張亞敏
(寶雞文理學(xué)院 數(shù)學(xué)與信息科學(xué)學(xué)院, 陜西 寶雞 721013)
張亞敏
(寶雞文理學(xué)院 數(shù)學(xué)與信息科學(xué)學(xué)院, 陜西 寶雞 721013)
不變子空間; 條件Lie-B?cklund對(duì)稱(chēng); 精確解
近些年來(lái),隨著科學(xué)技術(shù)的飛速發(fā)展,研究的不斷深入,微分方程已經(jīng)廣泛地應(yīng)用到許多科學(xué)領(lǐng)域中,成為研究的熱點(diǎn)問(wèn)題。而大部分偏微分方程求出精確解非常困難,只能求出近似的數(shù)值解,但方程的精確解可幫助人們分析系統(tǒng)內(nèi)部的運(yùn)動(dòng)結(jié)構(gòu),因此微分方程精確解的研究吸引了許多學(xué)者,他們推出了許多求解方法,例如李點(diǎn)對(duì)稱(chēng)法、齊次平衡法、條件對(duì)稱(chēng)法、不變子空間法等等,但對(duì)非線性偏微分方程的精確解,沒(méi)有找出具體統(tǒng)一、規(guī)范的求解方法。不變子空間方法是和條件Lie-B?cklund對(duì)稱(chēng)相關(guān)的一種構(gòu)造非線性偏微分方程精確解的有效方法,是由Titov等[1-2]首先提出,后來(lái)屈長(zhǎng)征教授等進(jìn)一步研究發(fā)展,使該方法運(yùn)用于求解耦合的非線性演化方程的精確解,已經(jīng)取一些有意義的結(jié)果[3-10]。
一類(lèi)(1+1)維色散方程組
(1)
一般演化方程組
Vt=G[V]=(G1[V],G2[V],…,Gm[V]),
(2)
(3)
Lq[Gq[V]]|[H1]∩[H2]∩…∩[Hm]=0, 1≤q≤m,
(4)
其中[Hq]表示Lq[vq]=0及其關(guān)于x的微分結(jié)果。
方程組(1)右邊的非線性算子為
(5)
的解構(gòu)成的子空間,其中a0,a1,a2,b0,b1是待定常數(shù)。由不變子空間的條件(4)式可得,
(6)
利用Maple求解上面的方程組,得出以下22種結(jié)果:
(Ⅳ) a=0,a0=a0,a1=0,a2=0,b=0,b0=b0,b1=b1,c=a0,d=d,故得
例 方程組
滿(mǎn)足
解 設(shè)方程組的解為
代入原方程,得
c1(t)={16k2b5t2+(4b3k4+12k3b2)t+k5}eb4t,
c2(t)=(8k3b2t+k4)eb4t,
c3(t)=k3eb4t,
d1(t)=k2edt,
d2(t)=k1edt。
故方程組的解為
u(x,t)={[16k2b5t2+(4b3k4+12k3b2)t+k5]+(8k3b2t+k4)x+k3x2}eb4t,
其中ki(i=1,2,…,6)為任意常數(shù)。
本文推出一類(lèi)(1+1)維色散方程組允許不變子空間,在這些不變子空間上可以構(gòu)造出方程組更多的精確解,通常這些解不能由古典對(duì)稱(chēng)法、非古典對(duì)稱(chēng)法等得到,這對(duì)方程組的研究奠定了一定的理論基礎(chǔ),另外可以考慮用不變子空間方法對(duì)非線性差分方程進(jìn)行分類(lèi)并求解,這也是一項(xiàng)有意義的研究。
[1] TILOV S S.A method of finite-dimensional rings for solving nonlinear equations of Math-emtical physics[C].Ivanova T P.Aerodyna-namics,Saratov University,1988:104-109.
[2] GALAKTIONOV V A.Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations[J].Math Ann,Sect A,1995,303(4):741-769.
[3] QU C Z,ZHU C R.Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method[J].J Phys A,2009,42(47):1-27.
[4] ZHU C R,QU C Z.Classification and reduction of generalized thin film equation[J].Communications in Theoretical physics,2009,52(3):403-410.
[5] QU C Z,JI L N.Invariant subspaces and conditional Lie-Backlund symmetries of inhomogeneous nonlinear diffusion equations[J].Sci China Math,2013,56(11):2187-2203.
[6] FENG W,JI L N.Conditional Lie-Backlund symmetries and functional separable solutions of generalized inhomogeneous diffusion equations[J].J Phys A,2013,392(4):618-627.
[7] SHEN S F,QU C Z,JIN Y Y.Maximal dimension of invariant subspaces to systems of nonlinear evolution equations[J].Chinese Annals of mathematics-Series B,2012,33(2):161-178.
[8] 左蘇麗,李吉娜.(2+1)維擬線性?huà)佄锞€方程和不變子空間[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2011,49(1):16-20.
[9] 屈改珠.帶有對(duì)流項(xiàng)和源項(xiàng)的非線性交叉擴(kuò)散方程組的不變子空間及其分類(lèi)[J].陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(5):4-8.
[10] 朱春榮,朱丹霞.可壓縮歐拉方程在不變子空間中的精確解[J].工程數(shù)學(xué)學(xué)報(bào),2016,33(3):279-286.
[11] TRACINA R,BRUZON M S.Nonlinear self-adjointness, conservation laws,exact solutions of a system of dispersive evolution equations[J].Commum Nonlinear Sci Number simulate,2014,19(9):3036-3043.
[12] MA W X,LIU Y P.Invariant subspaces and exact solutions of a class of dispersive evolution equations[J].Commum Nonlinear Sci Nume simulate,2012,17(10):3795-3801.
[責(zé)任編輯:張存鳳]
Polynomial W 13 × W 22 invariant subspace to systems of ( 1 + 1) -dimensional dispersive equations
ZHANG Ya-min
( Institute of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China )
The invariant subspace method is one of the effective methods to solve the generalized variable separation solution of nonlinear equations. A family of ( 1 + 1) -dimensional dispersive equations are considered by this method. Based on computation system Maple,a classification of the polynomial Invariant subspace W 13 × W 22 allowed by the equation is derived. More abundant exact solution of the equations are constructed by the gaining invariant subspace. Thus study has enriched the study of exact solutions of these equations, which lays the theoretical foundation for the systematic analysis of the equations described by this kind of system.
invariant subspaces; conditional Lie-B?cklund symmetry; exact solution
2096-3998(2017)04-0081-08
2017-01-15
2017-04-10
陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2014JM1027);陜西省教育廳科研計(jì)劃項(xiàng)目(2016JK1047);寶雞文理學(xué)院科研項(xiàng)目(YK1619)
張亞敏(1978—),女,陜西省咸陽(yáng)市人,寶雞文理學(xué)院講師,碩士,主要研究方向?yàn)槠⒎址匠叹_解。
O175.2
A