• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence

    2023-09-05 08:48:22LeiHuang黃磊KaiRen任凱HuanpingZhang張煥萍andHuasongQin覃華松
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃磊

    Lei Huang(黃磊), Kai Ren(任凱),?, Huanping Zhang(張煥萍), and Huasong Qin(覃華松)

    1School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    2Laboratory for Multiscale Mechanics and Medical Science,SV LAB,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: two-dimensional,molecular dynamics,mechanical property,heat transport

    1.Introduction

    By using a micromechanical stripping method,graphene has been successfully separated.[1]Due to their remarkable characteristics and numerous possible applications, twodimensional(2D)materials have garnered extensive attention and research interest.[2,3]For example, graphene has excellent electronic,[4]thermal,[5,6]catalytic,[7]mechanical[8]and magnetic[9]properties.Single-layer graphene’s bipolar electric field effect demonstrates that the charge carriers are more mobile than in semiconductors.[10]Graphene also has high thermoelectric power[10,11]and excellent nonlinear optical characteristics combined with fast response and wide wavelength range in optoelectronic and photonic applications.[12]Inspired by such exciting behaviors of graphene and its successful application in various advanced nanotechnology, research on other 2D materials has been explored.[13]Although they present a large specific surface area, these graphene-like materials possess different mechanical,thermal,electrical,optical and catalytic properties.[14–16]

    The electronic, mechanical and thermal performances of the 2D materials have a critical role in the development of atomic devices.For instance, the mechanical properties of borophene are highly anisotropic: in comparison to the armchair direction, the zigzag direction (also known as the buckled direction) has a substantially lower Young’s modulus and fracture strength.[17]The thermal conductance of pure black and blue phosphorene nanoribbons is sensitively affected by edge shape and breadth, and they both have a distinctly anisotropic thermal performance.[18]The mechanical properties of MoS2can determine the fracture strength and fracture strain of MoS2/WSe2lateral heterostructures.These properties are highly temperature sensitive, and when compared to the graphene–hBN heterostructure, the MoS2/WSe2heterostructure exhibits an order of magnitude lower interfacial thermal conductivity.[19]The properties of materials with negative Poisson’s ratio are very necessary for many advanced applications because they typically have enhanced toughness and shear resistance,along with enhanced sound and vibration absorption, such as the puckered atomic structure of singlelayer black phosphorus and B4N monolayer material.Materials that have a negative Poisson ratio are named auxetic materials.They represent an exciting prospect for enhancing mechanical properties and are necessary for many advanced applications.For example, the Poisson ratios of the puckered atomic structure of black phosphorus[20]and B4N[21]are calculated as?0.267 and?0.032, respectively, and these materials can be considered for future nanomechanical devices.Additionally, due to their excellent properties, silicon carbide (SiC) and germanium carbide (GeC) have garnered a lot of interest.[22,23]SiC possesses a large bandgap of about 3.354 eV,[24]a high saturation electron drift velocity (3×107cm/s), a strong electric breakdown field (3×106V/cm),and is used in high-temperature devices suitable for DC to microwave frequencies.[25]SiC is also a potential electromagnetic shielding material and it can be used for electronic packaging of highly integrated circuits, wireless communication,electronic base stations and other electronic equipment.[26,27]Besides,the defects in a SiC monolayer can induce a sizeable spin effect and strong spin–phonon coupling.[28]Furthermore,GeC also acts as a semiconductor with a bandgap of about 2.515 eV,[22]indicating that it is a promising candidate for application in semiconductor devices, crystal diodes, and photovoltaic systems.[29]Due to the exceptional optical performance of 2D GeC, it has undergone substantial research for prospective use in heterostructure devices and solar cells.[30]In comparison to graphene,the mechanical characteristics of a GeC monolayer indicate a low in-plane stiffness(143.8 N/m)and a high Poisson ratio(0.281).[31]Although there have been a large number of studies on the applications of tSiC and GeC monolayers, their mechanical and thermal characteristics are rarely reported and these are crucial properties to explore for further advanced functional nanodevices.

    To explore the mechanical characteristics of SiC and GeC monolayers under uniaxial stress in the armchair and zigzag directions,we conduct molecular dynamics simulations(MD)in this work.The impacts of temperature and already-existing fractures on mechanical characteristics are discussed.Additionally,the heat transport capabilities of SiC and GeC monolayers are investigated.Adjustable mechanical and thermal characteristics of SiC and GeC monolayers point to possible usage in nanodevices.

    2.Simulation methods

    In our work, the zigzag and armchair directions of the SiC and GeC monolayers are oriented along thexandydirections, respectively, as shown in Fig.1.Both the zigzag and armchair directions use periodic boundary conditions, which means a nanosheet structure is obtained.The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)was used for all MD simulations.[32]It uses OVITO software for structural visualization.[33]To ensure the stability of the values and the correctness of the energy conservation,the time step of all MD simulations is set to 1.0 fs.Initially,the whole system is relaxed at a constant temperature and constant pressure for 200 ps through the Nose–Hoover thermostat.The Tersoff potential,which is often employed and taken into consideration owing to correct parameterization,is utilized to represent the interatomic interactions to achieve agreement with the DFT computations and experimental data.

    In the mechanical calculations,all the simulations are performed using a 194.5 ?A×198.1 ?A supercell that contains periodic boundary conditions applied in any direction along the plane.Here, the fix/deform method as defined in LAMMPS is used to apply in-plane uniaxial tension with a strain rate of 2×108s?1.The system’s temperature is maintained at a constant level during the tensile deformation process, while the other directions are maintained at zero pressure.During the MD simulations,we examine the normal corresponding forces in the zigzag and armchair directions to obtain the mechanical properties of the two material structures.

    Fig.1.The tensile simulation model of the SiC (or GeC) monolayers with dimensions of 194.5 ?A×198.1 ?A.The figure shows the top and side views, and the zoomed-in views (top and side views) of the interface.Both zigzag and armchair directions use periodic boundary conditions.

    Non-equilibrium molecular dynamics (NEMD) simulations are used in the thermal simulations to calculate the thermal conductivity with the length and the width of the SiC(or GeC)monolayers at about 200.23 ?A and 99.09 ?A,respectively.The studied system was first equilibrated with an NPT ensemble for 100 ps and then the system was relaxed with an NVE ensemble for 2000 ps.The kinetic energy of the hottest atom in the heat sink slab and the coldest atom in the heat source slab are exchanged for 6 ns to produce the heat flux(J).

    3.Results and discussion

    3.1.Mechanical behavior

    Structural integrity is maintained after the total relaxation of the SiC and GeC monolayers,suggesting thermal stability.Next,we investigate the zigzag and armchair direction fracture behaviors of the SiC and GeC monolayers under tensile pressure at 300 K.The obtained deformation and initial crack of the SiC and GeC monolayers are shown in Figs.2(a)and 2(b),where one can see that the atomic stress near the crack has been released, and the fracture strains of SiC and GeC along the zigzag direction are larger than those along the armchair one.Furthermore,the fracture strength of SiC is greater than GeC in both directions, and conversely, the maximal strain that GeC can withstand is greater than SiC in both directions,which is demonstrated by the stress–strain curve of SiC and GeC in Fig.3.

    Fig.2.Deformation and initial crack of zigzag and armchair (a) SiC and (b) GeC structures under tensile loading.The color contour in the image shows how the normal stress is distributed along the direction of tensile tension.

    Fig.3.The mechanical characteristics of SiC and GeC structures: the stress–strain curves for SiC(a),(c)and GeC(b),(d)in the zigzag(a),(b)and armchair(c),(d)directions.

    In Fig.3, it can be seen that the strain in SiC increases from 0 to 39.16% along the zigzag direction, corresponding to the stress increasing from 0 to 103.55 GPa.At the same time,the strain increasing from 0 to 27.54%can induce stress increases from 0 to 73.59 GPa along the armchair direction.Besides, when an external strain is applied to GeC in the zigzag(armchair)direction of up to 42%(29.74%),the stress increases will increase to 87.64 GPa (67.9 GPa).As shown in the stress–strain curves,both materials exhibit much greater zigzag fracture strengths and strain than armchair fracture strengths and strain, indicating anisotropy in their mechanical properties.The strongest 2D material is graphene,which has a fracture strength of 100–130 GPa and a Young’s modulus of about 1.0 TPa.[34]On comparison, SiC and GeC are much weaker than graphene but far more robust than other 2D materials, such as borophene (23.45–55.9 GPa),[19]silicene(12.5 GPa)[35]and MoS2(11–13 GPa).[17]The effect of temperature on the stress–strain curves of SiC and GeC is also addressed in Fig.3.One can see that SiC and GeC behave mechanically similarly in zigzag (or armchair) directions at various temperatures before fracture, which means that the temperature mainly changes the ultimate fracture performance.

    Fig.4.Trends of(a)fracture strength and(b)fracture strain at different temperatures for SiC and GeC.

    Then,we investigated the effect of the mechanical characteristics of the SiC and GeC monolayers at different temperatures.The fracture strength and strain of SiC and GeC possess an obvious dependence on the temperature between 50 K and 500 K, as shown in Fig.4.Besides, nonlinear elastic behavior is observed for SiC and GeC.As shown in Fig.4(a), as the temperature rises, both the fracture strength and fracture strain of SiC (or GeC) considerably decline.In more detail,the fracture strength of SiC reduces by 42.5%and 41.59%in zigzag and armchair directions,respectively,when the temperature rises from 50 K to 500 K.The fracture strength of GeC along the zigzag and armchair directions are likewise reduced by around 41.69%and 39.27%, respectively.In addition, the fracture strain of the SiC decreases by 71.2% and 56.9% for zigzag and armchair directions, respectively, while the GeC reduces by about 70.1%and 59.2%along zigzag and armchair directions,respectively.All of these results show that SiC and GeC are more temperature sensitive in terms of their fracture strength in a zigzag direction.At higher temperatures,the vibrations of atoms are greater,and it is easier for local chemical bonds to attain critical bond lengths and break as a result.This phenomenon is known as temperature-induced softening.This resembles the mechanical characteristics of certain common 2D materials,such as MoS2,[36]graphene[34]and silicene,[35]at different temperatures.

    Defect engineering is a common technique to modify the characteristics of 2D materials,[6,37,38]and defects also can be introduced easily in SiC and GeC during their fabrication processes.Thus,the response of the mechanical behaviors of SiC and GeC to the initial crack is investigated along zigzag and armchair directions,as shown in Fig.5.We perform MD simulations at 300 K and the obtained fracture strain and fracture strength for various crack lengths (L) in SiC and GeC, ranging up to 5 nm,are shown in Figs.5(a)and 5(b),respectively.Interestingly, SiC and GeC fracture strengths can be significantly reduced by a pre-existing crack in both zigzag and armchair orientations.Evidently,the shorter crack length can tune the fracture strength and strain of the SiC and GeC more effectively.

    Fig.5.(a)Schematic of applied stress on SiC(or SiC)with defective structure; the calculated (b) fracture strength and (c) the fracture strain of the SiC and GeC as a function of crack length(L)under tensile loading.

    3.2.Thermal properties

    The SiC and GeC monolayers possess semiconductor characteristics, suggesting desirable applications in nanoelectronics and thermoelectric devices, therefore, their heat transport properties are also critical.The thermal conductivities of SiC and GeC are discussed using NEMD simulations.As shown in Fig.6(a), both ends of the SiC (or GeC) monolayer are fixed, and hot and cold baths are located near the fixed parts.Thus, the heat flux is along thexdirection.The thermal properties in zigzag and armchair directions are investigated by setting them as thexdirection.The temperature profiles, after reaching a steady state, of SiC and GeC in the zigzag direction are demonstrated in Fig.6(b).For pure SiC and GeC,by fitting the linear area(depicted by a straight line)on the temperature profile,the temperature gradient(dT/dx)is derived.Following that, Fourier’s law is used to compute the thermal conductivity(κ)

    whereArepresents the region in cross-section through which the heat flux flows.In order to obtain the thermal conductivity at room temperature (300 K), the hot and cold baths fixed at both ends in Fig.6(a) were set to 320 K and 280 K, respectively.Therefore, the thermal conductivity of pure SiC at a temperature of 300 K is calculated as 16.89 W·m?1·K?1and 18.99 W·m?1·K?1along the zigzag and armchair directions,respectively, which are higher than those of transition metal dichalcogenides materials, such as MoS2(5.93 W·m?1·K?1)and WSe2(7.09 W·m?1·K?1).[19]Additionally,pure GeC has a thermal conductivity of 3.89 W·m?1·K?1in the zigzag direction and 4.49 W·m?1·K?1in the armchair direction.Compared to BCN, which has a thermal conductivity of 28–46 W·m?1·K?1, SiC and GeC exhibit a much lower thermal conductivity.[39]

    Fig.6.(a) Schematic diagram of the heat transfer model and (b) the calculated temperature profiles of pure SiC and GeC monolayers along the zigzag direction.

    Then, to explore the effect of size on the tunable thermal property of SiC and GeC,we fixed the value of the width and changed the length from 200 ?A to 2000 ?A at 300 K.The calculated thermal property of SiC and GeC with different lengths is given in Fig.7(a), which shows that the thermal conductivity of SiC sheet increases from 16.89 W·m?1·K?1to 85.67 W·m?1·K?1along the zigzag direction and from 18.99 W·m?1·K?1to 82.79 W·m?1·K?1along the armchair direction.The thermal conductivity of pure GeC sheet is enhanced from 3.89 W·m?1·K?1to 34.37 W·m?1·K?1along the zigzag direction and from 4.49 W·m?1·K?1to 32.74 W·m?1·K?1along the armchair direction.These results indicate an obvious size dependence of the thermal property of SiC and GeC.

    Fig.7.(a) Thermal conductivity measured in pure SiC and GeC at various lengths; (b)the relationships between the inverse thermal conductivity and the inverse sample length for pure SiC and GeC.

    When the length of the 2D material is shorter than the phonon mean free path(MFP),which is a common approach to optimizing the heat transport performance of 2D materials,the system size has a significant impact on the thermal conductivity of these materials.[40]The following connection between the inverse thermal conductivity and the inverse sample lengthL?1are used to calculate the effective MFP:[41]

    wherelis MFP andκ∞is the thermal conductivity of an infinitely long sample.From the fitting curve shown in Fig.7(b), the obtained effective MFPs for pure SiC and GeC are 109.97 nm and 321.21 nm, respectively.The thermal conductivity of a pure SiC (GeC) infinite-length sample is 126.46 W·m?1·K?1(85.30 W·m?1·K?1).

    Besides, we also calculate the thermal property of SiC and GeC at different temperatures ranging from 100 K to 500 K,as shown in Fig.8(a).One can see that the thermal conductivity of both SiC and GeC in the zigzag and the armchair directions are still almost the same, and the simulation results of SiC show that its thermal conductivity decreases from 29.50 W·m?1·K?1to 13.92 W·m?1·K?1along the zigzag direction, and from 28.60 W·m?1·K?1to 15.23 W·m?1·K?1along the armchair direction,indicating a negative temperature dependence.However,the thermal conductivity of GeC shows no significant difference with temperature.The obtained tunable thermal property of SiC and GeC suggests a promising use for thermoelectric applications.

    In Fig.8(a), the SiC monolayer shows a strong temperature-dependent thermal conductivity, which is related to phonon anharmonicity.To explore the potential physical mechanism of temperature-dependent thermal conductivity in the SiC monolayer, we calculate the vibrational density of states(VDOS)in the SiC monolayer at 100–500 K from

    whereωis the angular frequency andC(t) represents the velocity autocorrelation function.For total VDOS,C(t) =(t)is the velocity of atomjand the symbol〈〉represents the ensemble average.[42]The calculated results are shown as Fig.8(b)with the phonon frequency ranging from 0 to 40 THz.The peak frequency for the SiC monolayer at 300 K is around 11.5 THz.The peak value of VDOS near 25–40 THz varies significantly with temperature,thus, we focus on this range.As shown in Fig.8(b), the increased temperature causes a significant redshift in the high frequency peaks of SiC, induced by an enhanced phonon anharmonicity, reducing the thermal conductivity and therefore exhibiting a temperature dependence.This phenomenon has also been explored in Janus MoSSe and WSSe monolayers.[43]Our simulations are an important reference for the future development of thermal devices and thermoelectric energy conversion.

    4.Conclusion and perspectives

    In this study,molecular dynamics simulations were used to systematically examine the in-plane mechanical and thermal transport characteristics of pure SiC and GeC.Both SiC and GeC demonstrate an excellent toughness with fracture strain of about 0.43 and 0.47 in the zigzag direction at 300 K, respectively, which can be decreased by temperature and the introduced crackle.Furthermore, the thermal conductivities of pure SiC (GeC) are calculated as 16.89 W·m?1·K?1(3.89 W·m?1·K?1)and 18.99 W·m?1·K?1(4.49 W·m?1·K?1) along zigzag and armchair directions, respectively,by a non-equilibrium molecular dynamics method.Additionally,the thermal conductivity of SiC(GeC)can reach 85.67 W·m?1·K?1(34.37 W·m?1·K?1) due to a size effect,although an increase in temperature will reduce that.The obtained size and temperature-tunable mechanical and thermal characteristics of SiC and GeC suggest promising applications as thermoelectric and flexible nanodevices.

    Acknowledgements

    All the authors would like to thank the support of the Natural Science Foundation of Jiangsu(Grant No.BK20220407),the National Natural Science Foundation of China (Grant Nos.12102323, 11890674), the China Postdoctoral Science Foundation (Grant No.2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No.sxzy012022024).This work is also supported by the HPC Center,Nanjing Forestry University,China.

    猜你喜歡
    黃磊
    黃磊:穿越人山人海,仍是文藝青年
    黃磊、何炅的千飯之誼
    黃磊 熟男的坐標(biāo)
    北廣人物(2020年22期)2020-06-19 08:09:12
    編讀往來(lái)
    黃磊:我的“麻煩”來(lái)得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    黃磊 愛(ài)需要好好經(jīng)營(yíng)
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*
    失去了盛世美顏的胖子黃磊為何還是男神
    意林(2016年21期)2016-11-30 17:05:38
    贊揚(yáng)出來(lái)的大明星
    愿意為你做一輩子的黃小廚
    免费看日本二区| 网址你懂的国产日韩在线| 国产成人精品久久二区二区91| 深夜精品福利| 国产一区二区在线观看日韩 | 老司机午夜福利在线观看视频| 色播亚洲综合网| www.999成人在线观看| 婷婷精品国产亚洲av在线| 国产高潮美女av| 亚洲无线观看免费| xxxwww97欧美| 男女之事视频高清在线观看| 国产高清激情床上av| 法律面前人人平等表现在哪些方面| 桃红色精品国产亚洲av| 欧美激情在线99| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 桃红色精品国产亚洲av| 制服丝袜大香蕉在线| 久久天堂一区二区三区四区| av天堂在线播放| av天堂中文字幕网| 看黄色毛片网站| 美女扒开内裤让男人捅视频| 91麻豆av在线| 色视频www国产| 麻豆成人午夜福利视频| 99久久无色码亚洲精品果冻| 九九热线精品视视频播放| 国产91精品成人一区二区三区| 亚洲自拍偷在线| 午夜视频精品福利| 熟女电影av网| 99国产精品一区二区三区| 色综合欧美亚洲国产小说| 日日干狠狠操夜夜爽| 国产欧美日韩一区二区三| 一进一出抽搐gif免费好疼| 熟妇人妻久久中文字幕3abv| 日本在线视频免费播放| 亚洲欧美日韩高清专用| 偷拍熟女少妇极品色| 国产精品久久久久久精品电影| 国产三级在线视频| 欧美一区二区精品小视频在线| 国产高清视频在线播放一区| 国产黄片美女视频| 欧美最黄视频在线播放免费| 欧美日韩瑟瑟在线播放| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 精品99又大又爽又粗少妇毛片 | 亚洲av免费在线观看| 小说图片视频综合网站| 欧美绝顶高潮抽搐喷水| 欧美日韩瑟瑟在线播放| 日日摸夜夜添夜夜添小说| 日本撒尿小便嘘嘘汇集6| 午夜福利在线观看吧| 国产午夜精品久久久久久| 美女免费视频网站| 亚洲成人免费电影在线观看| 波多野结衣巨乳人妻| 美女扒开内裤让男人捅视频| 久久久国产成人免费| 色精品久久人妻99蜜桃| 偷拍熟女少妇极品色| 免费看美女性在线毛片视频| 精品久久久久久久毛片微露脸| 色综合站精品国产| 97超视频在线观看视频| 日韩欧美三级三区| 五月伊人婷婷丁香| 无遮挡黄片免费观看| 国产乱人视频| 国产99白浆流出| 久久精品91蜜桃| 欧美三级亚洲精品| 在线观看66精品国产| 黄色日韩在线| 欧美日韩瑟瑟在线播放| 老司机深夜福利视频在线观看| 好看av亚洲va欧美ⅴa在| 欧美激情久久久久久爽电影| 超碰成人久久| 国产毛片a区久久久久| 又黄又粗又硬又大视频| 欧美乱色亚洲激情| 午夜福利成人在线免费观看| 久99久视频精品免费| 国产精品久久视频播放| 久久久国产精品麻豆| 亚洲,欧美精品.| 久久久国产欧美日韩av| 国产99白浆流出| 成年版毛片免费区| 三级男女做爰猛烈吃奶摸视频| 在线十欧美十亚洲十日本专区| 熟妇人妻久久中文字幕3abv| 少妇熟女aⅴ在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 日本熟妇午夜| 亚洲色图av天堂| 九九在线视频观看精品| 日韩精品中文字幕看吧| 日本熟妇午夜| 免费在线观看视频国产中文字幕亚洲| 亚洲va日本ⅴa欧美va伊人久久| 色综合婷婷激情| 国产精品99久久久久久久久| 久久精品亚洲精品国产色婷小说| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区免费观看 | 国产成人系列免费观看| 日本黄大片高清| 亚洲精品一卡2卡三卡4卡5卡| 国产伦一二天堂av在线观看| 欧美一级a爱片免费观看看| 熟女少妇亚洲综合色aaa.| 久99久视频精品免费| 波多野结衣高清作品| 久久精品人妻少妇| 国产精品99久久99久久久不卡| 亚洲国产高清在线一区二区三| 午夜福利在线观看免费完整高清在 | 成人鲁丝片一二三区免费| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 日本在线视频免费播放| 欧美3d第一页| 久久精品国产99精品国产亚洲性色| 久久久色成人| 日韩av在线大香蕉| 久久中文字幕人妻熟女| 51午夜福利影视在线观看| 日韩高清综合在线| 欧美丝袜亚洲另类 | 午夜精品久久久久久毛片777| 夜夜夜夜夜久久久久| 后天国语完整版免费观看| 悠悠久久av| 91在线观看av| 精品久久久久久久人妻蜜臀av| 亚洲人成网站高清观看| 国产又黄又爽又无遮挡在线| 欧美国产日韩亚洲一区| 99久国产av精品| 欧美中文日本在线观看视频| 国产日本99.免费观看| 一卡2卡三卡四卡精品乱码亚洲| 最好的美女福利视频网| 999久久久国产精品视频| 最好的美女福利视频网| 男人舔女人下体高潮全视频| 哪里可以看免费的av片| 变态另类丝袜制服| 99在线人妻在线中文字幕| 色综合站精品国产| 国产精品自产拍在线观看55亚洲| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 国产精品日韩av在线免费观看| 久久久久久大精品| 淫秽高清视频在线观看| 国产一区二区三区在线臀色熟女| 嫩草影院精品99| 性色av乱码一区二区三区2| 男女视频在线观看网站免费| 又大又爽又粗| 亚洲五月婷婷丁香| 午夜精品久久久久久毛片777| 亚洲成人久久爱视频| 午夜激情福利司机影院| 欧美成人免费av一区二区三区| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 高潮久久久久久久久久久不卡| 一区二区三区国产精品乱码| 91在线观看av| 欧美精品啪啪一区二区三区| 网址你懂的国产日韩在线| 麻豆成人av在线观看| 国产主播在线观看一区二区| 久久中文字幕一级| 日韩高清综合在线| 日韩有码中文字幕| 久久精品国产99精品国产亚洲性色| 国产精品 欧美亚洲| 脱女人内裤的视频| 国产伦在线观看视频一区| 手机成人av网站| 国产精品综合久久久久久久免费| 午夜影院日韩av| 国产精品一及| 国产精品精品国产色婷婷| 亚洲黑人精品在线| 国产欧美日韩一区二区精品| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 丁香六月欧美| 国产毛片a区久久久久| 久久久久久人人人人人| av天堂在线播放| 久久亚洲精品不卡| 天堂√8在线中文| 观看美女的网站| 这个男人来自地球电影免费观看| 国产麻豆成人av免费视频| 亚洲精品乱码久久久v下载方式 | 国产亚洲av嫩草精品影院| 亚洲成人久久爱视频| 国产激情久久老熟女| 韩国av一区二区三区四区| 亚洲国产精品合色在线| ponron亚洲| 国产精品av视频在线免费观看| 天堂√8在线中文| 日韩av在线大香蕉| 给我免费播放毛片高清在线观看| 女人被狂操c到高潮| 亚洲欧美日韩高清在线视频| 国产成+人综合+亚洲专区| 免费av不卡在线播放| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| 最近视频中文字幕2019在线8| 麻豆成人午夜福利视频| 国产69精品久久久久777片 | 久久欧美精品欧美久久欧美| 亚洲成人中文字幕在线播放| 97超视频在线观看视频| 制服丝袜大香蕉在线| 久久久色成人| 免费看日本二区| 啦啦啦观看免费观看视频高清| 一区二区三区国产精品乱码| h日本视频在线播放| 又粗又爽又猛毛片免费看| 欧美在线黄色| 国产一区二区在线av高清观看| 日本a在线网址| 免费观看的影片在线观看| 国产69精品久久久久777片 | 亚洲欧美精品综合久久99| 欧美另类亚洲清纯唯美| 天堂av国产一区二区熟女人妻| 成年版毛片免费区| 91字幕亚洲| 婷婷六月久久综合丁香| 久久中文字幕人妻熟女| 这个男人来自地球电影免费观看| 国产成人一区二区三区免费视频网站| 99久久成人亚洲精品观看| 亚洲国产欧美网| 亚洲午夜精品一区,二区,三区| 免费在线观看影片大全网站| 男女午夜视频在线观看| 久久这里只有精品中国| 亚洲中文av在线| 欧美成人性av电影在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久v下载方式 | 亚洲第一欧美日韩一区二区三区| 看片在线看免费视频| 三级男女做爰猛烈吃奶摸视频| 18禁观看日本| 日韩欧美三级三区| 精品国产乱码久久久久久男人| 日韩有码中文字幕| 观看免费一级毛片| 婷婷亚洲欧美| 此物有八面人人有两片| 国产一区二区激情短视频| 成年人黄色毛片网站| 精品99又大又爽又粗少妇毛片 | 国产高清三级在线| 日日夜夜操网爽| av福利片在线观看| 久久香蕉精品热| 国内少妇人妻偷人精品xxx网站 | 丝袜人妻中文字幕| 久久这里只有精品19| 91老司机精品| 亚洲最大成人中文| 老熟妇仑乱视频hdxx| 国产精品香港三级国产av潘金莲| 极品教师在线免费播放| 好男人在线观看高清免费视频| 色av中文字幕| 国产伦在线观看视频一区| 午夜福利在线在线| 亚洲国产欧美人成| 最近在线观看免费完整版| 黄色丝袜av网址大全| 99视频精品全部免费 在线 | 国产麻豆成人av免费视频| 观看免费一级毛片| 成年版毛片免费区| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 十八禁网站免费在线| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清在线视频| 亚洲 欧美一区二区三区| 国产一级毛片七仙女欲春2| 国产精品免费一区二区三区在线| 日韩三级视频一区二区三区| 久久亚洲真实| 精品一区二区三区四区五区乱码| 观看免费一级毛片| 手机成人av网站| 日韩人妻高清精品专区| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清专用| 美女扒开内裤让男人捅视频| 成年版毛片免费区| 亚洲国产看品久久| 综合色av麻豆| 桃色一区二区三区在线观看| 99久久精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 老汉色av国产亚洲站长工具| 1024手机看黄色片| 国产激情偷乱视频一区二区| 午夜影院日韩av| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 成人亚洲精品av一区二区| 超碰成人久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区在线臀色熟女| 一进一出抽搐动态| 一级毛片精品| 久久久久久人人人人人| 亚洲国产欧洲综合997久久,| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 一二三四在线观看免费中文在| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 国产私拍福利视频在线观看| 99热6这里只有精品| 色老头精品视频在线观看| 午夜影院日韩av| 俄罗斯特黄特色一大片| 97超级碰碰碰精品色视频在线观看| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| 俄罗斯特黄特色一大片| 99久国产av精品| 亚洲av成人一区二区三| 国产精品1区2区在线观看.| 久久精品国产清高在天天线| 男插女下体视频免费在线播放| 91老司机精品| 成人av一区二区三区在线看| 午夜福利免费观看在线| 欧美丝袜亚洲另类 | 白带黄色成豆腐渣| av国产免费在线观看| 91久久精品国产一区二区成人 | 观看美女的网站| av片东京热男人的天堂| 欧美日韩国产亚洲二区| 免费看a级黄色片| 亚洲av电影在线进入| 欧美3d第一页| 色老头精品视频在线观看| 国产一区二区在线观看日韩 | 午夜久久久久精精品| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 成人特级av手机在线观看| 99热6这里只有精品| 老司机深夜福利视频在线观看| 午夜影院日韩av| 性色av乱码一区二区三区2| 国内精品久久久久久久电影| 成人精品一区二区免费| 三级国产精品欧美在线观看 | 亚洲欧美精品综合久久99| 欧美日韩国产亚洲二区| 欧美日本亚洲视频在线播放| 久久中文字幕人妻熟女| 国产成人欧美在线观看| www日本在线高清视频| 日韩欧美精品v在线| 亚洲欧美一区二区三区黑人| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 日本 av在线| 最近在线观看免费完整版| 免费一级毛片在线播放高清视频| 国产三级在线视频| 麻豆av在线久日| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 免费大片18禁| 中文在线观看免费www的网站| 免费看a级黄色片| 久久亚洲真实| 国产高清videossex| 又粗又爽又猛毛片免费看| 日本免费a在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线美女| 久久久久久国产a免费观看| 色视频www国产| 欧美不卡视频在线免费观看| 美女黄网站色视频| 在线观看日韩欧美| 欧美日韩国产亚洲二区| 少妇丰满av| 国产成人aa在线观看| 欧美日韩国产亚洲二区| 99久久精品热视频| tocl精华| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 久9热在线精品视频| 韩国av一区二区三区四区| 午夜a级毛片| 香蕉国产在线看| netflix在线观看网站| 国产精品av视频在线免费观看| 久99久视频精品免费| 国产伦在线观看视频一区| 亚洲18禁久久av| 两人在一起打扑克的视频| 成年版毛片免费区| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 国产av在哪里看| 免费看美女性在线毛片视频| 丰满人妻熟妇乱又伦精品不卡| 国产三级中文精品| 精品久久久久久久末码| 中文字幕av在线有码专区| 久久天堂一区二区三区四区| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 一本一本综合久久| 国产伦一二天堂av在线观看| 国产主播在线观看一区二区| tocl精华| 一个人看视频在线观看www免费 | 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件 | 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| 亚洲精品色激情综合| 很黄的视频免费| 一级黄色大片毛片| 国产午夜精品久久久久久| 久久草成人影院| 国产亚洲精品久久久久久毛片| 91久久精品国产一区二区成人 | 美女cb高潮喷水在线观看 | 亚洲激情在线av| 99热6这里只有精品| 白带黄色成豆腐渣| 国产av不卡久久| 99久国产av精品| 999久久久精品免费观看国产| 舔av片在线| 最近最新中文字幕大全电影3| 男人舔女人的私密视频| 久久精品91无色码中文字幕| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 熟女少妇亚洲综合色aaa.| 大型黄色视频在线免费观看| 精品久久久久久久末码| 国产午夜精品论理片| 十八禁网站免费在线| 欧美中文综合在线视频| 国产av在哪里看| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 黄频高清免费视频| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看 | 国产美女午夜福利| 网址你懂的国产日韩在线| 亚洲无线在线观看| 可以在线观看毛片的网站| av欧美777| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 在线观看美女被高潮喷水网站 | 亚洲av成人一区二区三| 日韩欧美一区二区三区在线观看| 久久这里只有精品19| 亚洲中文字幕日韩| 黄频高清免费视频| 亚洲 欧美一区二区三区| 亚洲美女视频黄频| 国产日本99.免费观看| 久久精品91蜜桃| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 女人被狂操c到高潮| 最好的美女福利视频网| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 午夜福利视频1000在线观看| 国产精品国产高清国产av| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片 | 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 少妇的丰满在线观看| 三级国产精品欧美在线观看 | 特级一级黄色大片| 亚洲无线在线观看| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| 久久人妻av系列| 美女黄网站色视频| 久久伊人香网站| 国产精品香港三级国产av潘金莲| 免费在线观看亚洲国产| 999精品在线视频| a级毛片在线看网站| 亚洲国产日韩欧美精品在线观看 | 在线视频色国产色| 热99re8久久精品国产| 国产一区二区三区视频了| 麻豆av在线久日| 又黄又爽又免费观看的视频| 精品久久久久久久毛片微露脸| 亚洲欧美日韩高清在线视频| 国产精品久久久久久精品电影| 亚洲第一欧美日韩一区二区三区| 国产乱人视频| 亚洲五月婷婷丁香| 一个人看的www免费观看视频| 黄频高清免费视频| 亚洲国产日韩欧美精品在线观看 | 一进一出好大好爽视频| 成人三级做爰电影| 亚洲自拍偷在线| 成年免费大片在线观看| 91字幕亚洲| 国产欧美日韩一区二区精品| 国产精品亚洲一级av第二区| 91久久精品国产一区二区成人 | 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 男女视频在线观看网站免费| 日韩国内少妇激情av| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 伦理电影免费视频| 午夜a级毛片| 色综合欧美亚洲国产小说| 精品久久久久久,| av片东京热男人的天堂| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 12—13女人毛片做爰片一| 午夜精品在线福利| 动漫黄色视频在线观看| www.www免费av| av天堂中文字幕网| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 免费大片18禁| 久久久久免费精品人妻一区二区| 90打野战视频偷拍视频| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 脱女人内裤的视频| 亚洲av美国av| 九色国产91popny在线| 午夜免费观看网址| 国产高清videossex| 国产欧美日韩一区二区三| 欧美国产日韩亚洲一区| 精品国产三级普通话版| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播| 国产成人系列免费观看| 少妇的丰满在线观看| 欧美av亚洲av综合av国产av| 欧美中文日本在线观看视频| 日韩成人在线观看一区二区三区| xxxwww97欧美| 91av网一区二区| 亚洲avbb在线观看| 免费av毛片视频| 最近最新中文字幕大全电影3|