无遮挡在线| 久久6这里有精品| 国产亚洲5aaaaa淫片| 大又大粗又爽又黄少妇毛片口| av国产久精品久网站免费入址|