許明珠,錢歡,陳璐,呼海燕*
(成都醫(yī)學(xué)院,四川 成都610500)
TRPV1在LPS引起的大鼠發(fā)熱伴疼痛或痛覺過敏中的作用
許明珠,錢歡,陳璐,呼海燕*
(成都醫(yī)學(xué)院,四川 成都610500)
為探討TRPV1在LPS引起的大鼠發(fā)熱伴疼痛或痛覺過敏中的作用。采用經(jīng)大鼠側(cè)腦室給予TRPV1受體阻斷劑辣椒平(Capsazepine,CPZ)、30 min后腹腔給予LPS誘導(dǎo)發(fā)熱模型的方法。通過微電腦測溫儀和足底疼痛測試儀間斷觀察大鼠體溫(Tc)及痛覺潛伏期的變化;實時熒光定量PCR(RT-qPCR)檢測給予LPS 6h大鼠POA和L3-L5段DRG部位TRPV1mRNA表達(dá)變化。結(jié)果顯示:與對照組相比,CPZ組Tc和痛覺潛伏期無明顯變化;LPS組Tc明顯升高,潛伏期明顯縮短;CPZ+LPS組Tc顯著升高,但潛伏期明顯延長。與LPS相比,CPZ+LPS組Tc升高顯著,持續(xù)時間更久,潛伏期延長更加明顯。相比Control組和CPZ組,LPS組POA和DRG部位TRPV1mRNA相對表達(dá)量均顯著增加,CPZ+LPS組TRPV1mRNA相對表達(dá)量在POA部位無明顯變化,在DRG部位顯著增加。由此可知,正常體溫狀態(tài)下,TRPV1未參與大鼠體溫及痛覺過敏的調(diào)節(jié);通過阻斷TRPV1使發(fā)熱大鼠體溫進(jìn)一步升高,發(fā)熱時程延長,痛覺潛伏期延長,表明發(fā)熱時TRPV1被激活,對LPS誘導(dǎo)的發(fā)熱具有一定的負(fù)調(diào)控作用,同時提高了痛覺敏感性;TRPV1可能在外周和中樞共同參與了體溫調(diào)節(jié)和痛覺調(diào)制。
TRPV1;發(fā)熱;辣椒平;痛覺過敏
發(fā)熱伴疼痛或痛覺過敏是臨床常見癥狀,但發(fā)熱時伴有的疼痛或痛覺過敏產(chǎn)生機(jī)制尚不完全清楚。
辣椒素受體 (transient receptor potential vanilloid 1,TRPV1)是一種非選擇性陽離子通道[1],可被傷害性熱、低pH及刺激性復(fù)合物如辣椒素等多種刺激所激活[2]。TRPV1主要表達(dá)于背根神經(jīng)節(jié)(dorsal root ganglion,DRG)和三叉神經(jīng)節(jié)(trigeminal ganglion)的初級感覺神經(jīng)元,特別是中小型神經(jīng)元[3-4]。盡管TRPV1在中樞神經(jīng)系統(tǒng)的作用仍受爭議,但有報道稱在不同腦區(qū)如下丘腦、小腦、大腦皮層及黑質(zhì)等存在TRPV1表達(dá)[5]。近年來,有文獻(xiàn)稱TRPV1具有調(diào)節(jié)小鼠和人類基礎(chǔ)體溫的作用[6],同時研究發(fā)現(xiàn)TRPV1具有溫度感受特性,在組織細(xì)胞中可能起“溫度轉(zhuǎn)換器”作用[7-8]。另一方面,TRPV1是接受多種傷害性刺激的主要整合者,是炎性疼痛和傷害性刺激的關(guān)鍵分子位點,參與感受疼痛信號[9],故在疼痛及其傳導(dǎo)過程中也扮演著重要角色;基因敲除實驗表明TRPV1受體在炎性痛中發(fā)揮了重要作用[10-11]。因此,TRPV1被認(rèn)為是“多覺感受器”的重要分子[12]。然而,TRPV1在LPS引起的發(fā)熱伴疼痛或痛覺過敏過程中是否起作用尚不清楚。
本研究通過應(yīng)用外源性致熱原脂多糖(lipopolysaecharide,LPS,Sigma公司)來誘導(dǎo)發(fā)熱模型,并結(jié)合側(cè)腦室注射辣椒平(capsazepine,Sigma公司)來觀察不同實驗條件下大鼠體溫和痛覺潛伏期的變化,并檢測POA區(qū)和DRG神經(jīng)元TRPV1 mRNA的表達(dá),為進(jìn)一步探討TRPV1在LPS引起的大鼠發(fā)熱伴疼痛或痛覺過敏中的作用及可能的作用途徑提供實驗依據(jù)。
SPF級雄性成年SD大鼠,購自成都達(dá)碩生物科技有限公司,合格證號:0017306;生產(chǎn)許可證號:scxk(川2013-24),體重250-280 g,單籠飼養(yǎng),自由飲水進(jìn)食,晝夜光照節(jié)律12 h:12 h。微型電腦測溫儀探頭插入肛門約4 cm,選取體溫38℃以下,變化不超過0.5℃的大鼠作為實驗動物。
10%水合氯醛(3 mL/kg)麻醉大鼠,參照大鼠腦圖譜(The Rat Brain in stereotaxic coordinates)以前囟0點為進(jìn)針參照點,在顱骨表面冠狀縫后0.8 mm,矢狀縫旁開1.5 mm處行雙側(cè)側(cè)腦室置管,牙科水泥固定。術(shù)后大鼠單籠飼養(yǎng)7 d進(jìn)行實驗。將動物隨機(jī)分為4組,每組12只。(1)對照組:側(cè)腦室注射溶劑 (溶劑:10%無水乙醇+l0%Tween80+80%生理鹽水配制)5μL,30min后腹腔注射生理鹽水1 mL/kg;(2)LPS組:側(cè)腦室注射溶劑 5 μL,30 min 后腹腔注射LPS1 mL/kg(20 μg/mL,用生理鹽水配制);(3)Capsazepine(CPZ) 組:側(cè)腦室注射 CPZ 5 μL,30min 后腹腔 注射生理鹽水 1mL/kg;(4)CPZ+LPS組:側(cè)腦室注射 CPZ 5 μL,30 min后腹腔注射LPS1 mL/kg(20 μg/mL)。上述各組中隨機(jī)選取4只大鼠在注射生理鹽水或LPS后6 h時斷頭取POA和雙側(cè)L3-L5 DRG,-80℃保存?zhèn)溆谩A硗饷拷M8只動物在各實驗條件下持續(xù)觀察體溫8 h,描繪其體溫及痛覺潛伏期變化曲線。
微型電腦測溫儀(XGN-1000T,北京業(yè)之恒科技有限公司)測定大鼠體溫和足底疼痛測試儀(Hargreaves Test7371,意大利)測定痛覺潛伏期,測定基礎(chǔ)體溫后給予各試劑,后每30 min測量體溫3次,隨后測量痛覺潛伏期3次,取其均值作為體溫和痛覺潛伏期測量指標(biāo),測量8 h實驗結(jié)束。
TRIzol法提取DRG神經(jīng)元總RNA,以β-肌動蛋白(β-actin)為內(nèi)參,行qRT-PCR。逆轉(zhuǎn)錄反應(yīng)按試劑盒說明書操作。引物序列如下:β-actin(上游:5′-cccgcgagtacaaccttct-3′;下游:5′-cgtcatccatggcga-act-3′);TRPV1(上游:5′-caacaggaaggggctcac-3′;下游:5′-tctggagaatgtaggccaagac-3′)。最后根據(jù)Ct值對POA和DRG部位各組目的基因相對表達(dá)量進(jìn)行分析。
采用SPSS17.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計學(xué)分析,所有數(shù)據(jù)采用來表示,各組大鼠體溫和痛覺潛伏期變化采用重復(fù)測量方差分析方法,不同時間點各組大鼠體溫和痛覺潛伏期變化差異采用雙因素方差分析,RT-qPCR結(jié)果采用單因素方差分析,以P<0.05為差異有統(tǒng)計學(xué)意義。作圖軟件采用GraphPad Prism5。
對照組大鼠整個實驗過程中體溫?zé)o明顯變化,體核溫度基本維持在37-38℃。側(cè)腦室注射溶劑,腹腔注射LPS(20 μg/kg)后0.5 h,LPS組大鼠體核溫度開始上升,整個發(fā)熱過程呈現(xiàn)明顯的雙相熱。其中,基礎(chǔ)體溫為37.28±0.11℃,第1個峰值出現(xiàn)在給予LPS后2 h處,體溫為38.45±0.06℃;第2個峰值出現(xiàn)在給予LPS后4.5 h處,體溫達(dá)到38.71±0.05℃,之后體溫逐漸下降,7.5h后體溫恢復(fù)至基礎(chǔ)體溫值左右,為38.08±0.06℃ ,該結(jié)果與文獻(xiàn)報道基本一致[13](圖1A)。與對照相比,CPZ組大鼠體溫沒有明顯變化(圖 1B),CPZ+LPS組大鼠體溫持續(xù)升高(P<0.05),直到給予 LPS后 7.5h(實驗監(jiān)測結(jié)束),體核溫度仍高達(dá)39℃以上,如圖1C所示。相比LPS組,CPZ+LPS組大鼠發(fā)熱持續(xù)時間更久,發(fā)熱幅度更大,無雙相熱或三相熱出現(xiàn),如圖1D所示。
圖1 各組大鼠的體溫變化Fig.1 Change of bady temperature in different groups
對照組大鼠痛覺潛伏期在整個實驗過程中變化不大,維持在7 s左右。相比對照組,LPS組大鼠痛覺潛伏期明顯縮短 (P<0.05),尤其是在3.5、4.5、6.5和8.5 h處,數(shù)值分別為 5.65±0.36 s,5.42±0.31 s,5.16±0.28 s和 4.98±0.18 s(圖 2A);CPZ 組大鼠痛覺潛伏期無顯著變化(圖2B);CPZ+LPS組大鼠痛覺潛伏期明顯延長,尤其在5 h,7 h和8.5 h(P<0.05)處,數(shù)值分別為 8.53±0.29 s,7.50±0.16 s和 7.87±0.38 s(圖2C)。與LPS組相比,CPZ+LPS組大鼠痛覺潛伏期明顯延長(P<0.05)(圖2D)。
圖2 各組大鼠痛覺潛伏期的變化Fig.2 Change of withdrawal latency in different groups
對照組大鼠的下丘腦POA區(qū)存在TRPV1受體的表達(dá)。與對照組相比,CPZ組大鼠POA區(qū)TRPV1受體的表達(dá)無明顯變化,LPS組大鼠下丘腦POA部位 TRPV1相對表達(dá)量明顯增多(P<0.05),CPZ+LPS組大鼠POA部位TRPV1相對表達(dá)量有所增多但無統(tǒng)計學(xué)意義。與LPS組相比,CPZ+LPS組TRPV1相對表達(dá)量有減少趨勢但差異無顯著性(圖3)。
圖3 各組大鼠POA區(qū)TRPV1 mRNA的相對表達(dá)量Fig.3 Relative expression of TRPV1 in POA of each group
對照組DRG的TRPV1 mRNA有表達(dá)。與對照組相比,CPZ組大鼠在實驗6 h后,但相對表達(dá)量無顯著差異,LPS組和CPZ+LPS組大鼠TRPV1 mRNA相對表達(dá)量均明顯增多(P<0.05)(圖 4)。
以上結(jié)果提示,全身系統(tǒng)給予LPS導(dǎo)致大鼠發(fā)熱后,DRG和POA部位的TRPV1 mRNA相對表達(dá)量均明顯增多,而腦室給予TRPV1受體阻斷劑CPZ阻斷中樞TRPV1受體時,其相對表達(dá)量在CPZ+LPS組大鼠POA增多不明顯而在DRG明顯增高。
圖4 各組大鼠DRG部位TRPV1 mRNA的相對表達(dá)量Fig.4 Relative expression of TRPV1 in DRG of each group
近年來TRPV1因在炎性痛和神經(jīng)性痛等多種疼痛中起重要作用而備受關(guān)注[11],其激動劑Capsaicin能引起疼痛反應(yīng)[14],而Capsazepine作為 TRPV1通道特異性受體拮抗劑被廣泛用于痛覺機(jī)制研究。作為多覺感受器的TRPV1不僅在痛覺過敏及觸誘發(fā)痛中發(fā)揮重要作用,而且具有溫度感受特性。正常pH7.4條件下,TRPV1的熱閾值是43℃;酸性條件時,其熱閾值可降至30℃[15]。有文獻(xiàn)顯示口服或皮內(nèi)等途徑給予大鼠Capsaicin能使體溫降低,TRPV1阻斷劑則會引起大鼠體溫升高1℃左右[14];基因敲除小鼠能維持基礎(chǔ)體溫[6],另有研究顯示Capsazepine對正常體溫沒有明顯影響[16]。據(jù)此,我們推測TRPV1可能在維持正常體溫的調(diào)節(jié)中發(fā)揮作用較弱或不發(fā)揮作用。
LPS作為外源性致熱原,常被用作發(fā)熱模型制備。本研究中,腹腔給予LPS后大鼠體溫明顯升高,2 h和4.5 h處分別達(dá)峰值,7.5 h左右下降,接近基礎(chǔ)水平,而在發(fā)熱期間痛覺潛伏期明顯縮短,與文獻(xiàn)報道一致[17-18],說明發(fā)熱伴痛覺過敏模型制備成功;Capsazepine單純阻斷中樞TRPV1,大鼠體溫和痛覺潛伏期均未見明顯變化,提示在正常體溫狀態(tài)下TRPV1通道可能不參與體溫及痛覺的調(diào)節(jié),對熱痛覺敏感性作用也不明顯;阻斷TRPV1后LPS引起的大鼠體溫呈持續(xù)升高狀態(tài)且無雙峰現(xiàn)象,并于發(fā)熱兩小時后體溫明顯高于LPS組,發(fā)熱時程明顯延長,至實驗結(jié)束體溫仍持續(xù)高達(dá)39℃以上,提示TRPV1參與了發(fā)熱時體溫調(diào)節(jié),其可能的原因是當(dāng)體溫升高時激活了TRPV1,限制體溫的進(jìn)一步升高,而阻斷TRPV1則使體溫升高更明顯,且持續(xù)時間更長。產(chǎn)生上述結(jié)果的可能機(jī)制是發(fā)熱時組織代謝增強(qiáng),產(chǎn)生酸性代謝產(chǎn)物增多,組織酸化,導(dǎo)致TRPV1激活閾值降低,或發(fā)熱期間,一些內(nèi)源性配體如大麻素 (cannibinoi)等生成增多,TRPV1受體被激活,通道開放,引起Ca2+內(nèi)流,致使胞內(nèi)cAMP降低,對抗PGE2上調(diào)體溫調(diào)定點的作用,從而使體溫調(diào)定點下降[19]。腦室注射CPZ后阻斷了這種負(fù)調(diào)控作用,體溫明顯升高。此外,中樞阻斷TRPV1后發(fā)熱大鼠痛覺潛伏期明顯延長,表明其也參與了發(fā)熱時痛覺過敏的中樞性調(diào)制。
為進(jìn)一步證實TRPV1對LPS所致發(fā)熱伴疼痛或痛覺過敏的作用及可能的作用途徑,我們采用RT-qPCR檢測了POA區(qū)和DRG神經(jīng)元TRPV1 mRNA相對表達(dá)量,結(jié)果顯示,中樞阻斷TRPV1后,正常體溫大鼠DRG和POA區(qū)的TRPV1 mRNA的表達(dá)無明顯變化,而發(fā)熱大鼠DRG神經(jīng)元TRPV1相對表達(dá)量明顯增多,POA部位的TRPV1相對表達(dá)量無明顯變化。其可能的原因是,中樞CPZ阻斷了TRPV1的激活途徑,信號不能傳至細(xì)胞內(nèi),不能誘導(dǎo)其復(fù)制與轉(zhuǎn)錄,故TRPV1 mRNA的表達(dá)變化不明顯。
通過觀察體溫及痛覺潛伏期的改變以及TRPV1mRNA的表達(dá),綜合分析可推測,正常體溫狀態(tài)下,TRPV1可能未參與大鼠的體溫和痛覺過敏的調(diào)制;通過阻斷TRPV1使發(fā)熱大鼠體溫進(jìn)一步升高,發(fā)熱時程延長,痛覺潛伏期延長,表明發(fā)熱時TRPV1被激活,對LPS誘導(dǎo)的發(fā)熱具有一定的負(fù)調(diào)控作用,同時提高了痛覺敏感性。TRPV1可能在外周和中樞共同參與了體溫調(diào)節(jié)和痛覺調(diào)制。
[1]Wu L J,Sweet T B,Clapham D E.International union of basic and dlinical pharmacology current progress in the mammalian TRP ion channel family[J].Pharmacological Reviews,2010,62(62):381-404.
[2]Lee B H,Zheng J.Proton block of proton-activated TRPV1 current[J].Journal of General Physiology,2015,146(21):147-159.
[3]Cavanaugh D J,Chesler A T,Bráz J M,et al.Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons.[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2011,31(28):10119-10127.
[4]Mishra S K,Tisel S M,Orestes P,et al.TRPV1-lineage neurons are required for thermal sensation[J].Embo Journal,2011,30(3):582-593.
[5]Tóth A,Boczán J,Kedei N,et al.Expression and distribution of vanilloid receptor 1 in the adult rat brain[J].Brain Research Molecular Brain Research,2005,135(12):162-168.
[6]Alawi K M,Aubdool A A,Liang L,et al.The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature[J].Faseb Journal,2015,9(10):4285-4298.
[7]Sravan M,Armati P J,Roufogalis B D.Protein kinase Cmodulation ofthermo-sensitive transientreceptorpotential channels:implications for pain signaling[J].Journal of Natural Science Biology&Medicine,2011,2(1):13-25.
[8]Kobayashi K,Fukuoka T,Obata K,et al.Distinct expression of TRPM8,TRPA1,and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors[J].Journal of Comparative Neurology,2005,493(4):596-606.
[9]Dai Y.TRPs and pain[J].Seminars in Immunopathology,2016,38(3):277.
[10]Mickle A D,Shepherd A J,Mohapatra D P.Sensory TRP channels:the key transducers of nociception and pain[J].Progress in Molecular Biology& Translational Science,2015(131):73-118.
[11]Brederson J D.Kym P R,Szallasi A.Targeting TRP channels for pain relief.[J].European Journal of Pharmacology,2013,716(1-3):61-76.
[12]Yang S,Fan Y,Wei N,et al.A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1[J].Nature Communications,2015,6(5):8297.
[13]王樂,王蘭蘭,曹宇.TRPV1對LPS致熱大鼠體溫及下丘腦中Ca2+濃度和cAMP含量的影響 [J].中國藥理學(xué)通報,2009,25(1):51-55.Wang Le,Wang Lanlan,Cao Yu.The effect of TRPV1 on temperature of LPS-induced fever rat,the concentration of Ca2+and the content of cAMP in hypothalamus[J].Chinese Pharmacological Bulletin,2009,25(1):51-55.
[14]Gavva N R.Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1[J].Trends in Pharmacological Sciences,2008,29(11):550-557.
[15]Tominaga M.The cloned capsaicin receptor integrates multiple pain-producing stimuli.[J].Neuron,1998,21(3):531-543.
[16]Reilly R M,Mcdonald H A,Puttfarcken P S,et al.Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.[J].JournalofPharmacology & ExperimentalTherapeutics,2012,342(2):416-428.
[17]Abe M,Oka T,Hori T,et al.Prostanoids in the preoptic hypothalamus mediate systemiclipopolysaccharide-induced hyperalgesia in rats[J].Brain Research,2001,916(1):41-49.
[18]Benamar K,Yondorf M,Meissler J J,et al.A novel role of cannabinoids:implication in the fever induced by bacterial lipopolysaccharide.[J].Journal of Pharmacology&Experimental Therapeutics,2007,320(20):1127-1133.
[19]楊永錄,劉亞國.體溫生理學(xué):基礎(chǔ)與臨床[M].1版.北京:人民軍醫(yī)出版社,2007:173-175.
Role of TRPV1 in systemicLPS-induced fever and hyperalgesia in rats
Xu Mingzhu,Qian Huan,Chen Lu,Hu Haiyan*
(Chengdu Medical College,Chengdu,Sichuan 610500,China)
To investigate initially the role of TRPV1 in systemic LPS-induced fever with hyperalgesia in rats and possible mechanism.Being pretreated with TRPV1 antagonist capsazepine (CPZ)by intracerebroventricular injection for 30 minutes,rats were intraperitoneally injected LPS to induce fever.The changes of body temperature(Tc)and withdrawal latency were observed by microcomputer thermometer and plantar test,respectively.Meanwhile,the expression of TRPV1mRNA in POA and L3-L5 DRG (dorsal root gangilin)of rats were monitored by RT-qPCR after 6 hours with intraperitoneal injection LPS.The results showed that compared with the Sham,Tc and the withdrawal latency were not changed notably in CPZ;Tc was increased in LPS and in CPZ+LPS;the withdrawal latency was shortened in LPS group and lengthened in CPZ+LPS significantly.Compared with LPS,the altitude and the duration of fever induced by LPS were increased and the withdrawal latency was lengthened after blocking TRPV1 channel with CPZ in CPZ+LPS.The expression of TRPV1 mRNA was increased in POAH and in DRG in LPS,and increased in DRG but not changed significantly in POAH in CPZ+LPS vs Sham or CPZ.The results mentioned above suggest that TRPV1 might be activated during fever induced by LPS,while the altitude and the duration of fever was increased and pain sensitivity was decreased through blocking TRPV1 with CPZ.It is inferred that TRPV1 might negatively regulate core temperature of fever in rats and involves in generation of fever with hyperalgesia not only in the central nervous system but also in peripheral nervous system.
TRPV1;fever;capsazepine;hyperalgesia
R372.5
A
10.13880/j.cnki.65-1174/n.2017.04.013
1007-7383(2017)04-0468-05
2017-01-31
四川省教育廳自然科學(xué)重點項目(10ZA133)
許明珠(1986-),女,碩士研究生,專業(yè)方向為體溫與炎癥。
*通信作者:呼海燕(1964-),女,教授,從事體溫的中樞性調(diào)節(jié)研究,e-mail:hyhoo@163.com。