• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    2017-09-06 11:30:05何夢嬌閆康平王貴欣孫羽涵鐘宜霏羅春暉
    無機化學學報 2017年2期
    關鍵詞:伏安電位電化學

    何夢嬌 閆康平 王貴欣 孫羽涵 鐘宜霏 羅春暉

    (四川大學化學工程學院,成都610065)

    恒電位氧化改性石墨氈及其氧還原電極的電化學性能

    何夢嬌 閆康平*王貴欣 孫羽涵 鐘宜霏 羅春暉*

    (四川大學化學工程學院,成都610065)

    分別采用循環(huán)伏安改性法和恒電位氧化法對石墨氈進行改性處理,并采用循環(huán)伏安法對其電化學性能進行研究,實驗結果表明,恒電位氧化改性較循環(huán)伏安改性的石墨氈有較好的氧還原活性。通過XRD、FTIR、接觸角和CV針對恒電位氧化處理石墨氈進行了進一步的測試。測試結果顯示,隨恒電位氧化時間的增加,石墨氈表面親水性含氧官能團增加,潤濕性增強。恒電位氧化改性處理25 min的石墨氈氧還原峰電位及電流密度分別為~-0.43 V和~0.003 4 mA·cm-2,顯示出很好的電化學催化性能?;谝陨辖Y果,恒電位氧化法改性處理能夠極大提高石墨氈的氧陰極活性。

    氧陰極;石墨氈;改性;恒電位氧化;循環(huán)伏安

    0 Introduction

    Lithium-oxygen(Li-O2)batteries occupy a leading position in the electric vehicle power competition,in which the substance O2involved in the positive reaction comes from the air outside instead of storing an oxidizer internally with the notable features of high energy density and no pollution[1-4].The battery shows a theoretical specific energy of 1.1×104Wh·kg-1, which is 5~10 times[1-6]more than that of the state-of-the-art Li-ion batteries.However,Li-O2batteries are plaguedbymanyproblems,especiallythelittle catalyticeffectsofthecathodematerialused currently,which limit its rapid development to a great extent[7-9].

    Graphite felt has the advantages of high corrosion resistance,largespecificsurfacearea,excellent conductivity and good thermal stability,which is suitable for applying as the electrode material of Li-O2batteries.However,the electrode prepared directly with graphite felt exhibits a poor electrochemical performance due to the low surface energy of graphite fiber and the existence of large amount of hydrophobic groups[10].

    Itwasreportedthatthesurfaceenergyof graphitefeltcouldbeenhancedbydifferent modifications.Guan et al.[11]investigated the effects of the heat treatment on different carbon materials,and concluded that the electrochemical properties of the treated carbon were improved significantly.Zhong[12], Sun et al.[13-14]foundthattheacidand heat treatment on graphite felt could greatly improve the surface activity of carbonLiu et al.[15]used the modifiedgraphitefeltsastheelectrodeofthe vanadiumbatteries,andfoundthattheelectrochemical performances of the graphite felts modified by electrochemical oxidation were better than that by acid and heat treatments.

    Presently,most of the researches are focused on the effects of the current density on the generation of surfacefunctionalgroupsandoftheelectrolyte concentration on the anodic oxidation degree in the method of galvonostatic or potentiostatic oxidation[16-18]. In this work,the graphite felts were respectively modified by cyclic voltammetry and potentiostatic oxidation,and the electrochemical performances of the modified materials in aqueous solution were studied. The influences of the potentiostatic oxidation duration on wettability,functional groups and the electrochemical properties were investigated.It was shown that the electrocatalytic performance of the graphite felt treated by potentiostatic oxidation was improved obviously,andtheoptimaloxidationtimewas determined.

    1 Experimental

    The Graphite felts obtained by polyacrylonitrile graphitization with the carbon purity of≥99.5%were cut into 5 cm×6 cm wafers with the thickness of 2 mm,further ultrasonic cleaned with anhydrous ethanol and distillated water,and finally dried at 70℃for 24 h in an electric thermostatic drying oven.

    Then the graphite felt wafers were respectively modified at room temperature by cyclic voltammetry (CV)in the potential range of 2.0~-0.01 V with the scan rate of 10 mV·s-1and potentiostatic oxidation (PO)at 2.0 V on a PAR273A Potentiostat/Galvanostat and a 5210 lock-in amplifier controlled by Powersuite software(Princeton Applied Research,USA),in which the as-prepared graphite felt wafer,the graphite electrode,the saturated calomel electrode(SCE)and 1 mol·L-1H2SO4solution were used as the working electrode(WE),thecounter electrode(CE),the reference electrode(RE),and the electrolyte,respectively.

    The crystalline structures of the graphite felts were examined by X-ray diffraction(XRD on a Philips X′Pertpro MPD)with Cu Kα radiation(λ=0.154 06 nm,U=40 kV,I=40 mA)ranging from 10°to 70°at a scan rate of 0.04°·s-1.The functional groups on the surface of the graphite felts were evaluated by Fourier transform infrared spectroscopy(FTIR)on a thermo Nicolet Magna IR 560 spectrometer in the range of 900~3 800 cm-1.The hydrophilicity of the graphite felts was analyzed by sessile drop contact angle measurementusingacontactanglemeasuring apparatus(JC2000C1,Shanghai Zhongchen digital technic apparatus Co.,Ltd).

    The electrochemical performances of the graphite felt materials were examined by cyclic voltammetric (CV)measurements using the same apparatus for the modification introduced above,except that the counter electrode was replaced by a platinum net.The CV measurements of the pristine graphite felts and the CV modified samples were carried out in the potential range of-0.8 and+0.6 V,and the graphite felts modified by PO were carried out in the potentialrange of-0.9 and+0.4 V,which were performed at room temperature with a scan rate of 10 mV·s-1.

    The graphite felts involved in CV measurements were partly sealed with wax to remain an effective area of 1 cm×0.5 cm exposed.All electrodes were mounted in an airtight container[11],and dipped in the electrolyte of 0.1 mol·L-1LiOH solution,which was saturated by oxygen flushing for 30 min before CV measurements.

    2 Results and discussion

    2.1 XRD characterization of the raw graphite felt

    The XRD pattern of the pristine graphite felt is shown in Fig.1,which exhibits a sharp diffraction peak at~26°,and two weak peaks at~43°and~53°, corresponding respectively to(002),(100)and(004) faces of the hexagonal structure[19-20],consisting well with the diffraction pattern of graphite(JPCDS:No.65-6212).

    Fig.1X-ray diffraction pattern of the pristine graphite felt

    2.2 Modification of the graphite felts

    2.2.1 Determination of the modification methods

    The cyclic voltammetric curves of the graphite felts with and without modification are given in Fig.2.

    The CV curves of both modified samples exhibit obvious reduction peaks compared to that of the untreated graphite felt,implying that the electrochemical reaction activity is improved by modification,which was also confirmed by Georgioua et al.[21]and Shao et al.[17].

    Fig.2Cyclic Voltammetric curves of graphite felts with different treatment(a)without modification; (b)mmodified by CV;(c)modified by PO for 25 min

    The reduction peak potentials and the reduction peak current densities of the CV modified sample along with the PO modified sample are~-0.39 V and~0.000 6 mA·cm-2along with~-0.43 V and~0.003 4 mA·cm-2,respectively.Apparently,the reduction peak potentials of the two modified samples are of the same order of the magnitude,whereas the reduction peak current density of the PO modified sample is~4.7 times higher than that of the CV modified.Theoretically,the reduction peak potential refers to the oxygen reduction reaction(ORR)activity,while the reduction peakcurrentdensitytotheamountofreduced oxygen[10-11].Higher current density implies more oxygen consumption,namely the PO modification is more effective.Therefore,potentiostaticoxidationwas determined as the modification method to perform the further investigations in this work.

    2.2.2 PO modification of the graphite felts

    The change of the current intensity with the potentiostatic oxidation time is shown in Fig.3.

    The current intensity descends sharply due to polarization within the beginning 61 s followed by a slight increase,and maintains nearly stable after 200 s.The area under the curve represents the electric consumption during oxidation process,which could be determined by integrating the equation of dQ=dt×dI. Apparently,with the increase of the modification time, the electric consumption increases correspondently,implying that the oxidation degree of graphite felt materials increases simultaneously.The mechanism is discussed in detail below in this article.

    Fig.3Current-time relationship curve during PO modification

    2.3 FTIR characterization of the graphite felt

    The dispersibility,conductivity and wettability of the graphite-felt electrode have remarkable effects on theelectrochemicalperformances,whichresults eventually from the surface functional groups on graphite felts[22-24].The effects of potentiostatic oxidation modifications on the surface functional groups werecharacterizedbyFouriertransforminfrared spectroscope in this work.The typical FTIR spectra of the graphite felts with and without potentiostatic oxidation(PO)treatment are shown in Fig.4.

    The FTIR spectrum of the pristine graphite felt exhibits two broad peaks at around 701 and 1 142 cm-1,which correspond to the out-of-plane C-H bending vibration and the C-O stretching vibration in COOH[25],respectively.All as-oxidized samples present extra five spectral peaks compared with the pristine graphite felt.The peaks at around 2 900 and 1 650 cm-1correspond to the existence of CH&CH2and stretching of C=C,respectively.The peak at around 1 480 cm-1is attributed to the stretching vibrations of asymmetric OH or COOH.The peaks ranging from 1 180 to 1 049 cm-1are the absorbing of C-O[24-28]. Apparently,some hydrophilic functional groups such as OH and COOH[27,29]are generated by modification, which was also confirmed by Yue et al.[30].A schematic description of the formation mechanism of the functional groups is given in Fig.5[31].It is reasonable to suggest that potentiostatic oxidation is an effective method to improve the wettability of the graphite felts.

    Fig.4FTIR spectra of the graphite felts modified by PO for(a)0 min;(b)15 min;(c)20 min;(d)25 min; (e)30 min

    The FTIR spectra of all treated samples show the similar absorption peaks wavenumbers as mentioned above,indicatingthatthetypesofthesurface functional groups of the modified graphite felts are also similar.However,the absorption peak intensities differ from each other of different oxidation times.The functional groups such as OH,CH and CH2exhibit small intensity variation,while the peak intensities of the C-O stretching and the stretching vibrations of asymmetricCOOHincreasedistinctlywiththe oxidation time increasing,implying that the amount of the corresponding hydrophilic functional groups suchas COOH increases.That means,the hydrophilicity of the graphite felts should also increase with the oxidation time increasing,which is further discussed below in this article.

    2.4 Contact angle characterization of the graphite felt surface

    The effects of the potentiostatic oxidation on the wettability of graphite felts were investigated by observing the contact angle,which is illustrated in Fig.6.It is shown that the contact angles of the untreatedandthemodifiedsamplesarequite different.The absorption capacity of the untreated graphite felt is relative low,whereas the graphite felt modified for 30 min absorbs the water completely. The effect of the oxidation time on the contact angle is summarized in Fig.7.

    Fig.6Contact angle characterization of graphite felts modified by PO for(a)0 min;(b)25 min;(c)30 min

    Fig.7Contact angle of graphite felts at different PO time

    The contact angle of the pristine sample as shown in Fig.7 is 146°,which exhibits the strong hydrophobic property,that agrees with the results reported by Sun et al.[13].The contact angles of the modifiedsamplesaresmallerthanthatofthe untreated sample.With the extension of oxidation time from 15 to 30 min,the contact angles reduced gradually.The graphite felt modified for 30 min shows the strongest hydrophilic property with the contact angle 0°.The change tendency of the contact angle withtheoxidationtimeindicatesthatthe hydrophilicity is improved by PO modification,and the hydrophilic degree ascends with the modification timeincreasing.ReferringtotheFTIRresults obtained above,it could be concluded thatthe extended modification time intensifies the oxidation degree,which results in the increase of the wettability and the number of the hydrophilic functional groups on the surface of graphite felt.

    2.5 Electrochemical behavior

    Tofurtherevaluatetheelectrochemical performances of the modified graphite felts,the cyclic voltammetrymeasurementswereperformed.The cyclic voltammetric curves of the samples with and without potentiostatic oxidation are shown in Fig.8. The oxygen reduction potentials and the corresponding current densities of the reduction peaks for the graphite felts modified by potentiostatically oxidizingfor 15,20,25,30 min respectively are presented in Fig.9.

    Fig.8Cyclic Voltammetric curves of graphite felts modified by PO for(a)0 min,(b)15 min, (c)20 min,(d)25 min and(e)30 min

    Fig.9Change of the reduction peak potentials and the current densities with PO time

    No oxygen reduction peaks appear on the cyclic voltammetriccurveofthepristinegraphitefelt, implying that the ORR activity of the untreated sample is relative poor due to its strong hydrophobicity as discussed above.All cyclic voltammetric curves of the modified graphite felts exhibit the reduction peaks,but the corresponding reduction peak potentials and current densities are relative different. The reduction peak potential and the current density of the graphite felt modified for 15 min are the lowest. With the modification time increasing from 15 to 25 min,the oxygen reduction peak potentials change from~-0.49 to~-0.43 V representing the reducing of polarization,and then the current densities increase from~0.002 4 to~0.003 4 mA·cm-2gradually, indicating that the electrochemical performances of the modified graphite felts are improved with the modification time increasing.However,both oxygen reduction peak potential and current density of the material modified for 30 min exhibit the contrary change tendency,suggesting that the ORR activity of thegraphitefeltisdegradedforthelongtime oxidation.

    Not only the amount but also the type of the oxygen-containing functional groups on the surface of thegraphitefeltsincreaseafterpotentiostatic oxidation.Furthermore,with the modification time increasing,the amount of the hydrophilic functional groups increases correspondingly and the hydrophilicity of the graphite felt is accordingly improved[16].The hydrophilic oxygen-containing groups are redox-active, which are able to directly participate in the electrochemical reaction.Therefore,the modified graphite felts exhibit the oxygen reduction reaction activity, which was confirmed by the existence of the reduction peaks on CV curves[32].However,with the oxidation time increasing over 25 min,the ORR activity decreases,indicating that excessive hydrophilic functional groups have negative effects on the electrochemical performances.An interpretation of the phenomenon is schematically described in Fig.10.The surface of the unmodified graphite felts is mostly covered by oxygen due to its low wettability as shown in Fig.10(a),which ORR activity is very poor.The hydrophilic functional groups on the surface obtained by PO modification make the graphite felts to possess the electrochemical reaction activity.At the same time,oxygen as the reactant takes also part in the reaction,where the oxygen channels must be provided to ensure the contact between oxygen and the graphite felts as illustrated in Fig.10(b).Over high wettability resulted from the longtime oxidation causes that most area of the surface is surrounded by water,which blocks the contactofoxygenwiththegraphitefelts,andaccordingly hinders the electrochemical reactions[33]as shown in Fig.10(c).Consequently,the optimal potentiostatic oxidation is supposed to not only increase the amount of the hydrophilic functional groups on the surface but also remain the enough space for oxygen to pass through the water layer and contact with the electrode materials.The graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the preferable electrochemical performance in this work,which is determined as the optimal PO modification conditions.

    Fig.10Schematic description of the solid-liquid interfaces(a)hydrophobic surface; (b)partially hydrophilic surface;(c)hydrophilic surface

    3 Conclusions

    Theoptimalmodificationconditionsforthe graphite felts as the electrode of Li-O2batteries were determined in this work.Both potentiostatic oxidation modification and cyclic voltammetric treatment are able to improve the electrochemical performances of graphite felts.The graphite felts modified by potentiostatic oxidation are more electrochemical active than that treated by cyclic voltammetry.The improvement of the oxygen reduction reaction activity for the PO modified graphite felts is attributed to the increase of the hydrophilicity,owing to the formation of the hydrophilic oxygen-containing functional groups on the surface.Furthermore,the amount of the hydrophilicfunctionalgroupsincreaseswiththePO modification time increasing.However,over high wettability from long time oxidation results in the contact difficulty between oxygen and the graphite felt electrode,and accordingly hinders the electrochemical reactions.As a result,the graphite felts modified by potentiostatically oxidizing at 2.0 V for 25 min exhibits the optimal electrochemical performances.

    [1]Abraham K M,Jiang Z.J.Electrochem.Soc.,1996,143(1):1-5

    [2]Girishkumar G,Mccloskey B,Luntz A C,et al.J.Phys. Chem.Lett.,2010,1(14):2193-2203

    [3]Kraytsberg A,Ein-Eli Y.J.Power Sources,2011,196(3):886-893

    [4]Liu T,Leskes M,Yu W,et al.Science,2015,350(6260):530-533

    [5]Kuboki T,Okuyama T,Ohsaki T,et al.J.Power Sources, 2005,146(1/2):766-769

    [6]Cheng F,Chen J.Chem.Soc.Rev.,2012,41(6):2172-92

    [7]Yuasa M,Matsuyoshi T,Kida T,et al.J.Power Sources, 2013,242(35):216-221

    [8]Débart A,Bao J,Armstrong G,et al.J.Power Sources,2007, 174(2):1177-1182

    [9]Rychcik M,Skyllas-Kazacos M.J.Power Sources,1988,22 (1):59-67

    [10]Lu Y,Li W,Sun F,et al.Carbon,2010,48(11):3079-3090

    [11]Guan P,Wang G,Luo C,et al.Electrochim.Acta,2014,129 (16):318-326

    [12]Zhong S,Padeste C,Kazacos M,et al.J.Power Sources, 1993,45(1):29-41

    [13]Sun B,Skyllas-kazacos M.Electrochim.Acta,1992,37(7): 1253-1260

    [14]Sun B,Skyllas-kazacos M.Cheminform,1992,23(49):18

    [15]LIU Di(劉迪),TAN Ning(譚寧),HUANG Ke-Long(黃可龍), et al.Chinese J.Power Sources(電源技術),2006,30(3):224-223

    [16]Ishifune M,Suzuki R,Mima Y,et al.Electrochim.Acta, 2005,51(1):14-22

    [17]Shao Y,Yin G,Zhang J,et al.Electrochim.Acta,2006,51 (26):5853-5857

    [18]Noel M,Santhanam R.J.Power Sources,1998,72(1):53-65

    [19]Lee G W,Kim J,Yoon J,et al.Thin Solid Films,2008,516 (17):5781-5784

    [20]CHEN Teng-Yuan(陳騰遠),ZHANG Chen-Jun(陳晨軍),LI Zai-Jun(李在均),et al.Chinese J.Inorg.Chem.(無機化學學報),2014,30(12):2691-2698

    [21]Georgiou P,Walton J,Simitzis J.Electrochim.Acta,2010, 55(3):1207-1216

    [22]Seredych M,Hulicova-Jurcakova D,Gao Q L,et al.Carbon, 2008,46(11):1475-1488

    [23]Qiao W,Korai Y,Mochida I,et al.Carbon,2002,40(3):351-358

    [24]Nian Y R,Teng H.J.Electroanal.Chem.,2003,540(2):119-127

    [25]Mawhinney D B,Naumenko V,Kuznetsova A,et al.J.Am. Chem.Soc.,2000,122(10):2383-2384

    [26]El-Hendawy A N A.J.Anal.Appl.Pyrolysis,2006,75(2): 159-166

    [27]Szabó T,Berkesi O,Forgó P,et al.Chem.Mater.,2006,18 (11):2740-2749

    [28]Szabó T,Tombácz E,Illés E,et al.Carbon,2004,44(3):537-545

    [29]Li L,Quinlivan P A,Knappe D R U.Carbon,2002,40(12): 2085-2100

    [30]Yue Z R,Jiang W,Wang L,et al.Carbon,1999,37(11):1785-1796

    [31]HUANG Qiao(黃橋),SUN Hong-Juan(孫紅娟),YANG Yong -Hui(楊勇輝).Chinese J.Inorg.Chem.(無機化學學報), 2011,27(9):1721-1726

    [32]Frackowiak E,Béguin F.Carbon,2001,39(6):937-950

    [33]Moreira J,Ocampo A L,Sebastian P J,et al.Int.J.Hydrogen Energy,2003,28(6):625-627

    Electrochemical Performance of Graphite Felts Modified by Potentiostatic Oxidization for Oxygen Reduction Cathode

    HE Meng-JiaoYAN Kang-Ping*WANG Gui-XinSUN Yu-HanZHONG Yi-YeiLUO Chun-Hui*
    (College of Chemical Engineering,Sichuan University,Chengdu 610065,China)

    The graphite felts were respectively modified by cyclic voltammetry(CV)and potentiostatic oxidation (PO),which electrochemical performances were evaluated by cyclic voltammetric experiments.As a result,PO modification is more effective on improving the oxygen reduction reaction(ORR)activity of the graphite felts than CV treatment.The PO modified graphite felts were further investigated by XRD,FTIR,Contact angle and CV.It is found that the wettability of the graphite felts increases with the increase of potentiostatic oxidation time,due to the increase of the hydrophilic oxygen-containing functional groups on surface.The graphite felt modified by PO for 25 min in this work exhibits the preferable electrochemical performances with the reduction potential~-0.43 V and the current density~0.003 4 mA·cm-2of the reduction peak on CV curve.Consequently,potentiostatic oxidation is an effective and feasible treatment for improving the electrochemical properties of the graphite felts as the electrode material of Li-O2batteries.

    oxygen cathode;graphite felts;modification;potentiostatic oxidation;cyclic voltammetry

    O613.71

    A

    1001-4861(2017)02-0315-08

    10.11862/CJIC.2017.018

    2016-05-18。收修改稿日期:2016-10-27。

    *通信聯(lián)系人。E-mail:cyankp@scu.edu.cn,luochunhui@scu.edu.cn

    猜你喜歡
    伏安電位電化學
    用伏安法測電阻
    電位滴定法在食品安全檢測中的應用
    電化學中的防護墻——離子交換膜
    關于量子電化學
    電化學在廢水處理中的應用
    Na摻雜Li3V2(PO4)3/C的合成及電化學性能
    電鍍廢水處理中的氧化還原電位控制
    淺談等電位聯(lián)結
    基于LABVIEW的光電池伏安特性研究
    電子制作(2016年23期)2016-05-17 03:53:41
    通過伏安特性理解半導體器件的開關特性
    欧美一区二区亚洲| 男女边摸边吃奶| 日韩av免费高清视频| 新久久久久国产一级毛片| 国产 一区 欧美 日韩| 日本熟妇午夜| videossex国产| 欧美人与善性xxx| 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 日韩一本色道免费dvd| 一区二区av电影网| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 另类亚洲欧美激情| 我的女老师完整版在线观看| 欧美性猛交╳xxx乱大交人| 成年女人在线观看亚洲视频 | 久久精品久久久久久久性| 高清av免费在线| 尤物成人国产欧美一区二区三区| 欧美人与善性xxx| 联通29元200g的流量卡| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 久久99热这里只有精品18| 久久久久久久久久久丰满| 18禁裸乳无遮挡免费网站照片| 少妇裸体淫交视频免费看高清| 色婷婷久久久亚洲欧美| 国产黄a三级三级三级人| 亚洲真实伦在线观看| 色视频www国产| 简卡轻食公司| 禁无遮挡网站| 国产乱人视频| 中文字幕av成人在线电影| 亚洲美女视频黄频| 天堂网av新在线| 免费看av在线观看网站| 亚洲美女视频黄频| 午夜免费观看性视频| 久久久久性生活片| 男人爽女人下面视频在线观看| 久久久久久九九精品二区国产| 日本wwww免费看| 久久午夜福利片| 少妇 在线观看| 亚洲精品视频女| 免费黄色在线免费观看| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站 | 看黄色毛片网站| 一级av片app| 久久久精品94久久精品| 亚洲熟女精品中文字幕| 国产免费福利视频在线观看| 人妻夜夜爽99麻豆av| 99热全是精品| 久久久久国产精品人妻一区二区| 久久久成人免费电影| 日韩欧美 国产精品| 国产精品一区二区三区四区免费观看| 精品酒店卫生间| 丰满少妇做爰视频| 亚洲天堂av无毛| 又爽又黄无遮挡网站| 亚洲国产av新网站| 小蜜桃在线观看免费完整版高清| 美女内射精品一级片tv| 我的老师免费观看完整版| 午夜激情福利司机影院| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 在线观看人妻少妇| 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 久久精品久久精品一区二区三区| 国产av码专区亚洲av| 伊人久久精品亚洲午夜| 国产又色又爽无遮挡免| 精品久久久久久久末码| 亚洲精品国产av成人精品| 国产综合精华液| 网址你懂的国产日韩在线| 99热这里只有是精品50| 久热久热在线精品观看| 久久鲁丝午夜福利片| 亚洲精品成人久久久久久| 亚洲色图综合在线观看| 久久久久久久国产电影| 欧美日韩综合久久久久久| 少妇人妻久久综合中文| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 哪个播放器可以免费观看大片| 校园人妻丝袜中文字幕| 国产91av在线免费观看| 精品酒店卫生间| 亚洲国产精品专区欧美| 精品人妻熟女av久视频| 欧美高清成人免费视频www| 久久久午夜欧美精品| 久久影院123| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 亚洲av男天堂| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 高清日韩中文字幕在线| 五月天丁香电影| 美女被艹到高潮喷水动态| freevideosex欧美| 欧美成人一区二区免费高清观看| 欧美潮喷喷水| 深夜a级毛片| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 欧美一级a爱片免费观看看| 国产伦理片在线播放av一区| 老师上课跳d突然被开到最大视频| 亚洲精品一区蜜桃| 久久久久久久久久久丰满| 国产精品人妻久久久久久| 国内精品美女久久久久久| 免费播放大片免费观看视频在线观看| 搡老乐熟女国产| 91在线精品国自产拍蜜月| 成年人午夜在线观看视频| 亚洲av在线观看美女高潮| 日韩国内少妇激情av| 国产免费一级a男人的天堂| 蜜臀久久99精品久久宅男| 高清av免费在线| 18禁裸乳无遮挡免费网站照片| 亚洲久久久久久中文字幕| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 久久久久久久久大av| 免费观看的影片在线观看| 久久久精品免费免费高清| 久久99蜜桃精品久久| 亚洲色图综合在线观看| 国产久久久一区二区三区| 免费av不卡在线播放| 啦啦啦在线观看免费高清www| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 亚洲av免费在线观看| 国产淫片久久久久久久久| 人人妻人人看人人澡| 国产一区二区三区av在线| 欧美激情在线99| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 亚洲av一区综合| 午夜精品国产一区二区电影 | 最近中文字幕高清免费大全6| av黄色大香蕉| 亚洲真实伦在线观看| 性插视频无遮挡在线免费观看| 天堂网av新在线| freevideosex欧美| 色播亚洲综合网| 老女人水多毛片| 婷婷色麻豆天堂久久| 国产黄片视频在线免费观看| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 成年女人在线观看亚洲视频 | 97在线人人人人妻| 制服丝袜香蕉在线| 国产av国产精品国产| 国产日韩欧美在线精品| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 久久久久久久亚洲中文字幕| 欧美日韩精品成人综合77777| 亚洲婷婷狠狠爱综合网| 午夜视频国产福利| 久久久久久伊人网av| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 1000部很黄的大片| 欧美成人一区二区免费高清观看| av在线亚洲专区| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 看十八女毛片水多多多| 久久久国产一区二区| 欧美3d第一页| 国产永久视频网站| 一区二区三区四区激情视频| 久久久精品免费免费高清| 男女下面进入的视频免费午夜| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 777米奇影视久久| 国产精品国产三级国产专区5o| 久久久久久久久久人人人人人人| 久久综合国产亚洲精品| 国产色婷婷99| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看 | 午夜福利高清视频| 在线观看免费高清a一片| 日韩电影二区| 最近最新中文字幕免费大全7| 精品人妻熟女av久视频| 国产男女超爽视频在线观看| 国内揄拍国产精品人妻在线| 国产视频内射| 午夜福利网站1000一区二区三区| 一二三四中文在线观看免费高清| 国产毛片在线视频| 丰满人妻一区二区三区视频av| 国产乱来视频区| 大陆偷拍与自拍| 国产精品精品国产色婷婷| av在线app专区| 日产精品乱码卡一卡2卡三| 国产免费一区二区三区四区乱码| 亚洲最大成人中文| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 国产成人freesex在线| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 亚洲精品,欧美精品| 国产在视频线精品| 黄色配什么色好看| 深爱激情五月婷婷| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 少妇 在线观看| 国产熟女欧美一区二区| 在线观看免费高清a一片| 免费看不卡的av| 少妇人妻久久综合中文| 亚洲人成网站在线播| av网站免费在线观看视频| 国产成人免费无遮挡视频| 久久久欧美国产精品| 久久久成人免费电影| a级毛色黄片| 免费观看在线日韩| 69av精品久久久久久| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 极品教师在线视频| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 偷拍熟女少妇极品色| 国产淫语在线视频| 99久久中文字幕三级久久日本| 国产一级毛片在线| 国产精品国产三级专区第一集| 日本一二三区视频观看| 波野结衣二区三区在线| 午夜福利视频精品| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件| 精品一区二区三卡| 777米奇影视久久| 直男gayav资源| 精品人妻视频免费看| 国产黄色视频一区二区在线观看| 日本黄大片高清| 大片免费播放器 马上看| 国产精品99久久久久久久久| 国产精品爽爽va在线观看网站| 在线观看一区二区三区激情| 免费av毛片视频| 成人二区视频| 亚洲成人精品中文字幕电影| 成年免费大片在线观看| 亚洲一区二区三区欧美精品 | 中文欧美无线码| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 久久99热这里只频精品6学生| 成年女人在线观看亚洲视频 | 欧美老熟妇乱子伦牲交| xxx大片免费视频| 伊人久久国产一区二区| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 精品熟女少妇av免费看| 丝袜美腿在线中文| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 国产欧美日韩精品一区二区| 国产成年人精品一区二区| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 亚洲精品中文字幕在线视频 | 人妻一区二区av| 国产黄a三级三级三级人| 国产一区有黄有色的免费视频| 又大又黄又爽视频免费| 国产69精品久久久久777片| av网站免费在线观看视频| 毛片女人毛片| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 伊人久久精品亚洲午夜| av在线播放精品| 另类亚洲欧美激情| 狂野欧美激情性xxxx在线观看| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 国产午夜精品一二区理论片| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲久久久久久中文字幕| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片| freevideosex欧美| 97精品久久久久久久久久精品| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 中文字幕免费在线视频6| 国产真实伦视频高清在线观看| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 一本一本综合久久| 亚洲欧美一区二区三区黑人 | 日韩不卡一区二区三区视频在线| 国产久久久一区二区三区| 最新中文字幕久久久久| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| 看非洲黑人一级黄片| 18禁动态无遮挡网站| 免费观看a级毛片全部| 成人二区视频| 26uuu在线亚洲综合色| 亚洲精品456在线播放app| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 国产精品成人在线| 成人二区视频| av免费观看日本| 国产69精品久久久久777片| 中文欧美无线码| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 日韩一区二区三区影片| 国产 一区精品| 99热全是精品| 亚洲精品,欧美精品| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 哪个播放器可以免费观看大片| 蜜桃亚洲精品一区二区三区| 看非洲黑人一级黄片| 亚洲人成网站在线播| 视频区图区小说| 高清毛片免费看| 精品国产三级普通话版| 久久久久久久国产电影| 亚洲av男天堂| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 成人午夜精彩视频在线观看| av在线天堂中文字幕| 搞女人的毛片| 欧美成人a在线观看| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 最近2019中文字幕mv第一页| 日本与韩国留学比较| 国产一级毛片在线| 色哟哟·www| 午夜精品国产一区二区电影 | 精品一区二区三区视频在线| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 一个人看视频在线观看www免费| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 少妇人妻 视频| 直男gayav资源| 一本色道久久久久久精品综合| 男女那种视频在线观看| 一级毛片电影观看| 十八禁网站网址无遮挡 | 国产av不卡久久| 成人欧美大片| 国产高清国产精品国产三级 | 久久精品人妻少妇| 亚洲精品456在线播放app| 在线观看一区二区三区| av在线app专区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品一,二区| 亚洲av福利一区| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 一个人看的www免费观看视频| av国产久精品久网站免费入址| 成年女人看的毛片在线观看| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃 | 日韩欧美精品v在线| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 久久久精品欧美日韩精品| 国产一区二区三区综合在线观看 | 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 久热这里只有精品99| 免费大片18禁| 国产男女超爽视频在线观看| 一本一本综合久久| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 3wmmmm亚洲av在线观看| 伊人久久国产一区二区| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 国产日韩欧美亚洲二区| 少妇的逼好多水| 中国美白少妇内射xxxbb| 国产黄片视频在线免费观看| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频 | 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 嫩草影院新地址| 日韩,欧美,国产一区二区三区| videossex国产| 你懂的网址亚洲精品在线观看| 国产 精品1| 亚洲欧美日韩无卡精品| 亚洲天堂国产精品一区在线| 精品一区在线观看国产| 国产精品.久久久| 精品久久久精品久久久| 亚洲精品视频女| 在线亚洲精品国产二区图片欧美 | 免费人成在线观看视频色| 久久久久久国产a免费观看| 18+在线观看网站| 一级二级三级毛片免费看| 三级经典国产精品| 下体分泌物呈黄色| av国产免费在线观看| 在线观看人妻少妇| 搡老乐熟女国产| 久久久久久久久久久免费av| 在线免费十八禁| 亚洲精品,欧美精品| 亚洲精品乱码久久久v下载方式| 亚洲av免费在线观看| 日韩在线高清观看一区二区三区| 一二三四中文在线观看免费高清| 我的老师免费观看完整版| 韩国高清视频一区二区三区| 国产精品福利在线免费观看| 超碰97精品在线观看| 深夜a级毛片| 黄片无遮挡物在线观看| 热99国产精品久久久久久7| 日韩欧美 国产精品| 日韩 亚洲 欧美在线| 2022亚洲国产成人精品| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 韩国高清视频一区二区三区| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 精品国产三级普通话版| 国产在线一区二区三区精| 高清日韩中文字幕在线| 国产探花在线观看一区二区| 男女边吃奶边做爰视频| 在线播放无遮挡| 久久ye,这里只有精品| 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 小蜜桃在线观看免费完整版高清| 久久人人爽人人爽人人片va| 在线观看一区二区三区激情| 日韩三级伦理在线观看| 男女那种视频在线观看| 亚州av有码| 高清毛片免费看| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| eeuss影院久久| 蜜桃久久精品国产亚洲av| 99久久精品热视频| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 熟妇人妻不卡中文字幕| 国产成人91sexporn| 97在线人人人人妻| 最近最新中文字幕免费大全7| 国产色爽女视频免费观看| 色吧在线观看| 日本一本二区三区精品| 久久久国产一区二区| 日韩欧美一区视频在线观看 | 精品一区二区三卡| 在线观看三级黄色| 美女被艹到高潮喷水动态| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| av线在线观看网站| 一级毛片电影观看| 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 男女无遮挡免费网站观看| 免费观看无遮挡的男女| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av蜜桃| 久久精品综合一区二区三区| 夫妻性生交免费视频一级片| 国产视频内射| 亚洲国产欧美在线一区| 日本熟妇午夜| 国产淫片久久久久久久久| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 国语对白做爰xxxⅹ性视频网站| freevideosex欧美| av在线老鸭窝| 最近中文字幕高清免费大全6| 两个人的视频大全免费| 91精品国产九色| 日本猛色少妇xxxxx猛交久久| 成人高潮视频无遮挡免费网站| 丝袜脚勾引网站| 又大又黄又爽视频免费| 免费看不卡的av| 春色校园在线视频观看| 免费观看a级毛片全部| 美女被艹到高潮喷水动态| 18禁在线无遮挡免费观看视频| 只有这里有精品99| 国产乱人偷精品视频| 青青草视频在线视频观看| 人妻夜夜爽99麻豆av| 国产v大片淫在线免费观看| 亚洲欧洲日产国产| 白带黄色成豆腐渣| 韩国av在线不卡| 日韩三级伦理在线观看| 国产精品一区二区三区四区免费观看| 在线免费观看不下载黄p国产| 亚洲欧美成人综合另类久久久| 国产精品不卡视频一区二区| 性色avwww在线观看| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区四那| 能在线免费看毛片的网站| 少妇人妻一区二区三区视频| 美女被艹到高潮喷水动态| 欧美成人一区二区免费高清观看| 91aial.com中文字幕在线观看| 一级毛片aaaaaa免费看小| 国模一区二区三区四区视频| 联通29元200g的流量卡| 王馨瑶露胸无遮挡在线观看| 中文欧美无线码| 可以在线观看毛片的网站| 少妇猛男粗大的猛烈进出视频 | 高清在线视频一区二区三区| 观看美女的网站| 天天躁夜夜躁狠狠久久av| 最近最新中文字幕大全电影3| 亚洲色图综合在线观看| 婷婷色麻豆天堂久久| 午夜精品一区二区三区免费看| 亚洲精品久久午夜乱码| 日韩av在线免费看完整版不卡| 男女那种视频在线观看| 91精品伊人久久大香线蕉| 街头女战士在线观看网站|