• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    2017-09-06 11:30:05何夢嬌閆康平王貴欣孫羽涵鐘宜霏羅春暉
    無機化學學報 2017年2期
    關鍵詞:伏安電位電化學

    何夢嬌 閆康平 王貴欣 孫羽涵 鐘宜霏 羅春暉

    (四川大學化學工程學院,成都610065)

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    何夢嬌 閆康平*王貴欣 孫羽涵 鐘宜霏 羅春暉*

    (四川大學化學工程學院,成都610065)

    分別采用循環(huán)伏安改性法和恒電位氧化法對石墨氈進行改性處理,并采用循環(huán)伏安法對其電化學性能進行研究,實驗結果表明,恒電位氧化改性較循環(huán)伏安改性的石墨氈有較好的氧還原活性。通過XRD、FTIR、接觸角和CV針對恒電位氧化處理石墨氈進行了進一步的測試。測試結果顯示,隨恒電位氧化時間的增加,石墨氈表面親水性含氧官能團增加,潤濕性增強。恒電位氧化改性處理25 min的石墨氈氧還原峰電位及電流密度分別為~-0.43 V和~0.003 4 mA·cm-2,顯示出很好的電化學催化性能?;谝陨辖Y果,恒電位氧化法改性處理能夠極大提高石墨氈的氧陰極活性。

    氧陰極;石墨氈;改性;恒電位氧化;循環(huán)伏安

    0 Introduction

    Lithium-oxygen(Li-O2)batteries occupy a leading position in the electric vehicle power competition,in which the substance O2involved in the positive reaction comes from the air outside instead of storing an oxidizer internally with the notable features of high energy density and no pollution[1-4].The battery shows a theoretical specific energy of 1.1×104Wh·kg-1, which is 5~10 times[1-6]more than that of the state-of-the-art Li-ion batteries.However,Li-O2batteries are plaguedbymanyproblems,especiallythelittle catalyticeffectsofthecathodematerialused currently,which limit its rapid development to a great extent[7-9].

    Graphite felt has the advantages of high corrosion resistance,largespecificsurfacearea,excellent conductivity and good thermal stability,which is suitable for applying as the electrode material of Li-O2batteries.However,the electrode prepared directly with graphite felt exhibits a poor electrochemical performance due to the low surface energy of graphite fiber and the existence of large amount of hydrophobic groups[10].

    Itwasreportedthatthesurfaceenergyof graphitefeltcouldbeenhancedbydifferent modifications.Guan et al.[11]investigated the effects of the heat treatment on different carbon materials,and concluded that the electrochemical properties of the treated carbon were improved significantly.Zhong[12], Sun et al.[13-14]foundthattheacidand heat treatment on graphite felt could greatly improve the surface activity of carbonLiu et al.[15]used the modifiedgraphitefeltsastheelectrodeofthe vanadiumbatteries,andfoundthattheelectrochemical performances of the graphite felts modified by electrochemical oxidation were better than that by acid and heat treatments.

    Presently,most of the researches are focused on the effects of the current density on the generation of surfacefunctionalgroupsandoftheelectrolyte concentration on the anodic oxidation degree in the method of galvonostatic or potentiostatic oxidation[16-18]. In this work,the graphite felts were respectively modified by cyclic voltammetry and potentiostatic oxidation,and the electrochemical performances of the modified materials in aqueous solution were studied. The influences of the potentiostatic oxidation duration on wettability,functional groups and the electrochemical properties were investigated.It was shown that the electrocatalytic performance of the graphite felt treated by potentiostatic oxidation was improved obviously,andtheoptimaloxidationtimewas determined.

    1 Experimental

    The Graphite felts obtained by polyacrylonitrile graphitization with the carbon purity of≥99.5%were cut into 5 cm×6 cm wafers with the thickness of 2 mm,further ultrasonic cleaned with anhydrous ethanol and distillated water,and finally dried at 70℃for 24 h in an electric thermostatic drying oven.

    Then the graphite felt wafers were respectively modified at room temperature by cyclic voltammetry (CV)in the potential range of 2.0~-0.01 V with the scan rate of 10 mV·s-1and potentiostatic oxidation (PO)at 2.0 V on a PAR273A Potentiostat/Galvanostat and a 5210 lock-in amplifier controlled by Powersuite software(Princeton Applied Research,USA),in which the as-prepared graphite felt wafer,the graphite electrode,the saturated calomel electrode(SCE)and 1 mol·L-1H2SO4solution were used as the working electrode(WE),thecounter electrode(CE),the reference electrode(RE),and the electrolyte,respectively.

    The crystalline structures of the graphite felts were examined by X-ray diffraction(XRD on a Philips X′Pertpro MPD)with Cu Kα radiation(λ=0.154 06 nm,U=40 kV,I=40 mA)ranging from 10°to 70°at a scan rate of 0.04°·s-1.The functional groups on the surface of the graphite felts were evaluated by Fourier transform infrared spectroscopy(FTIR)on a thermo Nicolet Magna IR 560 spectrometer in the range of 900~3 800 cm-1.The hydrophilicity of the graphite felts was analyzed by sessile drop contact angle measurementusingacontactanglemeasuring apparatus(JC2000C1,Shanghai Zhongchen digital technic apparatus Co.,Ltd).

    The electrochemical performances of the graphite felt materials were examined by cyclic voltammetric (CV)measurements using the same apparatus for the modification introduced above,except that the counter electrode was replaced by a platinum net.The CV measurements of the pristine graphite felts and the CV modified samples were carried out in the potential range of-0.8 and+0.6 V,and the graphite felts modified by PO were carried out in the potentialrange of-0.9 and+0.4 V,which were performed at room temperature with a scan rate of 10 mV·s-1.

    The graphite felts involved in CV measurements were partly sealed with wax to remain an effective area of 1 cm×0.5 cm exposed.All electrodes were mounted in an airtight container[11],and dipped in the electrolyte of 0.1 mol·L-1LiOH solution,which was saturated by oxygen flushing for 30 min before CV measurements.

    2 Results and discussion

    2.1 XRD characterization of the raw graphite felt

    The XRD pattern of the pristine graphite felt is shown in Fig.1,which exhibits a sharp diffraction peak at~26°,and two weak peaks at~43°and~53°, corresponding respectively to(002),(100)and(004) faces of the hexagonal structure[19-20],consisting well with the diffraction pattern of graphite(JPCDS:No.65-6212).

    Fig.1X-ray diffraction pattern of the pristine graphite felt

    2.2 Modification of the graphite felts

    2.2.1 Determination of the modification methods

    The cyclic voltammetric curves of the graphite felts with and without modification are given in Fig.2.

    The CV curves of both modified samples exhibit obvious reduction peaks compared to that of the untreated graphite felt,implying that the electrochemical reaction activity is improved by modification,which was also confirmed by Georgioua et al.[21]and Shao et al.[17].

    Fig.2Cyclic Voltammetric curves of graphite felts with different treatment(a)without modification; (b)mmodified by CV;(c)modified by PO for 25 min

    The reduction peak potentials and the reduction peak current densities of the CV modified sample along with the PO modified sample are~-0.39 V and~0.000 6 mA·cm-2along with~-0.43 V and~0.003 4 mA·cm-2,respectively.Apparently,the reduction peak potentials of the two modified samples are of the same order of the magnitude,whereas the reduction peak current density of the PO modified sample is~4.7 times higher than that of the CV modified.Theoretically,the reduction peak potential refers to the oxygen reduction reaction(ORR)activity,while the reduction peakcurrentdensitytotheamountofreduced oxygen[10-11].Higher current density implies more oxygen consumption,namely the PO modification is more effective.Therefore,potentiostaticoxidationwas determined as the modification method to perform the further investigations in this work.

    2.2.2 PO modification of the graphite felts

    The change of the current intensity with the potentiostatic oxidation time is shown in Fig.3.

    The current intensity descends sharply due to polarization within the beginning 61 s followed by a slight increase,and maintains nearly stable after 200 s.The area under the curve represents the electric consumption during oxidation process,which could be determined by integrating the equation of dQ=dt×dI. Apparently,with the increase of the modification time, the electric consumption increases correspondently,implying that the oxidation degree of graphite felt materials increases simultaneously.The mechanism is discussed in detail below in this article.

    Fig.3Current-time relationship curve during PO modification

    2.3 FTIR characterization of the graphite felt

    The dispersibility,conductivity and wettability of the graphite-felt electrode have remarkable effects on theelectrochemicalperformances,whichresults eventually from the surface functional groups on graphite felts[22-24].The effects of potentiostatic oxidation modifications on the surface functional groups werecharacterizedbyFouriertransforminfrared spectroscope in this work.The typical FTIR spectra of the graphite felts with and without potentiostatic oxidation(PO)treatment are shown in Fig.4.

    The FTIR spectrum of the pristine graphite felt exhibits two broad peaks at around 701 and 1 142 cm-1,which correspond to the out-of-plane C-H bending vibration and the C-O stretching vibration in COOH[25],respectively.All as-oxidized samples present extra five spectral peaks compared with the pristine graphite felt.The peaks at around 2 900 and 1 650 cm-1correspond to the existence of CH&CH2and stretching of C=C,respectively.The peak at around 1 480 cm-1is attributed to the stretching vibrations of asymmetric OH or COOH.The peaks ranging from 1 180 to 1 049 cm-1are the absorbing of C-O[24-28]. Apparently,some hydrophilic functional groups such as OH and COOH[27,29]are generated by modification, which was also confirmed by Yue et al.[30].A schematic description of the formation mechanism of the functional groups is given in Fig.5[31].It is reasonable to suggest that potentiostatic oxidation is an effective method to improve the wettability of the graphite felts.

    Fig.4FTIR spectra of the graphite felts modified by PO for(a)0 min;(b)15 min;(c)20 min;(d)25 min; (e)30 min

    The FTIR spectra of all treated samples show the similar absorption peaks wavenumbers as mentioned above,indicatingthatthetypesofthesurface functional groups of the modified graphite felts are also similar.However,the absorption peak intensities differ from each other of different oxidation times.The functional groups such as OH,CH and CH2exhibit small intensity variation,while the peak intensities of the C-O stretching and the stretching vibrations of asymmetricCOOHincreasedistinctlywiththe oxidation time increasing,implying that the amount of the corresponding hydrophilic functional groups suchas COOH increases.That means,the hydrophilicity of the graphite felts should also increase with the oxidation time increasing,which is further discussed below in this article.

    2.4 Contact angle characterization of the graphite felt surface

    The effects of the potentiostatic oxidation on the wettability of graphite felts were investigated by observing the contact angle,which is illustrated in Fig.6.It is shown that the contact angles of the untreatedandthemodifiedsamplesarequite different.The absorption capacity of the untreated graphite felt is relative low,whereas the graphite felt modified for 30 min absorbs the water completely. The effect of the oxidation time on the contact angle is summarized in Fig.7.

    Fig.6Contact angle characterization of graphite felts modified by PO for(a)0 min;(b)25 min;(c)30 min

    Fig.7Contact angle of graphite felts at different PO time

    The contact angle of the pristine sample as shown in Fig.7 is 146°,which exhibits the strong hydrophobic property,that agrees with the results reported by Sun et al.[13].The contact angles of the modifiedsamplesaresmallerthanthatofthe untreated sample.With the extension of oxidation time from 15 to 30 min,the contact angles reduced gradually.The graphite felt modified for 30 min shows the strongest hydrophilic property with the contact angle 0°.The change tendency of the contact angle withtheoxidationtimeindicatesthatthe hydrophilicity is improved by PO modification,and the hydrophilic degree ascends with the modification timeincreasing.ReferringtotheFTIRresults obtained above,it could be concluded thatthe extended modification time intensifies the oxidation degree,which results in the increase of the wettability and the number of the hydrophilic functional groups on the surface of graphite felt.

    2.5 Electrochemical behavior

    Tofurtherevaluatetheelectrochemical performances of the modified graphite felts,the cyclic voltammetrymeasurementswereperformed.The cyclic voltammetric curves of the samples with and without potentiostatic oxidation are shown in Fig.8. The oxygen reduction potentials and the corresponding current densities of the reduction peaks for the graphite felts modified by potentiostatically oxidizingfor 15,20,25,30 min respectively are presented in Fig.9.

    Fig.8Cyclic Voltammetric curves of graphite felts modified by PO for(a)0 min,(b)15 min, (c)20 min,(d)25 min and(e)30 min

    Fig.9Change of the reduction peak potentials and the current densities with PO time

    No oxygen reduction peaks appear on the cyclic voltammetriccurveofthepristinegraphitefelt, implying that the ORR activity of the untreated sample is relative poor due to its strong hydrophobicity as discussed above.All cyclic voltammetric curves of the modified graphite felts exhibit the reduction peaks,but the corresponding reduction peak potentials and current densities are relative different. The reduction peak potential and the current density of the graphite felt modified for 15 min are the lowest. With the modification time increasing from 15 to 25 min,the oxygen reduction peak potentials change from~-0.49 to~-0.43 V representing the reducing of polarization,and then the current densities increase from~0.002 4 to~0.003 4 mA·cm-2gradually, indicating that the electrochemical performances of the modified graphite felts are improved with the modification time increasing.However,both oxygen reduction peak potential and current density of the material modified for 30 min exhibit the contrary change tendency,suggesting that the ORR activity of thegraphitefeltisdegradedforthelongtime oxidation.

    Not only the amount but also the type of the oxygen-containing functional groups on the surface of thegraphitefeltsincreaseafterpotentiostatic oxidation.Furthermore,with the modification time increasing,the amount of the hydrophilic functional groups increases correspondingly and the hydrophilicity of the graphite felt is accordingly improved[16].The hydrophilic oxygen-containing groups are redox-active, which are able to directly participate in the electrochemical reaction.Therefore,the modified graphite felts exhibit the oxygen reduction reaction activity, which was confirmed by the existence of the reduction peaks on CV curves[32].However,with the oxidation time increasing over 25 min,the ORR activity decreases,indicating that excessive hydrophilic functional groups have negative effects on the electrochemical performances.An interpretation of the phenomenon is schematically described in Fig.10.The surface of the unmodified graphite felts is mostly covered by oxygen due to its low wettability as shown in Fig.10(a),which ORR activity is very poor.The hydrophilic functional groups on the surface obtained by PO modification make the graphite felts to possess the electrochemical reaction activity.At the same time,oxygen as the reactant takes also part in the reaction,where the oxygen channels must be provided to ensure the contact between oxygen and the graphite felts as illustrated in Fig.10(b).Over high wettability resulted from the longtime oxidation causes that most area of the surface is surrounded by water,which blocks the contactofoxygenwiththegraphitefelts,andaccordingly hinders the electrochemical reactions[33]as shown in Fig.10(c).Consequently,the optimal potentiostatic oxidation is supposed to not only increase the amount of the hydrophilic functional groups on the surface but also remain the enough space for oxygen to pass through the water layer and contact with the electrode materials.The graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the preferable electrochemical performance in this work,which is determined as the optimal PO modification conditions.

    Fig.10Schematic description of the solid-liquid interfaces(a)hydrophobic surface; (b)partially hydrophilic surface;(c)hydrophilic surface

    3 Conclusions

    Theoptimalmodificationconditionsforthe graphite felts as the electrode of Li-O2batteries were determined in this work.Both potentiostatic oxidation modification and cyclic voltammetric treatment are able to improve the electrochemical performances of graphite felts.The graphite felts modified by potentiostatic oxidation are more electrochemical active than that treated by cyclic voltammetry.The improvement of the oxygen reduction reaction activity for the PO modified graphite felts is attributed to the increase of the hydrophilicity,owing to the formation of the hydrophilic oxygen-containing functional groups on the surface.Furthermore,the amount of the hydrophilicfunctionalgroupsincreaseswiththePO modification time increasing.However,over high wettability from long time oxidation results in the contact difficulty between oxygen and the graphite felt electrode,and accordingly hinders the electrochemical reactions.As a result,the graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the optimal electrochemical performances.

    [1]Abraham K M,Jiang Z.J.Electrochem.Soc.,1996,143(1):1-5

    [2]Girishkumar G,Mccloskey B,Luntz A C,et al.J.Phys. Chem.Lett.,2010,1(14):2193-2203

    [3]Kraytsberg A,Ein-Eli Y.J.Power Sources,2011,196(3):886-893

    [4]Liu T,Leskes M,Yu W,et al.Science,2015,350(6260):530-533

    [5]Kuboki T,Okuyama T,Ohsaki T,et al.J.Power Sources, 2005,146(1/2):766-769

    [6]Cheng F,Chen J.Chem.Soc.Rev.,2012,41(6):2172-92

    [7]Yuasa M,Matsuyoshi T,Kida T,et al.J.Power Sources, 2013,242(35):216-221

    [8]Débart A,Bao J,Armstrong G,et al.J.Power Sources,2007, 174(2):1177-1182

    [9]Rychcik M,Skyllas-Kazacos M.J.Power Sources,1988,22 (1):59-67

    [10]Lu Y,Li W,Sun F,et al.Carbon,2010,48(11):3079-3090

    [11]Guan P,Wang G,Luo C,et al.Electrochim.Acta,2014,129 (16):318-326

    [12]Zhong S,Padeste C,Kazacos M,et al.J.Power Sources, 1993,45(1):29-41

    [13]Sun B,Skyllas-kazacos M.Electrochim.Acta,1992,37(7): 1253-1260

    [14]Sun B,Skyllas-kazacos M.Cheminform,1992,23(49):18

    [15]LIU Di(劉迪),TAN Ning(譚寧),HUANG Ke-Long(黃可龍), et al.Chinese J.Power Sources(電源技術),2006,30(3):224-223

    [16]Ishifune M,Suzuki R,Mima Y,et al.Electrochim.Acta, 2005,51(1):14-22

    [17]Shao Y,Yin G,Zhang J,et al.Electrochim.Acta,2006,51 (26):5853-5857

    [18]Noel M,Santhanam R.J.Power Sources,1998,72(1):53-65

    [19]Lee G W,Kim J,Yoon J,et al.Thin Solid Films,2008,516 (17):5781-5784

    [20]CHEN Teng-Yuan(陳騰遠),ZHANG Chen-Jun(陳晨軍),LI Zai-Jun(李在均),et al.Chinese J.Inorg.Chem.(無機化學學報),2014,30(12):2691-2698

    [21]Georgiou P,Walton J,Simitzis J.Electrochim.Acta,2010, 55(3):1207-1216

    [22]Seredych M,Hulicova-Jurcakova D,Gao Q L,et al.Carbon, 2008,46(11):1475-1488

    [23]Qiao W,Korai Y,Mochida I,et al.Carbon,2002,40(3):351-358

    [24]Nian Y R,Teng H.J.Electroanal.Chem.,2003,540(2):119-127

    [25]Mawhinney D B,Naumenko V,Kuznetsova A,et al.J.Am. Chem.Soc.,2000,122(10):2383-2384

    [26]El-Hendawy A N A.J.Anal.Appl.Pyrolysis,2006,75(2): 159-166

    [27]Szabó T,Berkesi O,Forgó P,et al.Chem.Mater.,2006,18 (11):2740-2749

    [28]Szabó T,Tombácz E,Illés E,et al.Carbon,2004,44(3):537-545

    [29]Li L,Quinlivan P A,Knappe D R U.Carbon,2002,40(12): 2085-2100

    [30]Yue Z R,Jiang W,Wang L,et al.Carbon,1999,37(11):1785-1796

    [31]HUANG Qiao(黃橋),SUN Hong-Juan(孫紅娟),YANG Yong -Hui(楊勇輝).Chinese J.Inorg.Chem.(無機化學學報), 2011,27(9):1721-1726

    [32]Frackowiak E,Béguin F.Carbon,2001,39(6):937-950

    [33]Moreira J,Ocampo A L,Sebastian P J,et al.Int.J.Hydrogen Energy,2003,28(6):625-627

    Electrochemical Performance of Graphite Felts Modified by Potentiostatic Oxidization for Oxygen Reduction Cathode

    HE Meng-JiaoYAN Kang-Ping*WANG Gui-XinSUN Yu-HanZHONG Yi-YeiLUO Chun-Hui*
    (College of Chemical Engineering,Sichuan University,Chengdu 610065,China)

    The graphite felts were respectively modified by cyclic voltammetry(CV)and potentiostatic oxidation (PO),which electrochemical performances were evaluated by cyclic voltammetric experiments.As a result,PO modification is more effective on improving the oxygen reduction reaction(ORR)activity of the graphite felts than CV treatment.The PO modified graphite felts were further investigated by XRD,FTIR,Contact angle and CV.It is found that the wettability of the graphite felts increases with the increase of potentiostatic oxidation time,due to the increase of the hydrophilic oxygen-containing functional groups on surface.The graphite felt modified by PO for 25 min in this work exhibits the preferable electrochemical performances with the reduction potential~-0.43 V and the current density~0.003 4 mA·cm-2of the reduction peak on CV curve.Consequently,potentiostatic oxidation is an effective and feasible treatment for improving the electrochemical properties of the graphite felts as the electrode material of Li-O2batteries.

    oxygen cathode;graphite felts;modification;potentiostatic oxidation;cyclic voltammetry

    O613.71

    A

    1001-4861(2017)02-0315-08

    10.11862/CJIC.2017.018

    2016-05-18。收修改稿日期:2016-10-27。

    *通信聯(lián)系人。E-mail:cyankp@scu.edu.cn,luochunhui@scu.edu.cn

    猜你喜歡
    伏安電位電化學
    用伏安法測電阻
    電位滴定法在食品安全檢測中的應用
    電化學中的防護墻——離子交換膜
    關于量子電化學
    電化學在廢水處理中的應用
    Na摻雜Li3V2(PO4)3/C的合成及電化學性能
    電鍍廢水處理中的氧化還原電位控制
    淺談等電位聯(lián)結
    基于LABVIEW的光電池伏安特性研究
    電子制作(2016年23期)2016-05-17 03:53:41
    通過伏安特性理解半導體器件的開關特性
    两性夫妻黄色片| 国产v大片淫在线免费观看| 久久热在线av| 在线观看免费视频日本深夜| 男女下面进入的视频免费午夜| 美女黄网站色视频| av超薄肉色丝袜交足视频| 久久香蕉激情| 窝窝影院91人妻| 亚洲专区国产一区二区| 国产精品久久久久久精品电影| 叶爱在线成人免费视频播放| 国产亚洲欧美98| 怎么达到女性高潮| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 久久久久国内视频| xxx96com| 黄色 视频免费看| 免费电影在线观看免费观看| 免费看十八禁软件| 国产人伦9x9x在线观看| 老司机在亚洲福利影院| av欧美777| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 麻豆av在线久日| www.精华液| 亚洲最大成人中文| 国产高清激情床上av| 久久精品国产亚洲av高清一级| av片东京热男人的天堂| 熟妇人妻久久中文字幕3abv| 中文字幕人成人乱码亚洲影| 一个人观看的视频www高清免费观看 | 久久中文看片网| 久久精品91无色码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| 天堂√8在线中文| 男插女下体视频免费在线播放| svipshipincom国产片| 岛国在线观看网站| 男女做爰动态图高潮gif福利片| 两个人视频免费观看高清| 欧美黄色淫秽网站| 婷婷精品国产亚洲av| 99re在线观看精品视频| 日本a在线网址| 首页视频小说图片口味搜索| 好看av亚洲va欧美ⅴa在| 男人舔奶头视频| 亚洲中文av在线| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 琪琪午夜伦伦电影理论片6080| 在线观看免费午夜福利视频| netflix在线观看网站| 日韩精品青青久久久久久| 九色成人免费人妻av| 1024手机看黄色片| 91九色精品人成在线观看| 波多野结衣高清无吗| 九九热线精品视视频播放| 精品熟女少妇八av免费久了| 香蕉久久夜色| av欧美777| 中亚洲国语对白在线视频| 国产高清videossex| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| www.www免费av| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区三区四区免费观看 | 无限看片的www在线观看| 免费看a级黄色片| 我要搜黄色片| 日本在线视频免费播放| 久热爱精品视频在线9| 中文字幕人成人乱码亚洲影| 色精品久久人妻99蜜桃| 国产探花在线观看一区二区| 一进一出抽搐gif免费好疼| 九色成人免费人妻av| 国产成人av教育| 亚洲av片天天在线观看| 亚洲片人在线观看| 桃红色精品国产亚洲av| 天堂av国产一区二区熟女人妻 | 午夜免费激情av| 九色国产91popny在线| 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| 成年人黄色毛片网站| 怎么达到女性高潮| 国产精品久久久av美女十八| 午夜免费激情av| 一级毛片女人18水好多| 亚洲乱码一区二区免费版| 在线观看美女被高潮喷水网站 | 99国产极品粉嫩在线观看| 亚洲性夜色夜夜综合| 最新在线观看一区二区三区| 国产乱人伦免费视频| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 国产av在哪里看| 香蕉丝袜av| 亚洲欧美精品综合久久99| 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品一区二区精品视频观看| 午夜激情av网站| 国产成人欧美在线观看| 国产av麻豆久久久久久久| av免费在线观看网站| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线乱码| 亚洲真实伦在线观看| 在线观看美女被高潮喷水网站 | 欧美中文日本在线观看视频| 亚洲av片天天在线观看| 又粗又爽又猛毛片免费看| 免费高清视频大片| 久久亚洲真实| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 国产在线观看jvid| 91国产中文字幕| 可以在线观看毛片的网站| 午夜免费成人在线视频| 18美女黄网站色大片免费观看| 一级毛片女人18水好多| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 欧美高清成人免费视频www| 亚洲国产精品sss在线观看| 国产精品久久久久久人妻精品电影| 欧美中文综合在线视频| 成人av一区二区三区在线看| 18禁美女被吸乳视频| 午夜久久久久精精品| 悠悠久久av| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 久久久精品大字幕| 丁香欧美五月| 欧美成狂野欧美在线观看| 一区二区三区国产精品乱码| 久久这里只有精品中国| 精品熟女少妇八av免费久了| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| av免费在线观看网站| 变态另类丝袜制服| 亚洲精品国产一区二区精华液| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| a级毛片在线看网站| 欧美一级a爱片免费观看看 | 黄色a级毛片大全视频| 欧美日本亚洲视频在线播放| 麻豆国产av国片精品| 久久久久免费精品人妻一区二区| 一进一出好大好爽视频| 国产97色在线日韩免费| 亚洲中文字幕一区二区三区有码在线看 | 亚洲aⅴ乱码一区二区在线播放 | 69av精品久久久久久| 日韩大尺度精品在线看网址| 国产男靠女视频免费网站| 国模一区二区三区四区视频 | 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 99re在线观看精品视频| x7x7x7水蜜桃| 动漫黄色视频在线观看| 两个人视频免费观看高清| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 看黄色毛片网站| 亚洲精品久久成人aⅴ小说| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 1024香蕉在线观看| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 欧美zozozo另类| 脱女人内裤的视频| 亚洲片人在线观看| 性欧美人与动物交配| 国产一级毛片七仙女欲春2| 俄罗斯特黄特色一大片| 国产av麻豆久久久久久久| 国产精品香港三级国产av潘金莲| 精品无人区乱码1区二区| 黄色成人免费大全| 90打野战视频偷拍视频| 中文字幕久久专区| 国产91精品成人一区二区三区| 国产成人一区二区三区免费视频网站| 全区人妻精品视频| 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人| 99久久精品热视频| 久久久国产成人精品二区| 三级国产精品欧美在线观看 | 成人午夜高清在线视频| 亚洲欧美日韩高清专用| 久久中文字幕人妻熟女| 成年女人毛片免费观看观看9| 老熟妇乱子伦视频在线观看| 亚洲色图av天堂| 日韩欧美 国产精品| 天堂动漫精品| 久久久久性生活片| 国产免费男女视频| 午夜福利欧美成人| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| 国产一区二区三区视频了| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19| 亚洲国产精品合色在线| 午夜a级毛片| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| 天天躁夜夜躁狠狠躁躁| 琪琪午夜伦伦电影理论片6080| 制服诱惑二区| 亚洲一区二区三区不卡视频| 国产又色又爽无遮挡免费看| 亚洲av第一区精品v没综合| 国产不卡一卡二| 亚洲九九香蕉| 99久久国产精品久久久| 国产精品 欧美亚洲| av福利片在线观看| 亚洲欧美日韩无卡精品| 日本免费a在线| 国产成人aa在线观看| 成人欧美大片| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 18禁美女被吸乳视频| 校园春色视频在线观看| 欧美激情久久久久久爽电影| av欧美777| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 亚洲国产欧美人成| 观看免费一级毛片| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 黄色 视频免费看| 免费看十八禁软件| 黄色成人免费大全| 亚洲国产欧美一区二区综合| 亚洲最大成人中文| 国产黄色小视频在线观看| 国产精品电影一区二区三区| 亚洲av美国av| 国产高清videossex| 啦啦啦免费观看视频1| 老司机午夜十八禁免费视频| 日本免费一区二区三区高清不卡| 国产av又大| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 精品久久久久久久人妻蜜臀av| 午夜免费观看网址| 正在播放国产对白刺激| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 国产真人三级小视频在线观看| 在线看三级毛片| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 国产精品98久久久久久宅男小说| 久久亚洲真实| 国产黄片美女视频| 国产精品 国内视频| 国产精品亚洲美女久久久| videosex国产| 国产av麻豆久久久久久久| 深夜精品福利| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 欧美大码av| 午夜福利欧美成人| 亚洲精品国产一区二区精华液| 午夜福利18| 在线观看日韩欧美| 悠悠久久av| 给我免费播放毛片高清在线观看| 欧美成人午夜精品| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 免费看十八禁软件| 熟女电影av网| a级毛片在线看网站| 亚洲国产精品合色在线| 我要搜黄色片| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 欧美日本视频| 舔av片在线| 久久久久久久久中文| 亚洲精品国产精品久久久不卡| 50天的宝宝边吃奶边哭怎么回事| 老汉色av国产亚洲站长工具| 啦啦啦观看免费观看视频高清| 99热只有精品国产| 50天的宝宝边吃奶边哭怎么回事| 久久精品影院6| 九色国产91popny在线| 香蕉av资源在线| 丰满人妻熟妇乱又伦精品不卡| 五月伊人婷婷丁香| 精品欧美一区二区三区在线| 一级a爱片免费观看的视频| 97超级碰碰碰精品色视频在线观看| ponron亚洲| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2| 俺也久久电影网| 欧美成人午夜精品| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| 国产精华一区二区三区| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 国产99白浆流出| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 在线观看免费日韩欧美大片| 欧美三级亚洲精品| 久久九九热精品免费| 国产午夜福利久久久久久| 青草久久国产| 999精品在线视频| 真人一进一出gif抽搐免费| 国产精品久久久久久久电影 | 啪啪无遮挡十八禁网站| 又紧又爽又黄一区二区| www.www免费av| 国产亚洲av高清不卡| 国产精品 国内视频| 婷婷精品国产亚洲av| 色精品久久人妻99蜜桃| 久久香蕉精品热| 黄片大片在线免费观看| 不卡一级毛片| 成人av在线播放网站| 老司机靠b影院| 制服诱惑二区| 嫩草影视91久久| aaaaa片日本免费| 午夜福利在线在线| 久久草成人影院| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| 久久精品夜夜夜夜夜久久蜜豆 | 18禁黄网站禁片免费观看直播| 精品欧美一区二区三区在线| 久久精品国产亚洲av香蕉五月| 在线播放国产精品三级| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 欧美一区二区国产精品久久精品 | 国产高清视频在线观看网站| 国产探花在线观看一区二区| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 最近视频中文字幕2019在线8| 欧美高清成人免费视频www| 极品教师在线免费播放| 亚洲一区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产精品免费视频内射| 亚洲五月婷婷丁香| 午夜福利高清视频| 欧美丝袜亚洲另类 | 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久 成人 亚洲| 国产精品日韩av在线免费观看| 99国产精品99久久久久| 一个人免费在线观看电影 | 国产精品av视频在线免费观看| 高清在线国产一区| 老汉色av国产亚洲站长工具| 国产亚洲精品综合一区在线观看 | 亚洲专区国产一区二区| 精品欧美国产一区二区三| ponron亚洲| 欧美色欧美亚洲另类二区| 丁香欧美五月| 天堂影院成人在线观看| 99精品欧美一区二区三区四区| 亚洲精品av麻豆狂野| 久久久精品欧美日韩精品| 无限看片的www在线观看| cao死你这个sao货| 精品国产亚洲在线| 美女 人体艺术 gogo| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 国产精品,欧美在线| 久久久精品大字幕| 天堂动漫精品| 欧美日本视频| 欧美黑人巨大hd| 动漫黄色视频在线观看| 久久这里只有精品19| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 欧美午夜高清在线| 久久 成人 亚洲| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 妹子高潮喷水视频| 精品欧美国产一区二区三| 国产三级中文精品| 精品久久蜜臀av无| 国产精品一区二区三区四区免费观看 | 久久精品夜夜夜夜夜久久蜜豆 | 男女下面进入的视频免费午夜| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 香蕉久久夜色| 欧美成人一区二区免费高清观看 | 亚洲中文av在线| 一本大道久久a久久精品| 久久久久久久精品吃奶| 日本黄大片高清| 免费在线观看成人毛片| 国产高清激情床上av| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 白带黄色成豆腐渣| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 长腿黑丝高跟| 搡老熟女国产l中国老女人| 欧美黑人巨大hd| 身体一侧抽搐| 又爽又黄无遮挡网站| 他把我摸到了高潮在线观看| 精品久久久久久久人妻蜜臀av| 精品免费久久久久久久清纯| 久久香蕉精品热| 黄色片一级片一级黄色片| 国产在线观看jvid| 亚洲av成人精品一区久久| 中文字幕熟女人妻在线| 激情在线观看视频在线高清| 最近在线观看免费完整版| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 十八禁网站免费在线| 亚洲av片天天在线观看| 日本 欧美在线| 国产高清视频在线播放一区| 久久久久久亚洲精品国产蜜桃av| 亚洲激情在线av| 黄色毛片三级朝国网站| 51午夜福利影视在线观看| 熟女电影av网| 国产视频内射| 宅男免费午夜| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜福利高清视频| 亚洲精品国产一区二区精华液| www.999成人在线观看| 亚洲国产日韩欧美精品在线观看 | 久久人妻福利社区极品人妻图片| 国产亚洲av高清不卡| 午夜激情福利司机影院| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 国产成人精品久久二区二区91| 亚洲精品中文字幕在线视频| 国产97色在线日韩免费| 在线免费观看的www视频| 91九色精品人成在线观看| 久久精品成人免费网站| 久久精品人妻少妇| 熟女少妇亚洲综合色aaa.| 天堂动漫精品| 少妇熟女aⅴ在线视频| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 手机成人av网站| 亚洲色图 男人天堂 中文字幕| 欧美日本亚洲视频在线播放| 两个人看的免费小视频| 免费观看人在逋| 在线观看www视频免费| 成人国语在线视频| 日本精品一区二区三区蜜桃| 日韩国内少妇激情av| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 免费在线观看日本一区| 久久久久久久精品吃奶| 18禁观看日本| 99热这里只有精品一区 | 精品免费久久久久久久清纯| 国产一区二区三区视频了| 久久久久国产一级毛片高清牌| 十八禁网站免费在线| www日本在线高清视频| 成人手机av| 女人高潮潮喷娇喘18禁视频| xxx96com| 亚洲精品中文字幕一二三四区| 老汉色∧v一级毛片| 成人三级做爰电影| 久久久久久国产a免费观看| 亚洲一区中文字幕在线| 99久久国产精品久久久| 国产欧美日韩一区二区三| 一级毛片高清免费大全| 国模一区二区三区四区视频 | 少妇裸体淫交视频免费看高清 | 亚洲五月天丁香| 大型黄色视频在线免费观看| 国产成人啪精品午夜网站| 久久久久久大精品| 一级黄色大片毛片| 欧美丝袜亚洲另类 | 午夜精品久久久久久毛片777| 一a级毛片在线观看| 天堂av国产一区二区熟女人妻 | 亚洲欧美日韩东京热| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一小说| 99国产极品粉嫩在线观看| 观看免费一级毛片| а√天堂www在线а√下载| 久久久久久九九精品二区国产 | 国产黄a三级三级三级人| 国产乱人伦免费视频| 亚洲欧美激情综合另类| 国产成年人精品一区二区| 国内精品一区二区在线观看| 国产麻豆成人av免费视频| 久久天堂一区二区三区四区| 国产成+人综合+亚洲专区| 欧美人与性动交α欧美精品济南到| 亚洲片人在线观看| 欧美日本视频| 精品欧美国产一区二区三| 一区福利在线观看| 亚洲国产日韩欧美精品在线观看 | 日韩大码丰满熟妇| 村上凉子中文字幕在线| 久久久久久久久免费视频了| 久久久久久久精品吃奶| 人人妻,人人澡人人爽秒播| 国产又黄又爽又无遮挡在线| 亚洲欧美一区二区三区黑人| 成人国产一区最新在线观看| 观看免费一级毛片| 亚洲av熟女| 午夜福利在线在线| 精品一区二区三区av网在线观看| 人成视频在线观看免费观看| av中文乱码字幕在线| 日韩大尺度精品在线看网址| 最近最新免费中文字幕在线| 亚洲自拍偷在线| 免费在线观看日本一区| 中国美女看黄片| 97人妻精品一区二区三区麻豆| 成人一区二区视频在线观看| 这个男人来自地球电影免费观看| 搡老岳熟女国产| 中文字幕av在线有码专区| 午夜免费激情av| 男女下面进入的视频免费午夜| 国产亚洲精品av在线| 国产熟女午夜一区二区三区| 国产精品久久久久久精品电影|