• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MOLECULAR CLONING, CHARACTERIZATION, AND EXPRESSION ANALYSIS OF TWO ISOFORMS OF ANTI-LIPOPOLYSACCHARIDE FACTOR FROM THE ORIENTAL RIVER PRAWN, MACROBRACHIUM NIPPONENSE

    2017-09-12 01:17:18WANGYingHuiXIUYunJiGUWeiMENGQingGuoandWANGWen
    水生生物學(xué)報(bào) 2017年5期
    關(guān)鍵詞:沼蝦胰臟血細(xì)胞

    WANG Ying-Hui, XIU Yun-Ji, GU Wei, MENG Qing-Guoand WANG Wen

    (1. Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; 2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3. Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China)

    MOLECULAR CLONING, CHARACTERIZATION, AND EXPRESSION ANALYSIS OF TWO ISOFORMS OF ANTI-LIPOPOLYSACCHARIDE FACTOR FROM THE ORIENTAL RIVER PRAWN, MACROBRACHIUM NIPPONENSE

    WANG Ying-Hui1, XIU Yun-Ji2,3, GU Wei1, MENG Qing-Guo1and WANG Wen1

    (1. Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; 2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 3. Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China)

    Anti-lipopolysaccharide factors (ALFs), a type of the potent antimicrobial peptide, can bind and neutralize lipopolysaccharide (LPS) and exhibit broad spectrum antimicrobial activities. In order to study the function of ALFs in congenital immunization of Macrobrachium nipponense, two isoforms of the ALF homologues (MnALF1 and MnALF2) were cloned and characterized from the oriental river prawn M. nipponense. The full-length cDNA sequences of MnALF1 and MnALF2 were 1008 and 836 bp, encoding 121 and 124 amino acids, respectively. All of these sequences contained one signal peptide and an LPS-binding domain with two conserved cysteine residues at both ends of the domain. The deduced peptide of MnALF1 and MnALF2 was highly similar to previously identified ALFs in crustaceans. qRT-PCR showed that MnALFs were expressed in all detected tissues. MnALF1 transcript was predominantly detected in heart and intestine and MnALF2 transcript was predominantly detected in hemocytes and hepatopancreas. After challenge with Aeromonas hydrophila, two MnALF transcripts in heart, intestine, hemocytes and hepatopancreas showed a clear time-dependent response expression pattern (the expression levels of MnALF1 present an trend of downregulated first and then increasing, which reached to the highest level at 24h, 12h, 36h, 24h in heart, intestine, hemocytes and hepatopancreas respectively. However, for MnALF2, the expression level present an downregulated trend and then increased in heart, intestine; In hemocytes and hepatopancreas, the expression level present an increasing trend and then down-regulated. MnALF2 transcripts reached to the top at 24h post-challenge). These results suggest that two MnALF isoforms have different tissue specificity and might provide multiple protective functions in immune defense against invading bacteria.

    Macrobrachium nipponense; Anti-lipopolysaccharide factor; Expression analysis; Aeromonas hydrophila

    The oriental river prawn Macrobrachium nipponense is a freshwater or brackish prawn and it is one of the important economic aquaculture and commercial species in China, Japan and Vietnam[1]. M. nipponense is an indigenous species and the frequency of disease outbreaks has been very low in thepast. However, with rapid development of large-scale culture, various diseases caused by genetic retrogression and viruses, bacteria has become increasingly higher[2]. It is necessary to understand the immune defense mechanisms of M. nipponense to provide new insights into disease prevention in prawn aquaculture.

    Invertebrates, which lack adaptive immune systems, depend completely on the innate immune system that is composed of humoral and cellular responses[3]. Antimicrobial peptides (AMPs), components of the humoral immune responses, play essential functions in the innate immune system[4,5]. They distributed broadly in the whole living kingdom with killing activities against bacteria, fungi or viral pathogens[6].

    ALF is one of the group of AMPs, exhibiting binding and neutralizing activities to lipopolysaccharides[7]. The first ALF was found in Limulus polyphemus (LpALF)[8]and showed strong antimicrobial effect on Gram-negative R-type bacteria[9]. From crystal structure analysis, the LPS binding domain of LpALF contains two highly conserved-cysteine residues[10,11]. The LpALF derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice[12]. More recently, a number of crustacean ALFs with similar functions have been reported in penaeid shrimps[13,14], freshwater prawns[15—17], crayfish[18], lobster[19], and crabs[20,21]. Antibacterial activity against both Gram-negative and Gram-positive bacteria which was confirmed by the in vitro assays in decapods[22,23]. Many investigations have revealed that ALFs presented multiple biological activities against fungi and virus[24,25].

    Although AMPs have been widely investigated in invertebrates, ALF has not been isolated from M. nipponense. In the current study, two ALFs from M. nipponense were identified and characterized. Here, the full length cDNAs of MnALF1 and MnALF2 were cloned. The deduced amino acid sequences were compared with other known crustacean ALFs. The expressions of MnALF1 and MnALF2 in different tissues were investigated, and their expression profiles in heart, intestine, hemocytes and hepatopancreas were studied after challenge with Aeromonas hydrophila.

    1 Materials and methods

    1.1 Animal and RNA extraction

    The oriental river prawns, M. nipponense (2—3 g per prawn) were purchased from an aquaculture market in Nanjing, Jiangsu Province, China. They were cultured in tanks at 20℃ with freshwater and an aeration system. Prawn health status was assessed daily during acclimation by monitoring both general activity and food intake. Total RNA from different tissues was extracted by using TRIzol Reagent following the manufacturer’s instructions. RNA quality was assessed by electrophoresis on 1.2% agarose gel and the RNA concentration was measured by the absorbance at 260 nm on a spectrophotometer.

    1.2 cDNA library construction and EST analysis

    A cDNA library was constructed from the hemocytes of M. nipponense (Shanghai Hanyu Bio-Tech). Random sequencing of the library using illumina Hiseq 2000 genome analyzer yielded 43289 ESTs. BLASTx analysis revealed that two ESTs were homologous to ALF in Macrobrachium rosenbergii (ADI80708 and ACG60660). These two ESTs were selected for further cloning of MnALFs.

    1.3 Cloning the full-length cDNA of MnALFs

    SMARTerTMRACE cDNA Amplification Kit (Takara, Japan) was used for Rapid amplification of cDNA ends (RACE). Two pairs of gene specific primers were designed based on the corresponding EST sequences. For the 5′-RACE, The PCR reactions were performed with MnALF1-R1 or MnALF2-R1 and Universal Primer A Mix (UPM). For the 3′-RACE, the PCR reactions were performed with MnALF1-F1 or MnALF2-F1 and UPM. The polymerase chain reaction was performed as follows: 1 cycle at 94℃ for 2min; 30 cycles at 94℃ for 30s, 68℃ for 30s, 72℃ for 3min, and 1 cycle at 72℃ for 10min. The PCR fragments were cloned into pMD19-T vector and sequenced by Springen (Nanjing) Biotechnology Company.

    1.4 Sequence analysis

    The homology searches for nucleotide and amino acid sequence similarities were conducted with BLAST programs (http://blast.ncbi.nlm.nih.gov/ Blast.cgi). The deduced amino acid sequence was analyzed with the Expert Protein Analysis System (http://www.expasy.org/). SignalP 4.1 program was utilized to predict the presence and location of signal peptide (http://www.cbs.dtu.dk/services/SignalP/). Multiple sequences alignment was performed using the ClustalW2 (http://www.ebi.ac.uk/Tools/msa/ clustalw2/). A cladogram was constructed based on the amino sequences alignment by the neighbor-joining (NJ) algorithm embedded in MEGA 5 program.

    1.5 Bacterial challenge and sample preparation

    During the experiment, the prawns were fed once daily with commercial feed. The prawns were randomly divided into two groups and 50 prawns injected individually with 50 μL live A. hydrophila sus-pension (104cells/mL) which used as a challenge group. For the control group, 50 prawns were injected with 50 μL saline (0.85% NaCl) (pH=7.0). Every three individuals were randomly sampled to eliminate individual differences at 0, 1h, 12h, 24h and 36h post challenge. Heart, intestine, hemocytes and hepatopancreas were collected, respectively, and all of samples extracted at different times were stored at–80℃ for subsequent total RNA extraction.

    1.6 Expression analysis of MnALFs transcript

    The mRNA expressions of MnALFs transcript in different tissues, including hemocytes, heart, hepatopancreas, gill, intestine, nerve and muscle of untreated prawns, and the temporal expressions of MnALFs in heart, intestine, hemocytes and hepatopancreas of prawns challenged with A. hydrophila were determined by quantitative real-time RT-PCR.

    The first-strand cDNA was synthesized by using PrimeScriptTM1st Strand cDNA Synthesis Kit (TaKaRa) with 1 μg of total RNA. Two pairs of gene-specific primer (MnALF1-RT-F, MnALF1-RT-R and MnALF2-RT-F, MnALF2-RT-R) (Tab. 1) were used to amplify MnALF1 and MnALF2 genes, respectively. The primers Mnβ-actinF and Mnβ-actinR (Tab. 1) were used to amplify β-actin for internal standardization[26,27].

    qRT-PCR was carried out in a total volume of 20 μL (10 μL of 2×SYBR Premix Ex Taq, 1 μL cDNA mix, 0.5 μL of each primer (10 μmol/L), and 8 μL of sterile distilled H2O) . The PCR program was 95℃for 30s, followed by 40 cycles of 95℃ for 5s and 60℃ for 30s. All samples were run thrice. All datawere given in terms of relative mRNA expression as mean±S.E. Statistical significance was determined by one-way ANOVA and post-hoc Duncan multiple range tests. Significance was set at P<0.05.

    Tab. 1 Primers used in the present study

    2 Results

    2.1 cDNA cloning and sequence analysis of MnALF1 and MnALF2

    In this research, two different forms of ALF cDNA were identified from the oriental river prawn, M. nipponense. These ALF genes were designated as MnALF1 and MnALF2. The complete cDNA sequence of MnALFs were obtained by overlapping the corresponding EST with the amplified fragments. The complete cDNA sequence of MnALF1 is 1008 bp, including a 146 bp 5′ UTR, a 496 bp 3′ UTR, and a 366 bp ORF encoding a protein of 121 amino acids. The poly (A) tail was found in MnALF1, while no poly (A) signal (AATAAA) was detected. MnALF1 protein contains a signal peptide of 20 residues and an LPS-binding domain of 22 residues with 2 conserved cysteines. The theoretical pI of MnALF1 is 6.29 and molecular weight (Mw) is 13869.14 Da. The theoretical pI of LPS-binding domain is 9.14. The sequence data was deposited in GenBank with accession number KF696705.

    The complete sequence of MnALF2 cDNA is 836 bp in length consisting of a 120 bp 5′ UTR, a 341 bp 3′ UTR, and a 375 bp ORF encoding a protein of 124 amino acids. A canonical polyadenylation signalsequence AATAAA was present at 15 nucleotides upstream of the poly (A) tail. A signal peptide of 25 amino acids and an LPS-binding domain were also detected in MnALF2. MnALF2 has a pI of 9.12 and an Mw of 13868.11 Da. The LPS-binding domain of MnALF2 has a pI of 9.14. The sequence data was deposited in GenBank with accession number KF696706.

    2.2 Similarity and phylogenetic analyses

    BLAST search indicated that two forms exhi bited similarity with other crustacean ALFs. MnALF1 showed the highest similarity with ALF2 and ALF3 from M. rosenbergii (81% identity). MnALF2 has 90% identity with ALF4 from M. rosenbergii and 86% identity with ALF from Macrobrachium olfersii, respectively.

    Multiple sequence alignment of MnALF1 and MnALF2 with ALFs in crustaceans revealed that all these ALFs were conserved; they manifested a signal peptide and an LPS-binding domain, especially the two conserved cysteine residues at both ends of the domain.

    A phylogenetic tree was constructed with ALF homologs from crustaceans to identify their evolutionary relationships (Fig. 1). Based on the tree topo-logy, ALF homologs could be classified into three main clades: A, B, and C. MnALF1 together with MrAlf3, FcAlf5 and PtAlf4 forming a small group belonged to Clade C. MnALF2 has a closer evolutionary relationship with MrAlf4 grouped into Clade A.

    2.3 Tissue distributions of MnALF1 and MnALF2

    qRT-PCR was employed to quantify mRNA expressions of MnALF1 and MnALF2 in the tissues of healthy prawns, including hemocytes, heart, hepatopancreas, gill, intestine, nerve and muscle (Fig. 2). The mRNA transcripts of MnALF1 and MnALF2 were detected in all the selected tissues. Fig. 2A showed that MnALF1 was mainly expressed in heart and intestine. The transcript of MnALF2 was detected mainly in the hemocytes and hepatopancreas (Fig. 2B).

    Fig. 1 Neighbor-joining phylogenetic tree of crustaceans ALF genes. The reliability of the branching was tested by bootstrap resampling (1000 pseudoreplicates)

    2.4 Expression profiles of MnALF1 and MnALF2 after A. hydrophila challenge

    The temporal mRNA expressions of MnALF1 and MnALF2 transcript in heart, intestine, hemocytes and hepatopancreas post A. hydrophila challenge are shown in Fig. 3.

    Fig. 2 Tissue distributions of MnALF1 (A) and MnALF2 (B) transcripts. Vertical bars represent the mean±S.E.

    Fig. 3 After challenge with A. hydrophila, the time-course expression levels of MnALF1 and MnALF2 in heart (A), intestine (B), hemocytes (C) and hepatopancreas (D). Vertical bars represent the mean±S.E. (n=3). β-actin was used as internal control

    In heart, MnALF1 was down-regulated signifi-cantly at 1h post-challenge (26%). As time progressed, the subsequent expression was up-regulated and returned to the normal level at 24h post-challenge. For MnALF2, its expression level decreased during the first 12h after A. hydrophila challenge, and the lowest level occurred at 12h (49%). MnALF2 increased from 12h to 24h and reached the highest level at 24h, which was a 2.91-fold increase compared to that in the internal group.

    In intestine, both MnALF1 and MnALF2 decreased initially at 1h post challenge. Afterward, MnALF1 transcript expression increased to the peak at 12h post injection (3.14-fold). The peak of MnALF2 occurred at 24h, which was a 8.15-fold increase compared to that in the control group.

    In hemocytes, the temporal increase was detected for MnALF2 at 1h post challenge. Then, MnALF1 and MnALF2 transcript expressions decreased significantly at 12h. As time progressed, the expression of MnALF2 reached the peak at 24h.

    In hepatopancreas, two MnALFs transcript expression fluctuated slightly during the first 12h. At 24h, both expression levels of MnALF1 and MnALF2 increased significantly and reached to their highest levels, which were 3.62-fold and 4.29-fold higher than that in the control group, respectively.

    3 Discussion

    ALFs play important roles in the innate immune system of crustaceans. Previous studies reported that the potent antimicrobial activity against both bacterial and viral made ALFs becoming potential therapeutic agents[24,28]. In this study, two isoforms of ALF were identified and characterized from the oriental river prawn, M. nipponense. The deduced protein sequences of MnALF1 and MnALF2 revealed a conserved structure composed of a signal peptide, an LPS-binding domain and two conserved cysteine residues. The two cysteine residues formed a disulfide loop, within which the positively charged amino acid residues were mainly clustered. All data demonstrate that the LPS-binding domain and the positively charged amino acids are essential for ALFs biological activities[10,29,30].

    Together with other ALFs, the sequences of the MnALFs were used to construct a neighbor-joining phylogenetic tree to reveal the relationships of crustacean ALFs. On the tree topology, the MnALF1 and MnALF2 cluster together with MrALF3 and MrALF4, respectively. Based on the tree topology, crustacean ALFs could be classified into three main clades: A, B, and C. MnALF1 was classified within Clade C and MnALF2 was grouped into Clade A (Fig. 1). Meanwhile, three isoforms of M. rosenbergii ALFs were classified within two Clades. In previous research, ALFs from P. monodon were also divided into two different groups according to their genomic loci[15]. It suggests that the common ancestor of decapods proba bly had two ALF homologues.

    The hypothetical LPS-binding domain is stabi lized by a disulfide bond. For MnALF1, this binding site consists of six positively charged amino acid residues (three Lys, two Arg and one His). For MnALF2, this binding site consists of five positively charged amino acid residues (four Lys and one Arg). An amphipathic loop, which possesses an alternating series of hydrophilic and hydrophobic residues, is generated by the disulfide bond. It was predicted that the hydrophobic residues forming one hydrophobic side can enter into the lipid bilayer, leaving the positively charged residues on the other side pointing out to bind to the hydrophilic and phosphate groups of lipid A on the bacterial membrane[20,30].

    MnALF1 was mainly expressed in the heart and intestine and MnALF2 was mainly expressed in the hemocytes and hepatopancreas. Previous studies showed that most ALF transcripts were mainly situated in hemocytes. However, inconsistent results were obtained in some crustaceans, where ALF transcripts were prominently expressed in hepatopancreas, intestines, gills, or other tissues[24]. Previous researches have demonstrated that hemocytes are the major sites of AMP production, and the intestine or gonad is the secondary expression site for AMPs[31]. In this study, the results showed that the heart and hepatopancreas are also important production sites for MnALFs.

    In this study, the expression patterns of MnALF1 and MnALF2 under bacterial challenge were investigated. The expression transcripts of MnALFs mostly decreased during the initial hours of A. hydrophila challenge, which is similar to the pattern observed in PtALF5[32]and PtALF7[33]. ALF isoforms exhibit clear time-dependent expression patterns[34], but the activation times are different. For MnALF1, its expression level was down-regulated after A. hydrophila stimulation and then increased and reached to the highest level at 24h, 12h, 36h, 24h in heart, intestine, hemocytes and hepatopancreas respectively. Moreover, in heart and intestine MnALF2 was down-regulated significantly at 1h post-challenge and reached the highest level at 24h. However, in hemocytes and hepatopancreas, the expression of MnALF2 start to increase after A. hydrophila stimulation and then downregulated significantly and reached their highest levelat 24h. In short, the expression level of MnALF1 and MnALF2 transcripts reached the top at 24h post-challenge, which is the same as observed in PtALF5 and PtALF7. This result is consistent with the conclusion that ALFs possess potent antimicrobial activity against Gram-negative bacteria.

    In conclusion, we cloned and characterized two isoforms of the ALF homologues (MnALF1, MnALF2) from M. nipponense. Both of them contained one signal peptide and an LPS-binding domain with two conserved cysteine residues at both ends of the domain. MnALF1 and MnALF2 had different tissue distribution and after challenge with Aeromonas hydrophila, the two MnALF transcripts in heart, intestine, hemocytes and hepatopancreas showed a clear time-dependent response expression pattern. The present results might provide multiple protective functions in immune defense against invading bacteria.

    [1]Xiu Y J, Hou L B, Liu X Q, et al. Isolation and characterization of two novel C-type lectins from the oriental river prawn, Macrobrachium nipponense [J]. Fish and Shellfish Immunology, 2015, 46(2): 603—611

    [3]Vazquez L, Alpuche J, Maldonado G, et al. Review: Immunity mechanisms in crustaceans [J]. Innate Immunity, 2009, 15(3): 179—188

    [4]Lin M C, Lin S B, Lee S C, et al. Antimicrobial peptide of an anti-lipopolysaccharide factor modulates of the inflammatory response in RAW264.7 cells [J]. Peptides, 2010, 31(7): 1262—1272

    [5]Lin M C, Pan C Y, Hui C F, et al. Shrimp anti-lipopolysaccharide factor (SALF), an antimicrobial peptide, inhibits proinflammatory cytokine expressions through the MAPK and NF-kB pathways in LPS-induced HeLa cells [J]. Peptides, 2013, 40: 42—48

    [6]Arockiaraj J, Kumaresan V, Bhatt P, et al. A novel singledomain peptide, anti-LPS factor from prawn: Synthesis of peptide, antimicrobial properties and complete molecular characterization [J]. Peptides, 2014, 53: 79—88

    [7]Li S H, Guo S Y, Li F H, et al. Characterization and function analysis of an anti-lipopolysaccharide factor (ALF) from the Chinese shrimp Fenneropenaeus chinensis [J]. Developmental and Comparative Immunology, 2014, 46(2): 349—355

    [8]Tanaka S, Nakamura T, Morita T, et al. Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system [J]. Biochemical and Biophysical Research Communications, 1982, 105(2): 717—723

    [9]Warren H, Glennon M, Wainwright N, et al. Binding and neutralization of endotoxin by Limulus antilipopolysaccharide factor [J]. Infection and Immunity, 1992, 60(6): 2506—2513

    [10]Ried C, Wahl C, Miethke T, et al. High affinity endotoxinbinding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor [J]. Journal of Biological Chemistry, 1996, 271(8): 28120—28127

    高速的退場,已能看出相關(guān)邏輯所在。那么為何選擇西王?為何將打造了多年的“準(zhǔn)冠軍”球隊(duì)轉(zhuǎn)讓給一家民營企業(yè)——西王集團(tuán)?

    [11]Hoess A, Watson S, Siber G, et al. Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 A resolution [J]. EMBO Journal, 1993, 12(9): 3351—3356

    [12]Vallespi M, Alvarez-Obregon J, Rodriguez-Alonso I, et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice [J]. International Immunopharmacology, 2003, 3(2): 247—256

    [13]Ponprateep S, Tharntada S, Somboonwiwat K, et al. Gene silencing reveals a crucial role for anti-lipopolysaccharide factors from Penaeus monodon in the protection against microbial infections [J]. Fish and Shellfish Immunology, 2012, 32(1): 26—34

    [14]Tassanakajon A, Amparyup P, Somboonwiwat K, et al. Cationic antimicrobial peptides in penaeid shrimp [J]. Marine Biotechnology, 2011, 13(4): 639—657

    [15]Ren Q, Du Z Q, Li M, et al. Cloning and expression analysis of an anti-lipopolysaccharide factor from giant freshwater prawn, Macrobrachium rosenbergii [J]. Molecular Biology Reports, 2012a, 39(7): 7673—7680

    [16]Ren Q, Zhang Z, Li X C, et al. Three different anti-lipopolysaccharide factors identified from giant freshwater prawn, Macrobrachium rosenbergii [J]. Fish and Shellfish Immunology, 2012b, 33(4): 766—774

    [17]Lu K Y, Sung H J, Liu C L, et al. Differentially enhanced gene expression in hemocytes from Macrobrachium rosenbergii challenged in vivo with lipopolysaccharide [J]. Journal of Invertebrate Pathology, 2009, 100(1): 9—15

    [18]Sun C, Xu W T, Zhang H W, et al. An anti-lipopolysaccharide factor from red swamp crayfish, Procambarus clarkii, exhibited antimicrobial activities in vitro and in vivo [J]. Fish and Shellfish Immunology, 2011, 30(1): 295—303

    [19]Beale K M, Towle D W, Jayasundara N, et al. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge [J]. Comparative Biochemistry and Physiology D-Genomics & Proteomics, 2008, 3(4): 263—269

    [20]Zhu L, Lan J F, Huang Y Q, et al. SpALF4: A newly identified anti-lipopolysaccharide factor from the mud crab Scylla paramamosain with broad spectrum antimicrobial activity [J]. Fish and Shellfish Immunology, 2014, 36(1): 172—180

    [21]Imjongjirak C, Amparyup P, Tassanakajon A. Molecular cloning, genomic organization and antibacterial activity of a second isoform of antilipopolysaccharide factor (ALF) from the mud crab, Scylla paramamosain [J]. Fish and Shellfish Immunology, 2011, 30(1): 58—66

    [22]Li C, Zhao J, Song L, et al. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis [J]. Developmental and Comparative Immunology, 2008, 32(7): 784—794

    [23]Yedery R, Reddy K. Identification, cloning, characterizationand recombinant expression of an anti-lipopolysaccharide factor from the hemocytes of Indian mud crab, Scylla serrata [J]. Fish and Shellfish Immunology, 2009, 27(2): 275—284

    [24]Zhang Y, Wang L L, Wang L, et al. The second anti-lipopolysaccharide factor (EsALF-2) with antimicrobial activity from Eriocheir sinensis [J]. Developmental and Comparative-Immunology, 2010, 34(9): 945—952

    [25]Tharntada S, Ponprateep S, Somboonwiwat K, et al. Role of anti-lipopolysaccharide factor from the black tiger shrimp, Penaeus monodon, in protection from white spot syndrome virus infection [J]. Journal of General Virology, 2009, 90(6): 1491—1498

    [26]Zhao W H, Chen L Q, Qin J G, et al. MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense [J]. Molecular Biology Reports, 2011, 38(2): 1399—406

    [27]Xiu Y J, Wu T, Du J, et al. Molecular characterization and expression analysis of extracellular copper/zinc superoxide dismutase (ecCuZnSOD) from oriental river prawn, Macrobrachium nipponense [J]. Aquaculture, 2013, 380(4): 23—28

    [28]de la Vega E, O’Leary N, Shockey J, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection [J]. Molecular Immunology, 2008, 45(7): 1916—1925

    [29]Somboonwiwat K, Bachere E, Rimphanitchayakit V, et al. Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties [J]. Developmental and Comparative Immunology, 2008, 32(10): 1170—1176

    [30]Yang Y S, Boze H, Chemardin P, et al. NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: model of the possible lipid A-binding site [J]. Biopolymers, 2009, 91(3): 207—220

    [31]Supungul P, Klinbunga S, Pichyangkura R, et al. Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach [J]. Diseases of Aquatic Organisms, 2004, 61(1—2): 123—135

    [32]Liu Y, Cui Z X, Li X H, et al. Molecular cloning, expression pattern and antimicrobial activity of a new isoform of antilipopolysaccharide factor from the swimming crab Portunus trituberculatus [J]. Fish and Shellfish Immunology, 2012, 33(1): 85—91

    [33]Liu Y, Cui Z X, Li X H, et al. Molecular cloning, genomic structure and antimicrobial activity of PtALF7, a unique isoform of anti-lipopolysaccharide factor from the swimming crab Portunus trituberculatus [J]. Fish and Shellfish Immunology, 2013, 34(2): 652—659

    [34]Liu Y, Cui Z X, Luan W S, et al. Three isoforms of anti-lipopolysaccharide factor identified from eyestalk cDNA library of swimming crab Portunus trituberculatus [J]. Fish and Shellfish Immunology, 2011, 30(2): 583—591

    日本沼蝦兩種抗脂多糖因子的特性研究

    王英慧1修云吉2,3顧 偉1孟慶國1王 文1

    (1. 南京師范大學(xué)生命科學(xué)學(xué)院, 江蘇省生物多樣性與生物技術(shù)重點(diǎn)實(shí)驗(yàn)室, 江蘇省水生甲殼動(dòng)物病害重點(diǎn)實(shí)驗(yàn)室, 南京210023; 2. 中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所, 農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室, 青島 266071; 3. 海洋科學(xué)與技術(shù)國家實(shí)驗(yàn)室,海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室, 青島 266200)

    為了研究抗脂多糖因子ALFs在日本沼蝦先天性免疫中的功能作用, 研究從日本沼蝦中克隆了2種抗脂多糖因子MnALF1、MnALF2。MnALF1 cDNA 全長1008 bp, 編碼121個(gè)氨基酸; MnALF2 cDNA 全長836 bp,編碼124個(gè)氨基酸。這2種氨基酸均包含有一個(gè)信號(hào)肽序列和一個(gè)LPS結(jié)合位點(diǎn), 并且在結(jié)合位點(diǎn)的兩端(N-端和C-端)都有2個(gè)保守的半胱氨酸殘基。這2種MnALFs與之前發(fā)現(xiàn)的甲殼動(dòng)物的ALFs是非常相似的。qRTPCR結(jié)果顯示MnALFs在所有被檢測的組織中均有表達(dá)。其中MnALF1主要在心臟和小腸內(nèi)表達(dá), 而MnALF2則主要在血細(xì)胞和肝胰臟中表達(dá)。在用嗜水氣單胞菌刺激之后發(fā)現(xiàn)2種MnALFs在心臟、小腸、血細(xì)胞、肝胰臟中都呈現(xiàn)出明顯的時(shí)間依賴表達(dá)模式(MnALF1在刺激之后呈現(xiàn)出先減少后增加的趨勢, 之后分別在不同組織的不同時(shí)間點(diǎn)達(dá)到最大值; 然而, 對于MnALF2, 在心臟和小腸中先減少后增加, 在血細(xì)胞和肝胰臟中呈現(xiàn)出先增加后減少, 最后都在24h達(dá)到最大值)。結(jié)果提示這2種MnALF具有不同的組織特異性, 并且在細(xì)菌侵染的免疫防御中起著重要的保護(hù)作用。

    日本沼蝦; 抗脂多糖因子; 表達(dá)分析; 嗜水氣單胞菌

    Q344+.1

    A

    1000-3207(2017)05-0977-07

    10.7541/2017.122

    date: 2016-06-08; Accepted date: 2016-11-12

    Supported by the National Natural Science Foundation of China (31570176, 31602198); the Natural Science Foundation of Jiangsu Province (BK20151545); Project for Aquaculture in Jiangsu Province (D2015-13, Y2016-28)

    Brief introduction of author: WANG Ying-Hui (1990—), Female, Heze, Shandong; Master; Research field: Disease of aquatic organism. E-mail: 1223775449@qq.com

    WANG Wen (1957—), Female, Shihezi, Xinjiang; Doctor; Research field: Disease of aquatic organism. E-mail: wenwang@njnu.edu.cn

    猜你喜歡
    沼蝦胰臟血細(xì)胞
    羅氏沼蝦越冬養(yǎng)殖試驗(yàn)
    成功率超70%!一張冬棚賺40萬~50萬元,羅氏沼蝦今年將有多火?
    羅氏沼蝦高效生態(tài)養(yǎng)殖技術(shù)
    施氏魮(Barbonymus schwanenfeldii)外周血液及造血器官血細(xì)胞發(fā)生的觀察
    動(dòng)漫show 《我想吃掉你的胰臟》 活下去的方式有很多種,有一種叫愛
    血細(xì)胞分析中危急值的應(yīng)用評價(jià)
    沙塘鱧的血細(xì)胞分析
    外源性γ—氨基丁酸對內(nèi)在膽堿能神經(jīng)興奮引發(fā)的胰臟外分泌的影響
    “茜草+溫棚”高要羅氏沼蝦養(yǎng)殖新模式 中國羅氏沼蝦之鄉(xiāng)養(yǎng)殖面積3.6萬畝
    飼料鉛脅迫對吉富羅非魚生長性能及肝胰臟抗氧化能力的影響
    廣東飼料(2016年2期)2016-12-01 03:43:06
    国产爱豆传媒在线观看| 午夜福利成人在线免费观看| 亚洲精品美女久久久久99蜜臀| 午夜福利在线观看免费完整高清在 | 青草久久国产| 精品乱码久久久久久99久播| 97人妻精品一区二区三区麻豆| 搡老熟女国产l中国老女人| 亚洲精品456在线播放app | 少妇高潮的动态图| 成人高潮视频无遮挡免费网站| 亚洲av不卡在线观看| 午夜福利在线观看吧| 88av欧美| 国产精品影院久久| 亚洲精品一卡2卡三卡4卡5卡| svipshipincom国产片| 国产亚洲av嫩草精品影院| 国产精品三级大全| 深爱激情五月婷婷| 久久久成人免费电影| 色哟哟哟哟哟哟| 看黄色毛片网站| 99久久综合精品五月天人人| 色视频www国产| 免费人成视频x8x8入口观看| 国产欧美日韩一区二区三| 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| 国产精品1区2区在线观看.| xxx96com| 中文字幕av在线有码专区| 人妻久久中文字幕网| 嫩草影院入口| 欧美黑人欧美精品刺激| 午夜福利高清视频| 亚洲av成人不卡在线观看播放网| 国产熟女xx| 天堂影院成人在线观看| 亚洲成人久久爱视频| 丝袜美腿在线中文| 欧美性猛交黑人性爽| 少妇丰满av| 人妻夜夜爽99麻豆av| 特级一级黄色大片| 少妇的逼水好多| 国产色爽女视频免费观看| 热99re8久久精品国产| 久久6这里有精品| 少妇的逼好多水| 岛国视频午夜一区免费看| 美女免费视频网站| 国产成人av教育| www.www免费av| 久久亚洲真实| 国产黄色小视频在线观看| 久久精品影院6| 欧美黄色片欧美黄色片| 九九久久精品国产亚洲av麻豆| 无遮挡黄片免费观看| 中文字幕av成人在线电影| av福利片在线观看| 欧美日韩国产亚洲二区| 国产精品一区二区免费欧美| 校园春色视频在线观看| 久久精品国产99精品国产亚洲性色| av女优亚洲男人天堂| 一边摸一边抽搐一进一小说| 51午夜福利影视在线观看| 久久久久久大精品| 亚洲精品国产精品久久久不卡| 深夜精品福利| 18禁国产床啪视频网站| 国产伦精品一区二区三区视频9 | 久久久久久国产a免费观看| 亚洲18禁久久av| 亚洲,欧美精品.| 久久99热这里只有精品18| 国产不卡一卡二| 一级a爱片免费观看的视频| 国产精品久久久久久亚洲av鲁大| 久久久久久人人人人人| 亚洲精品在线美女| 久久精品91蜜桃| 日本成人三级电影网站| 国语自产精品视频在线第100页| 国产免费男女视频| 国产成+人综合+亚洲专区| 久久精品国产综合久久久| 丁香六月欧美| 国产激情欧美一区二区| 亚洲在线观看片| 夜夜躁狠狠躁天天躁| svipshipincom国产片| 亚洲人成网站在线播| 色av中文字幕| 国产亚洲欧美98| 国产日本99.免费观看| 久久久色成人| 一本久久中文字幕| 成年人黄色毛片网站| 丝袜美腿在线中文| 色播亚洲综合网| 亚洲精华国产精华精| 亚洲精品影视一区二区三区av| 久久久久久久精品吃奶| 女人十人毛片免费观看3o分钟| 制服丝袜大香蕉在线| 俄罗斯特黄特色一大片| 天美传媒精品一区二区| 欧美一区二区亚洲| 日韩欧美免费精品| 国产成人福利小说| 国产成人福利小说| 淫秽高清视频在线观看| 久久久久久久午夜电影| 久久久久久大精品| 国产精品女同一区二区软件 | 91在线观看av| 欧美日本视频| 中文资源天堂在线| 国产探花极品一区二区| 国内精品一区二区在线观看| 白带黄色成豆腐渣| av天堂中文字幕网| 黄色成人免费大全| 欧美日韩综合久久久久久 | 午夜影院日韩av| 一进一出抽搐gif免费好疼| 999久久久精品免费观看国产| 国产亚洲精品久久久久久毛片| 国产一级毛片七仙女欲春2| av在线蜜桃| 国产三级中文精品| 波多野结衣高清无吗| 日韩精品青青久久久久久| 亚洲美女黄片视频| 美女免费视频网站| www.色视频.com| www.999成人在线观看| 成人特级av手机在线观看| 久久香蕉国产精品| 九九热线精品视视频播放| 精品久久久久久久毛片微露脸| 精品一区二区三区av网在线观看| 日韩欧美国产在线观看| 国内精品久久久久精免费| 欧美乱码精品一区二区三区| 伊人久久精品亚洲午夜| 国产三级中文精品| 国产国拍精品亚洲av在线观看 | 可以在线观看毛片的网站| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 在线免费观看的www视频| 免费搜索国产男女视频| 精品日产1卡2卡| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费| 国产伦精品一区二区三区视频9 | 18禁美女被吸乳视频| 亚洲av第一区精品v没综合| 女人十人毛片免费观看3o分钟| 精品欧美国产一区二区三| 日韩亚洲欧美综合| 午夜精品久久久久久毛片777| 99热6这里只有精品| 国产色爽女视频免费观看| 女同久久另类99精品国产91| 国产一区在线观看成人免费| 99国产综合亚洲精品| 国产淫片久久久久久久久 | 国产伦精品一区二区三区视频9 | 国产精品永久免费网站| 啦啦啦韩国在线观看视频| 不卡一级毛片| avwww免费| 男女之事视频高清在线观看| 久久午夜亚洲精品久久| 老司机福利观看| 尤物成人国产欧美一区二区三区| 中文字幕人妻熟人妻熟丝袜美 | 黄色女人牲交| 男女床上黄色一级片免费看| 国产高清有码在线观看视频| 亚洲精品久久国产高清桃花| 国产69精品久久久久777片| 丁香六月欧美| 成人高潮视频无遮挡免费网站| 全区人妻精品视频| 伊人久久大香线蕉亚洲五| 亚洲精品亚洲一区二区| 久久欧美精品欧美久久欧美| 国产精品久久久人人做人人爽| 亚洲激情在线av| 久久久久久久久大av| 欧美成人性av电影在线观看| 欧美黄色淫秽网站| 免费人成在线观看视频色| 国产伦一二天堂av在线观看| 婷婷亚洲欧美| 99国产精品一区二区三区| 成人高潮视频无遮挡免费网站| 国产乱人伦免费视频| 国产亚洲精品久久久久久毛片| 不卡一级毛片| 日韩免费av在线播放| 亚洲精品在线观看二区| 精品久久久久久,| 啦啦啦免费观看视频1| 国产蜜桃级精品一区二区三区| 美女高潮喷水抽搐中文字幕| 免费高清视频大片| 欧美一区二区国产精品久久精品| 欧美性猛交╳xxx乱大交人| 免费观看人在逋| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 亚洲人与动物交配视频| 亚洲avbb在线观看| 欧美另类亚洲清纯唯美| 欧美大码av| 99精品在免费线老司机午夜| 中文字幕高清在线视频| 国产亚洲精品一区二区www| 色老头精品视频在线观看| 欧美日韩综合久久久久久 | 最新中文字幕久久久久| 免费av毛片视频| 国产国拍精品亚洲av在线观看 | 成人性生交大片免费视频hd| 国产日本99.免费观看| 一卡2卡三卡四卡精品乱码亚洲| av黄色大香蕉| 丁香六月欧美| 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 国产免费一级a男人的天堂| 人人妻人人澡欧美一区二区| 一区福利在线观看| 一二三四社区在线视频社区8| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩卡通动漫| 亚洲最大成人手机在线| 久久久久性生活片| 亚洲久久久久久中文字幕| 国产色婷婷99| 免费搜索国产男女视频| 听说在线观看完整版免费高清| 丝袜美腿在线中文| 久久久色成人| 性欧美人与动物交配| 尤物成人国产欧美一区二区三区| 成人一区二区视频在线观看| 无限看片的www在线观看| 一级黄色大片毛片| 两个人的视频大全免费| 91av网一区二区| 久久久久久久久久黄片| 最近视频中文字幕2019在线8| 99久久无色码亚洲精品果冻| 男人和女人高潮做爰伦理| 国产亚洲欧美98| 最新美女视频免费是黄的| 在线播放无遮挡| 麻豆成人av在线观看| 日韩精品青青久久久久久| 男女下面进入的视频免费午夜| 99在线人妻在线中文字幕| 狠狠狠狠99中文字幕| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 国产亚洲精品一区二区www| 全区人妻精品视频| 国产野战对白在线观看| 丰满人妻一区二区三区视频av | 麻豆成人午夜福利视频| 成熟少妇高潮喷水视频| 亚洲在线观看片| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| 午夜福利欧美成人| 亚洲精品色激情综合| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看| 欧美黄色淫秽网站| 国产色婷婷99| 免费无遮挡裸体视频| 伊人久久大香线蕉亚洲五| 国产蜜桃级精品一区二区三区| a级毛片a级免费在线| 国模一区二区三区四区视频| 很黄的视频免费| 国产色爽女视频免费观看| 99国产精品一区二区三区| 一区二区三区高清视频在线| 国产主播在线观看一区二区| 露出奶头的视频| 国产亚洲av嫩草精品影院| 精品日产1卡2卡| 一级毛片高清免费大全| 国产精品亚洲一级av第二区| 国产午夜精品久久久久久一区二区三区 | 非洲黑人性xxxx精品又粗又长| 尤物成人国产欧美一区二区三区| 国产伦一二天堂av在线观看| 又粗又爽又猛毛片免费看| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 亚洲人成电影免费在线| 老司机福利观看| 久久久久久久久中文| 国产99白浆流出| 久久婷婷人人爽人人干人人爱| 日韩欧美免费精品| 成人性生交大片免费视频hd| 精品人妻一区二区三区麻豆 | www国产在线视频色| 国产欧美日韩精品一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 麻豆国产97在线/欧美| 嫁个100分男人电影在线观看| 亚洲av不卡在线观看| 久久精品国产综合久久久| 身体一侧抽搐| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 两个人的视频大全免费| 床上黄色一级片| 两人在一起打扑克的视频| 手机成人av网站| 国产三级黄色录像| 欧美一级毛片孕妇| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 欧美zozozo另类| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产 | 亚洲片人在线观看| 午夜亚洲福利在线播放| 在线看三级毛片| 一区二区三区国产精品乱码| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 亚洲国产精品成人综合色| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 亚洲 国产 在线| 19禁男女啪啪无遮挡网站| 青草久久国产| 一本精品99久久精品77| 国产精品99久久99久久久不卡| 欧美在线黄色| 国产精品女同一区二区软件 | 夜夜爽天天搞| 欧美一级毛片孕妇| 日韩国内少妇激情av| 久久人人精品亚洲av| 舔av片在线| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| 午夜福利在线观看免费完整高清在 | 一夜夜www| www国产在线视频色| 国产毛片a区久久久久| 亚洲精品色激情综合| 1024手机看黄色片| 免费在线观看日本一区| 亚洲精品在线观看二区| 午夜福利在线观看吧| 国产色爽女视频免费观看| 成人三级黄色视频| 1024手机看黄色片| 国产熟女xx| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 亚洲精品在线美女| 美女高潮喷水抽搐中文字幕| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 一区二区三区激情视频| 久久中文看片网| 免费观看的影片在线观看| 最近最新中文字幕大全电影3| 日本黄色视频三级网站网址| 岛国视频午夜一区免费看| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 哪里可以看免费的av片| 欧美日韩一级在线毛片| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 免费看a级黄色片| 天美传媒精品一区二区| 人妻久久中文字幕网| 精品福利观看| 国产精品免费一区二区三区在线| 99久国产av精品| 亚洲精品在线观看二区| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 国产欧美日韩一区二区精品| 国产探花极品一区二区| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 亚洲欧美一区二区三区黑人| 日韩大尺度精品在线看网址| 在线观看av片永久免费下载| 乱人视频在线观看| 欧美成人免费av一区二区三区| 国产黄片美女视频| 国产私拍福利视频在线观看| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 国产男靠女视频免费网站| 91在线精品国自产拍蜜月 | 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 欧美另类亚洲清纯唯美| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 中文字幕精品亚洲无线码一区| 国产精品99久久久久久久久| 午夜a级毛片| 亚洲最大成人手机在线| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 脱女人内裤的视频| 国产午夜精品久久久久久一区二区三区 | 在线观看舔阴道视频| 欧美bdsm另类| 精品人妻一区二区三区麻豆 | 亚洲av五月六月丁香网| 女生性感内裤真人,穿戴方法视频| 内地一区二区视频在线| 成年女人看的毛片在线观看| 草草在线视频免费看| 美女 人体艺术 gogo| 国产乱人伦免费视频| 男女床上黄色一级片免费看| aaaaa片日本免费| 91九色精品人成在线观看| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久大av| 久久久久九九精品影院| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩 | 99riav亚洲国产免费| 免费观看精品视频网站| 日韩精品青青久久久久久| 观看美女的网站| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 88av欧美| 黄色片一级片一级黄色片| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 91av网一区二区| 男女视频在线观看网站免费| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 毛片女人毛片| 欧美乱色亚洲激情| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 免费av不卡在线播放| 丰满乱子伦码专区| 亚洲不卡免费看| 午夜福利高清视频| 久久午夜亚洲精品久久| 国产极品精品免费视频能看的| 久久久久国内视频| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 手机成人av网站| 亚洲欧美日韩卡通动漫| 亚洲中文日韩欧美视频| 美女黄网站色视频| 精品日产1卡2卡| 欧美又色又爽又黄视频| 毛片女人毛片| 51国产日韩欧美| 欧美乱码精品一区二区三区| 精品国产三级普通话版| av女优亚洲男人天堂| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 成人av一区二区三区在线看| 国产精品女同一区二区软件 | 久久久精品欧美日韩精品| 日韩欧美国产在线观看| www日本黄色视频网| 国产97色在线日韩免费| 免费看a级黄色片| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 黄片大片在线免费观看| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 九色国产91popny在线| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一本综合久久免费| a级毛片a级免费在线| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 怎么达到女性高潮| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 欧美中文日本在线观看视频| 精品久久久久久,| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 国产成人av教育| 在线观看av片永久免费下载| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| av女优亚洲男人天堂| 国产99白浆流出| 午夜精品在线福利| 亚洲精品在线观看二区| 亚洲精品456在线播放app | 免费一级毛片在线播放高清视频| 亚洲国产欧洲综合997久久,| 国产高清三级在线| 波多野结衣高清作品| 精品国内亚洲2022精品成人| 88av欧美| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 成人欧美大片| 变态另类丝袜制服| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| 亚洲av成人精品一区久久| 久久中文看片网| 免费观看精品视频网站| 国产私拍福利视频在线观看| 在线播放国产精品三级| 免费av毛片视频| 国产在视频线在精品| 国产精品一及| 制服人妻中文乱码| 日本精品一区二区三区蜜桃| 丁香六月欧美| 我要搜黄色片| 手机成人av网站| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 精品熟女少妇八av免费久了| 91字幕亚洲| 国产单亲对白刺激| 少妇丰满av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲专区国产一区二区| 久久久久九九精品影院| 在线观看av片永久免费下载| 两人在一起打扑克的视频| 欧美在线黄色| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 国产综合懂色| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 成人18禁在线播放| 天堂动漫精品| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 国产精品野战在线观看| 观看美女的网站| 国产老妇女一区| 可以在线观看的亚洲视频| 男女午夜视频在线观看| 亚洲久久久久久中文字幕| 88av欧美| 国产精品99久久久久久久久| 中亚洲国语对白在线视频| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 丁香欧美五月| 亚洲人成网站高清观看| 亚洲av电影在线进入| 欧美精品啪啪一区二区三区|