張江江,詹杰鵬,劉清云,師家勤,王新發(fā),劉貴華,王漢中
?
油菜株高QTL定位、整合和候選基因鑒定
張江江1,詹杰鵬1,劉清云2,師家勤1,王新發(fā)1,劉貴華1,王漢中1
(1中國農(nóng)業(yè)科學(xué)院油料作物研究所,武漢430062;2浠水縣農(nóng)業(yè)局油料作物推廣站,湖北黃岡438200)
【目的】通過對(duì)油菜株高進(jìn)行多環(huán)境QTL定位并與已報(bào)道的油菜株高QTL和植物株高基因分別進(jìn)行整合和比對(duì)分析,揭示油菜株高的遺傳結(jié)構(gòu)和候選基因并為其分子改良提供依據(jù)?!痉椒ā恳杂筒藘?yōu)良品種中雙11(測序)和No.73290(重測序)衍生的含184個(gè)單株的BnaZNF2群體為試驗(yàn)材料。首先,對(duì)BnaZNF2群體進(jìn)行基因型分析,利用Joinmap 4.0軟件構(gòu)建了一張含803個(gè)分子標(biāo)記的高密度遺傳圖譜。其次,對(duì)F2:3和F2:4家系進(jìn)行連續(xù)兩年(2010—2011)兩點(diǎn)(武漢和西寧)田間試驗(yàn)和表型鑒定。然后,利用BnaZNF2群體的基因型數(shù)據(jù)和F2:3以及F2:4家系的株高表型數(shù)據(jù),采用WinQTLCart 2.5軟件的復(fù)合區(qū)間作圖法進(jìn)行QTL檢測。最后,利用元分析的方法采用BioMercator軟件對(duì)不同環(huán)境中檢測到的株高QTL進(jìn)行整合?!窘Y(jié)果】對(duì)兩年兩點(diǎn)環(huán)境下分別檢測到的株高QTL進(jìn)行整合總共得到5個(gè)株高QTL的位點(diǎn):、、、和,分布于A2、C2和C3染色體上,解釋2.6%—55.6%的表型方差。其中,和只在武漢檢測到,而、和只在西寧檢測到。位于C2連鎖群的主效QTL-只在西寧被重復(fù)檢測到,而且LOD值、加性效應(yīng)和貢獻(xiàn)率(分別為23.4、-16.0和55.6%)均高于前人報(bào)道,是目前發(fā)現(xiàn)的效應(yīng)最大的一個(gè)油菜株高QTL?;谟筒嘶蚪M物理圖譜對(duì)本研究和已報(bào)道的油菜株高QTL和植物株高基因分別進(jìn)行整合和比對(duì)分析,獲得了一個(gè)由183個(gè)QTL和287個(gè)候選基因組成的相對(duì)完整的油菜株高遺傳結(jié)構(gòu)圖。其中,有18個(gè)株高QTL簇能在不同研究中被共同檢測到,分布在A1、A2、A3、A6、A7、A9、C6和C7染色體上。另外,本研究定位到的5個(gè)油菜株高QTL的物理位置和已報(bào)道的油菜株高QTL均不重疊,因而是新的株高QTL位點(diǎn)。其中,、和物理區(qū)間內(nèi)總共找到了15個(gè)株高同源基因,而11個(gè)在2個(gè)親本中存在序列變異,被選作候選基因進(jìn)行進(jìn)一步研究?!窘Y(jié)論】QTL定位和整合獲得5個(gè)油菜株高QTL,均為首次報(bào)道而且都只在武漢或西寧被檢測到。其中位于C2連鎖群的主效QTL效應(yīng)值超過以往報(bào)道,表現(xiàn)出極強(qiáng)的QTL與環(huán)境的互作。通過與已報(bào)道的油菜株高QTL和植物株高基因分別進(jìn)行整合和比對(duì)分析,較為全面地揭示了油菜株高的遺傳結(jié)構(gòu)和候選基因,生物信息學(xué)分析還鑒定到11個(gè)位于本研究定位到的3個(gè)株高QTL區(qū)間內(nèi)的候選基因。
甘藍(lán)型油菜;株高;遺傳結(jié)構(gòu);QTL;候選基因;QTL與環(huán)境的互作
【研究意義】油菜是中國第一大油料作物[1],也是中國唯一的冬季油料作物[2],近年來,種植面積和總產(chǎn)均占全世界的20%左右(http://apps.fas.usda. gov/psdonline/)。菜籽油是世界植物油第二大來源,同時(shí)也是中國食用植物油第一大來源,占中國國產(chǎn)油料作物產(chǎn)油量的55%以上,在國家食用油供給安全戰(zhàn)略中地位十分重要[3-4]。然而,由于單產(chǎn)和機(jī)械化水平低共同造成的生產(chǎn)效益低下是制約油菜產(chǎn)業(yè)發(fā)展的主要因素[3]。從作物品種的演變歷程可以看出,品種產(chǎn)量提高和種植方式升級(jí)的背后往往伴隨著株型的選擇和優(yōu)化。株高是油菜株型的主要決定因素之一[5-6],不但與油菜收獲指數(shù)以及產(chǎn)量密切相關(guān),而且也是影響抗倒伏能力和機(jī)械化收獲特性的一個(gè)重要因素[3,7]。因此,油菜株高遺傳結(jié)構(gòu)的解析,對(duì)于培育油菜理想株型品種具有重要的理論與現(xiàn)實(shí)意義。【前人研究進(jìn)展】油菜株高是一個(gè)典型的數(shù)量性狀,表型連續(xù)分布且容易受到環(huán)境條件的影響[3]。近十年來,利用連鎖[8-13]或關(guān)聯(lián)分析[5,14-21]的方法,在油菜中已經(jīng)定位到200多個(gè)株高QTL。這些株高QTL在油菜所有19個(gè)連鎖群上都有分布,其中絕大部分貢獻(xiàn)率都比較低,而只在A2、A3、C2和C6連鎖群上發(fā)現(xiàn)了少數(shù)幾個(gè)效應(yīng)較大的QTL。Shi等[15]用源自Tapidor和寧油7號(hào)的202個(gè)雙單倍體及其衍生的“重構(gòu)F2”群體,在10個(gè)環(huán)境中共定位到44個(gè)株高QTL,分布于A1-3、A5-10、C3、C6、C7和C9染色體上。LI等[12]用472個(gè)油菜核心種質(zhì)和60K油菜SNP芯片進(jìn)行全基因組關(guān)聯(lián)分析,在3個(gè)環(huán)境中共檢測到8個(gè)株高QTL,分布于A3、A5、A7和C7染色體上。Wang等[13]用顯性矮桿突變體(源自油菜純系NJ7982的EMS誘變)和中雙11衍生的回交分離群體將該位點(diǎn)精細(xì)定位到A9染色體152 kb的區(qū)段,并從14個(gè)注釋基因中鑒定了7個(gè)候選基因。Liu等[22]克隆了油菜A6染色體上一個(gè)半顯性矮桿突變體基因(源自92-B10雙單倍體的EMS誘變),該基因()編碼DELLA蛋白作為赤霉素信號(hào)的受體。雖然油菜株高基因的克隆尚處于起步階段,但在模式植物擬南芥和主要農(nóng)作物中已經(jīng)鑒定了一大批調(diào)控株高的基因[23-24],大多與赤霉素、油菜素內(nèi)酯和生長素等植物激素的合成或信號(hào)轉(zhuǎn)導(dǎo)途徑有關(guān)?!颈狙芯壳腥朦c(diǎn)】因?yàn)椴煌芯空哌M(jìn)行油菜株高QTL定位的遺傳圖譜或標(biāo)記系統(tǒng)不同,很難準(zhǔn)確判斷這些QTL之間的位置關(guān)系進(jìn)而將它們整合,因此無法揭示一個(gè)相對(duì)完整的油菜株高的遺傳結(jié)構(gòu)圖。另外,檢測到的油菜株高QTL效應(yīng)偏小難以被精細(xì)定位并克隆,而植物中揭示的株高基因及其調(diào)控途徑可以為油菜株高的基因克隆和機(jī)理研究提供借鑒和參考。【擬解決的關(guān)鍵問題】基于油菜測序品種中雙11和No.73290構(gòu)建的BnaZNF2群體,對(duì)油菜株高性狀進(jìn)行多年多點(diǎn)QTL定位,同時(shí)利用已發(fā)表的油菜基因組物理圖譜和已報(bào)道的株高QTL進(jìn)行整合和比較,最后利用植物中已克隆的株高基因進(jìn)行同源比對(duì)并篩選QTL區(qū)間內(nèi)的候選基因,系統(tǒng)地揭示油菜株高的遺傳結(jié)構(gòu)及候選基因,為油菜株高的遺傳研究和分子改良打下基礎(chǔ)。
2009年10月至2010年5月、2010年10月至2011年5月在武漢中國農(nóng)業(yè)科學(xué)院油料作物研究所陽邏綜合試驗(yàn)基地完成了BnaZNF2:3家系群體種植及田間考察工作。2011年4—8月在西寧青海大學(xué)農(nóng)場完成了BnaZNF2:3和BnaZNF2:4家系群體的田間種植和表型鑒定工作。在這3個(gè)家系群體的基礎(chǔ)上于2016年對(duì)數(shù)據(jù)進(jìn)行了QTL掃描定位和整合工作。
1.1 試驗(yàn)材料
用來進(jìn)行株高QTL定位的群體名為BnaZNF2[25],來源于油菜測序品種中雙11(https://www.ncbi.nlm.nih. gov/genome/genomes/203?)和No.73290[26]。F2:3家系群體的種子由184個(gè)F2單株分別套袋自交所得;而F2:4家系群體的種子則由F2:3家系各單株分別套袋自交所得種子按數(shù)目等量混合而成。
1.2 田間試驗(yàn)
田間試驗(yàn)采用完全隨機(jī)區(qū)組設(shè)計(jì),3次重復(fù)。每小區(qū)種兩行,行距33.3 cm,單株間平均間距16.7 cm。待油菜成熟時(shí),每個(gè)小區(qū)隨機(jī)挑選10個(gè)有代表性的單株手工收獲晾干。
1.3 性狀考察和數(shù)據(jù)分析
株高考察參考油菜品種審定標(biāo)準(zhǔn)[27],自子葉節(jié)至全株最高部分長度,以“cm”表示。用SAS V8軟件的PROC ANOVA程序?qū)讉€(gè)環(huán)境的株高表型數(shù)據(jù)進(jìn)行方差分析,利用遺傳方差模型對(duì)遺傳力進(jìn)行估算。廣義遺傳力的計(jì)算公式:2=σg2/(σg2+σge2/n+σe2/nr)。其中,σg2、σge2和σe2分別代表基因型方差、基因型和環(huán)境互作方差以及誤差項(xiàng);n和r分別代表環(huán)境數(shù)和重復(fù)數(shù)。
1.4 QTL定位
油菜分子育種課題組之前利用BnaZNF2群體構(gòu)建的遺傳連鎖圖譜進(jìn)行QTL定位[25]。該連鎖圖譜包含803個(gè)標(biāo)記,19個(gè)連鎖群,圖譜總長1 763.2 cM。利用軟件WinQTLCart 2.5軟件[28]和復(fù)合區(qū)間作圖(composite interval mapping)的方法[29-30]進(jìn)行QTL掃描。LOD閾值用1 000次重復(fù)排列測驗(yàn)確定?;緟?shù)設(shè)置:步長=1 cM;窗口大小=10 cM;控制標(biāo)記數(shù)=5。用=0.05水平下的LOD閾值來確定顯著的QTL,為了避免漏掉微效QTL,那些可重復(fù)的=0.1水平下的QTL也被承認(rèn)[6]。按照McCouch等[31]的方法對(duì)檢測到的QTL命名,以“”加上性狀再加染色體編號(hào)表示,字體為斜體。采用元分析[32]的方法對(duì)不同環(huán)境(地點(diǎn)×年份組合)中檢測到的QTL進(jìn)行整合。
1.5 候選基因的鑒定
從已發(fā)表的文章中[6]收集植物中控制株高的基因約200個(gè)[33-49]。利用上述收集到的株高基因序列和油菜基因組注釋基因序列進(jìn)行Blast比對(duì)(參數(shù)設(shè)置為:e-10),確認(rèn)它們在油菜基因組中的同源基因。
2.1 親本和群體株高表型和遺傳力分析
親本中雙11和No.73290的株高差別不大,兩者間的差異只在西寧2011年達(dá)到了顯著水平(圖1和表1)。但是,無論是BnaZNF2:3還是BnaZNF2:4群體株高在各個(gè)環(huán)境下都表現(xiàn)出廣泛的變異和超親分離,表明株高增效基因在2個(gè)親本中都有分布。而且,2個(gè)群體在各個(gè)環(huán)境下的株高都呈正態(tài)或近似正態(tài)分布,符合數(shù)量性狀的典型特征,表明該群體適合用來進(jìn)行QTL定位。
通過對(duì)上述幾個(gè)環(huán)境下的株高進(jìn)行方差分析(表2),結(jié)果表明,無論是基因型、環(huán)境還是它們之間的互作對(duì)株高的效應(yīng)都達(dá)到了極其顯著的水平。通過方差組分估計(jì)出來的株高遺傳力為0.54。
2.2 多環(huán)境下株高QTL定位
用軟件WinQTLCart 2.5對(duì)武漢、西寧兩年4個(gè)環(huán)境下的株高數(shù)據(jù)分別進(jìn)行QTL掃描。檢測到的單環(huán)境下的QTL經(jīng)元分析整合后得到5個(gè)QTL(、、、和)分別位于A2、C2和C3連鎖群。這些QTL的LOD值在3.09—23.4,貢獻(xiàn)率在2.6%—55.6%(表3)。其中,和只在武漢檢測到,而、和只在西寧檢測到,說明環(huán)境對(duì)株高QTL的表達(dá)有很大影響。另外和的加性效應(yīng)為正,說明這2個(gè)QTL的增效等位基因來自中雙11,而、和加性效應(yīng)是負(fù)的,說明這3個(gè)QTL的增效等位基因來自No.73290。
表1 2個(gè)親本和群體在3個(gè)環(huán)境下的株高表型
在西寧2011年2個(gè)群體都重復(fù)檢測到了一個(gè)效應(yīng)值很高的主效QTL,其LOD值、加性效應(yīng)和貢獻(xiàn)率(分別為23.4、-16.0和55.6%)均高于前人報(bào)道,是目前為止發(fā)現(xiàn)的效應(yīng)最大的一個(gè)油菜株高QTL。這個(gè)主效QTL只在西寧重復(fù)檢測到,而在武漢2年均檢測不到,呈現(xiàn)出很強(qiáng)的與環(huán)境的互作(圖2)。武漢和西寧在油菜種植期內(nèi)的主要環(huán)境差別是日照長度和溫度,而有研究表明二者會(huì)影響植物株高[21,49]。因此,推測很有可能和日照長短或溫度有關(guān)。
2.3 和已報(bào)道的油菜株高QTL的整合與比較
油菜中已經(jīng)有10多篇文獻(xiàn)報(bào)道了株高QTL的連鎖或關(guān)聯(lián)定位結(jié)果,共定位243個(gè),分布在油菜所有19個(gè)連鎖群,其中,以A2、A3、A6、A7連鎖群分布較為集中。
為了進(jìn)一步準(zhǔn)確地比較這些QTL的位置,利用其連鎖/關(guān)聯(lián)的分子標(biāo)記引物/探針序列和已發(fā)表的油菜基因組參考序列進(jìn)行比對(duì)分析,確定了其中183個(gè)QTL的物理位置(圖3)。同時(shí),也確定了定位的5個(gè)株高QTL的物理位置。通過比較發(fā)現(xiàn),定位的5個(gè)QTL與前人報(bào)道的油菜株高QTL均沒有重疊,因而是新的油菜株高QTL位點(diǎn)。
圖1 BnaZNF2:3和BnaZNF2:4群體兩年兩點(diǎn)株高的頻率分布
表2 株高表型方差分析和遺傳力估算
圖2 qPH.C2-1與環(huán)境的互作
表3 武漢和西寧環(huán)境下檢測出的株高QTL
另外,綜合比較和前人研究中報(bào)道的株高QTL的物理位置,發(fā)現(xiàn)18個(gè)重疊的QTL簇,它們分布在A1、A2、A3、A6、A7、A9、C6和C7染色體上(表4)。這些能在不同的群體或環(huán)境中共同檢測到的QTL可信度高、穩(wěn)定性好,應(yīng)成為油菜株高分子標(biāo)記輔助選擇研究的重點(diǎn)。
2.4 候選基因鑒定
通過廣泛查閱文獻(xiàn),收集到223個(gè)控制植物株高的基因,用它們的序列和油菜基因序列進(jìn)行Blast分析,發(fā)現(xiàn)它們在油菜參考基因組中共有727個(gè)同源基因(圖3)。其中,287個(gè)位于上述QTL的物理區(qū)間內(nèi),可以作為這些株高QTL的候選基因。本研究定位到的、和物理區(qū)間內(nèi)分別找到了4、7和4個(gè)株高同源基因(表5)。其中,有11個(gè)株高同源基因在親本中存在序列差異,可以作為候選基因進(jìn)行后續(xù)研究。而和物理區(qū)間內(nèi)沒有找到株高同源基因,說明它們很可能是由新的株高基因控制的。
表4 不同研究檢測到的共同的油菜株高QTL
圖3 油菜株高QTL和同源株高基因在物理圖譜上的分布
表5 株高QTL候選基因鑒定
雖然前人利用連鎖或關(guān)聯(lián)分析的方法在油菜中已定位了200多個(gè)株高QTL,但由于所用的遺傳圖譜和標(biāo)記系統(tǒng)不同難以將它們整合,因此尚未獲得一個(gè)相對(duì)完整的油菜株高的遺傳結(jié)構(gòu)圖?;谝寻l(fā)表的油菜參考基因組序列[50],將這些油菜株高QTL整合在同一個(gè)物理圖譜上,從而獲得了首張油菜株高遺傳結(jié)構(gòu)圖。這些QTL分布在油菜所有19個(gè)連鎖群,其中絕大部分貢獻(xiàn)率都在10%以下,而只有11個(gè)效應(yīng)較大,可以作為后續(xù)精細(xì)定位和基因克隆的目標(biāo)。另外,本研究還發(fā)現(xiàn)了在不同研究中共同檢測到的18個(gè)油菜株高QTL簇,可以作為分子標(biāo)記輔助選擇的靶點(diǎn)。這些研究結(jié)果說明油菜株高是一個(gè)由眾多基因控制的數(shù)量性狀,具有非常復(fù)雜的遺傳基礎(chǔ)。
本研究定位了5個(gè)株高QTL,都與已報(bào)道的株高QTL位置不重疊,應(yīng)該代表新的油菜株高QTL位點(diǎn)。其中,只在西寧(春油菜生態(tài)區(qū))而不是武漢(半冬性油菜生態(tài)區(qū))被重復(fù)檢測到,可以作為研究QTL和環(huán)境互作效應(yīng)的范例,這也說明環(huán)境對(duì)株高QTL表達(dá)有很大影響。另外,的貢獻(xiàn)率和加性效應(yīng)都高于前人的報(bào)道,可以作為下一步基因克隆的首選目標(biāo)。本研究定位的這5個(gè)株高QTL物理區(qū)間(范圍:0.302—1.811 Mb;均值:1.153 Mb)略小于前人的報(bào)道,這可能跟它們都位于染色體較為末端的位置有關(guān),因?yàn)檫@些區(qū)域的重組更為頻繁。
目前,油菜株高遺傳研究整體上還處于QTL初步定位階段,尚無油菜株高QTL被精細(xì)定位,更沒有被克隆的報(bào)道。這很可能是因?yàn)橐褕?bào)道的株高QTL效應(yīng)都小,而且株高受環(huán)境條件的影響較大而表型難以準(zhǔn)確鑒定,因此,難以進(jìn)行精細(xì)定位和克隆。因此,很多研究者轉(zhuǎn)而利用油菜株高突變體進(jìn)行研究,精細(xì)定位或克隆了少數(shù)幾個(gè)株高基因[10,50]。而本研究發(fā)現(xiàn)的油菜株高主效QTL是目前為止效應(yīng)最大的,完全具備進(jìn)一步精細(xì)定位和克隆的基礎(chǔ),從而為油菜株高的遺傳改良打下理論基礎(chǔ)并提供技術(shù)支撐。
QTL定位和整合獲得了5個(gè)油菜株高QTL,均為首次報(bào)道而且都只在武漢或西寧被檢測到。其中位于C2連鎖群的主效QTL效應(yīng)值超過以往報(bào)道,表現(xiàn)出極強(qiáng)的QTL與環(huán)境的互作。通過與已報(bào)道的油菜株高QTL和植物株高基因分別進(jìn)行整合和比對(duì)分析,較為全面地揭示了油菜株高的遺傳結(jié)構(gòu)和候選基因。另外,鑒定到11個(gè)位于本研究定位到的3個(gè)株高QTL區(qū)間內(nèi)的候選基因。
[1] Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z. Rapeseed research and production in China., 2017, 5(2): 127-135.
[2] James C. Global review of commercialized transgenic crops., 2003, 84: 303-309.
[3] 王漢中, 殷艷. 我國油料產(chǎn)業(yè)形勢分析與發(fā)展對(duì)策建議. 中國油料作物學(xué)報(bào), 2014, 36(3): 414-421.
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China., 2014, 36(3): 414-421. (in Chinese)
[4] 沈金雄, 傅廷棟. 我國油菜生產(chǎn)、改良與食用油供給安全. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2013, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China., 2013, 13(1): 1-8. (in Chinese)
[5] Thuiling N. Application of the ideotype concept in breeding for higher yield in the oilseed brassicas., 1991, 26(2): 201-219.
[6] 易斌, 陳偉, 馬朝芝, 傅廷棟, 涂金星. 甘藍(lán)型油菜產(chǎn)量及相關(guān)性狀的QTL分析. 作物學(xué)報(bào), 2006, 32(5): 676-682.
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components inL.., 2006, 32(5): 676-682. (in Chinese)
[7] 王漢中. 我國油菜產(chǎn)業(yè)發(fā)展的歷史回顧與展望. 中國油料作物學(xué)報(bào), 2010, 32(2): 300-302.
Wang H Z. Review and future development of rapeseed industry in China., 2010, 32(2): 300-302. (in Chinese)
[8] Wang Y K, He J B, Yang L, Wang Y, Chen W J, Wan S B, Chu P, Guan R Z. Fine mapping of a major locus controlling plant height using a high?density single?nucleotide polymorphism map in., 2016, 129(8): 1479-1491.
[9] 張鳳啟, 劉越英, 程曉輝, 童超波, 董彩華, 唐敏強(qiáng), 黃軍艷, 劉勝毅. 利用高密度SNP標(biāo)記定位甘藍(lán)型油菜株高QTL. 中國油料作物學(xué)報(bào), 2014, 36(6): 695-700.
Zhang F Q,Liu Y Y, Cheng X H, Tong C B, dong c h, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant height using high density SNP markers in., 2014, 36(6): 695-700. (in Chinese)
[10] Ding G D, Zhao Z K, Liao Y, Hu Y F, Shi L, Long Y, Xu F S. Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in., 2012, 109(4): 747-759.
[11] Quijada P A, Udall A J, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (L.): 1. identification of genomic regions from winter germplasm., 2006, 113(3): 549-561.
[12] Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Xiao X, Zhang T Y, Takeshi N, Wu X M. A genome-wide association study of plant height and primary branch number in rapeseed ()., 2016, 242: 169-177.
[13] Wang X D, Wang H, Long Y, Liu L Z, Zhao Y J, Tian J H, Zhao W G, Li B J, Chen L, Chao H B, Li M T. Dynamic and comparative QTL analysis for plant height in different developmental stages ofL.., 2015, 128(6): 1175-1192.
[14] Cai D F, Xiao Y J, Yang W, Ye W, Wang B, Muhammad Y, Wu J S, Liu K D. Association mapping of six yield?related traits in rapeseed (L.)., 2014, 127: 85-96.
[15] Shi T X, Li R Y, Zhao Z K, Ding G D, Long Y, Meng J L, Xu F S, Shi L. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in., 2013, 8(1): e54559.
[16] Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (L.)., 2010, 120(2): 271-281.
[17] Valiollah R. Combining ability analysis of plant height and yield components in spring type of rapeseed varieties (L.) using line × tester analysis., 2012, 2(1): 58-62.
[18] Mladen R, Heiko C B, Wolfgang E. Genetic analysis of heterosis for yield and yield components in rapeseed (L.) by quantitative trait locus mapping., 2008, 179(3): 1547-1558.
[19] Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in., 2009, 128(5): 458-465.
[20] Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z, Jiang Y Z. QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed (L.)., 2007, 2: 232-235.
[21] 王嘉, 荊凌云, 薦紅舉, 曲存民, 諶利, 李加納, 劉列釗. 甘藍(lán)型油菜株高、第一分枝高和分枝數(shù)的QTL檢測及候選基因的篩選. 作物學(xué)報(bào), 2015, 41(7): 1027-1038.
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z. Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening inL.., 2015, 41(7): 1027-1038. (in Chinese)
[22] Liu C, Wang J L, Huang T D, Wang F, Yuan F, Cheng X M, Zhang Y, Shi S W, Wu J S, Liu K D. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in., 2010, 121(2): 249-258.
[23] Ma X S, Feng F J, Wei H B, Mei H W, Xu K, Chen S J, Li T F, Liang X H, Liu H Y, Luo L J. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes., 2016, 144(6): 651-664.
[24] Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Bancroft I, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in., 2009, 182(3): 851-861.
[25] Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (L.)., 2015, 5: 14481.
[26] Huang S M, Deng L B, Guan M, Li J N, Lu K, Wang H Z, Fu D H, Annaliese S M, Liu S Y, Hua W. Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop., 2013, 14(1): 717.
[27] 張芳. 我國油菜品種審定管理與育種趨勢研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2012.
Zhang F. Rape cultivar breeding and management trends[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[28] Wang S, Basten C J, Gaffney P, Zeng Z B. Windows QTL Cartographer version 2.5. North Carolina State University. Bioinformatics Research Center, Raleigh, 2001. http://statgen.ncsu.edu/ qtlcart/WQTLCart,htm.
[29] Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci., 1993, 90(23): 10972-10976.
[30] Zeng Z B. Precision mapping of quantitative trait loci., 1994, 136(4): 1457-1468.
[31] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature, 1997, 14(11): 11-13.
[32] Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis., 2000, 155(1): 463-473 .
[33] Kujur A, Upadhyaya H D, Bajaj D, Gowda C L L, Sharma S, Tyagi A K, Parida S K. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea., 2016, 6: 27968.
[34] Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL,, for plant height in maize., 2013, 73(3): 405-416.
[35] Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. Genome-wide association study identifies candidate genes that affect plant height in chinese elite maize (L.) inbred lines., 2011, 6(12): e29229.
[36] María L R, Emiliano A, Mariano B, Carlos A S. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower., 2013, 126(1): 251-263.
[37] Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, Chen J F, Wu J Y. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize., 2016, 7: 833.
[38] Ma X S, Feng F J, Wei H B, Mei H W, Xu K, Chen S J, Li T F, Liang X H ,Liu H Y, Luo L J. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes., 2016, 7: 1801.
[39] Zanke C D, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal M W, R?der M S. Analysis of main effect QTL for thousand grain weight in european winter wheat (L.) by genome-wide association mapping., 2016, 6: 644.
[40] Lim J H, Yang H J, Jung K H, Yoo S C, Paek N C.quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice, 2014, 37(2): 149-160.
[41] Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (L.)., 2016, 243: 459-471.
[42] Peng Y L, Gao Z Y, Zhang B, Liu C L, Xu J, Ruan B P, Hu J, Dong G J, Guo L B, Liang G H, Qian Q. Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice., 2014, 33: 1843-1850.
[43] Vemireddy L R, Noor S, Satyavathi V V, Srividhya A, Kaliappan A, Parimala SRN, Bharathi P M, Deborah D A, Rao K S, Shobharani N, Siddiq E A, Nagaraju J. Discovery and mapping of genomic regions governing economically important traits of Basmati rice, 2015, 15: 207.
[44] Mallikarjuna R K, Zhang Y S, Yu S B, Yang G Y, Yan W H, Xing Y Z. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene., 2011, 123: 705-714.
[45] Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maizegene., 1995, 7(1): 75-84.
[46] Fujioka S, Yamane H, Spray C R, Gaskin P, Macmillan J, Phinney B O, Takahashi N. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal,dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings ofL.,1988, 88(4): 1367-1372.
[47] Spray C R, Kobayashi M, Suzuki Y, Phinney B O, Gaskin P, MacMillan J. The dwarf-i (dl) mutant ofblocks three steps in the gibberellin-biosynthetic pathway.,1996, 93(19): 10515-10518
[48] Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G. Expression and functional analysis of ZmDWF4, an ortholog ofDWF4 from maize (L.)., 2007, 26(12): 2091-2099.
[49] Weng F J, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D H, Bai L, Zhang S H, Li X H. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (L.) inbred lines., 2011, 6(12): e29229.
[50] Chalhoub B, Denoeud F, Liu S Y, Parkin I A, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da S C, Just J, Falentin C, Koh C S, Le C I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M C, Fan G G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithicoilseed genome.,2014, 345(6199): 950-953.
(責(zé)任編輯 李莉,岳梅)
QTL mapping and integration as well as candidate genes identification for plant height in rapeseed (L.)
ZHANG JiangJiang1, ZHAN JiePeng1, LIU QingYun2, SHI JiaQin1, WANG XinFa1,LIU GuiHua1, WANG HanZhong1
(1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062;2Oil Crops Extension Station of the Agricultural Bureau of Xishui County, Huanggang 438200, Hubei)
【Objective】In order to reveal the genetic architecture and candidate genes for plant height in rapeseed, QTLs were mapped in multiple environments and were integrated with previously reported plant height QTLs and then aligned with the plant height genes, which will provide a basis for the molecular improvement of plant height in rapeseed. 【Method】The BnaZNF2population of 184 individuals derived from the elite rapeseed cultivar Zhongshuang11 (de novo sequencing) and No.73290 (re-sequencing) was used as the experimental material. First, the BnaZNF2population was subjected to genotype analysis and a high-density linkage map of 803 molecular markers was constructed using Joinmap 4.0. Second, the F2:3and F2:4family of BnaZNF2population were planted and phenotyped at two locations (Wuhan and Xining) for successive two years (2010 and 2011). Then QTL mapping was conducted by the composite interval mapping method incorporated into WinQTLCart 2.5 software, using the genotype of BnaZNF2population and the plant height phenotype of its F2:3and F2:4family. 【Result】After integration of QTLs detected in two locations over two years, a total of 5 consensus QTLs (,,,,) were obtained, which were distributed on A2, C2 and C3 chromosomes and, explained 2.6%-55.6% of the phenotypic variance. A major QTL on the C2 chromosome,, was only detected repeatedly in Xining and its LOD value, additive effect and2(23.4, -16.0 and 55.6%, respectively) were largest among all of the reported plant height QTLs. Based on the physical map of rapeseed, all of the currently and previously reported plant height QTLs in rapeseed were integrated and then aligned with the plant height genes, which revealed a relatively completed genetic architecture map consisting of 183 QTLs in rapeseed and 287 candidate genes in rapeseed. Of these, a total of 18 QTL cluster were commonly detected in different studies, which were distributed on A1, A2, A3, A6, A7, A9, C6 and C7 chromosomes. In addition, the physical positions of the five QTL detected in the current study were all not overlapped with those of the previously detected plant height QTL, which should be novel. A total of 15 homologues of plant height genes were found within the physical intervals of,and, of which 11 homologues showed sequence variations between the two parents, which were chosen as the candidates for further study. 【Conclusion】QTL mapping and integration identified five QTL for plant height in rapeseed, which were all novel. The effect of the major QTL on the C2 chromosome was larger than those of the previously reported plant height QTL, which also showed the strong interaction with the environment. The integration of the reported plant height QTLs and the alignment with the plant height genes systematically revealed the genetic architecture and candidate genes for plant height in rapeseed. By bioinformatics analysis, a total of 11 candidates were identified within the physical intervals of three plant height QTLs detected in the current study.
L.; plant height; genetic architecture; QTL; candidate genes; QTL by environment interaction
2017-01-20;接受日期:2017-04-05
國家油菜產(chǎn)業(yè)技術(shù)體系(CARS-13)、中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-2013-OCRI)、國家公益性科研院所基本科研業(yè)務(wù)費(fèi)(1610172017001)、湖北農(nóng)業(yè)科技創(chuàng)新中心
張江江,E-mail:zhangjiangjiang6@163.com。通信作者師家勤,Tel:027-86711553;E-mail:shijiaqin@caas.cn