• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    免费高清视频大片| 99精品在免费线老司机午夜| 国产精品98久久久久久宅男小说| 亚洲美女视频黄频| 色播亚洲综合网| aaaaa片日本免费| xxx96com| 免费无遮挡裸体视频| 国产精品久久久久久亚洲av鲁大| 视频区欧美日本亚洲| 国产成人影院久久av| 亚洲人成伊人成综合网2020| 欧美极品一区二区三区四区| 精品久久久久久成人av| 黄色丝袜av网址大全| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 老汉色av国产亚洲站长工具| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 制服诱惑二区| e午夜精品久久久久久久| 亚洲免费av在线视频| 在线播放国产精品三级| 国产黄片美女视频| 亚洲美女视频黄频| 桃红色精品国产亚洲av| 久久伊人香网站| 一本大道久久a久久精品| 午夜福利在线在线| 国产亚洲精品久久久久5区| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 黑人巨大精品欧美一区二区mp4| 男女下面进入的视频免费午夜| 亚洲七黄色美女视频| 97超级碰碰碰精品色视频在线观看| 国产精品电影一区二区三区| 又粗又爽又猛毛片免费看| 亚洲熟妇熟女久久| 美女 人体艺术 gogo| 窝窝影院91人妻| 亚洲精品中文字幕在线视频| 亚洲无线在线观看| 无人区码免费观看不卡| 日韩欧美在线乱码| 成人三级黄色视频| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 精品乱码久久久久久99久播| 国产真实乱freesex| 精品第一国产精品| 午夜视频精品福利| 久久香蕉国产精品| 一级作爱视频免费观看| 国产激情欧美一区二区| 欧美又色又爽又黄视频| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 超碰成人久久| 亚洲国产看品久久| 两个人视频免费观看高清| 少妇的丰满在线观看| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| 18美女黄网站色大片免费观看| 国产精品 欧美亚洲| 免费无遮挡裸体视频| 久久这里只有精品中国| 亚洲五月天丁香| 久久伊人香网站| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 国产69精品久久久久777片 | 国产精品1区2区在线观看.| 日本 av在线| 国产精品久久久久久人妻精品电影| 亚洲av电影不卡..在线观看| 午夜两性在线视频| av有码第一页| 国产成人欧美在线观看| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 1024手机看黄色片| 国产av麻豆久久久久久久| 午夜福利高清视频| 国产亚洲精品久久久久5区| 老司机福利观看| 国产精品一区二区三区四区免费观看 | 亚洲天堂国产精品一区在线| 午夜视频精品福利| 岛国在线免费视频观看| 成人三级做爰电影| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 亚洲人成电影免费在线| 国产成+人综合+亚洲专区| 97人妻精品一区二区三区麻豆| 51午夜福利影视在线观看| 91麻豆av在线| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 精品熟女少妇八av免费久了| 欧美日韩国产亚洲二区| 丰满的人妻完整版| 女警被强在线播放| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 久久久久国内视频| 午夜精品一区二区三区免费看| 亚洲专区中文字幕在线| 听说在线观看完整版免费高清| 国产精品亚洲av一区麻豆| 亚洲欧美日韩东京热| avwww免费| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 久久精品人妻少妇| 精品国产乱码久久久久久男人| 婷婷丁香在线五月| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 99热6这里只有精品| 国产成+人综合+亚洲专区| 日本 av在线| 给我免费播放毛片高清在线观看| 国产亚洲精品综合一区在线观看 | 国产av一区在线观看免费| 一区二区三区激情视频| 国产精品精品国产色婷婷| 性欧美人与动物交配| 激情在线观看视频在线高清| 变态另类丝袜制服| 老司机福利观看| 中文亚洲av片在线观看爽| 一二三四社区在线视频社区8| 很黄的视频免费| 超碰成人久久| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| av欧美777| 香蕉国产在线看| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 露出奶头的视频| 90打野战视频偷拍视频| 亚洲一区高清亚洲精品| 一本精品99久久精品77| 亚洲一区中文字幕在线| 啦啦啦免费观看视频1| 丝袜美腿诱惑在线| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站 | 好男人电影高清在线观看| 亚洲,欧美精品.| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 色综合婷婷激情| 三级国产精品欧美在线观看 | 久久香蕉国产精品| 两性夫妻黄色片| 国产aⅴ精品一区二区三区波| 国产亚洲精品一区二区www| 国产在线观看jvid| 好男人在线观看高清免费视频| 成人18禁高潮啪啪吃奶动态图| 欧美大码av| 母亲3免费完整高清在线观看| 日韩大码丰满熟妇| 久久久久精品国产欧美久久久| 欧美日韩国产亚洲二区| 男女午夜视频在线观看| 亚洲中文av在线| 日本一区二区免费在线视频| 国内精品久久久久精免费| 亚洲电影在线观看av| 免费在线观看完整版高清| 在线观看午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 国产成人系列免费观看| 亚洲欧美一区二区三区黑人| 欧美3d第一页| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽| av天堂在线播放| 国产私拍福利视频在线观看| 99久久无色码亚洲精品果冻| 午夜久久久久精精品| 好男人电影高清在线观看| 色播亚洲综合网| 国产精品电影一区二区三区| 亚洲激情在线av| 午夜老司机福利片| 亚洲中文字幕日韩| 岛国在线免费视频观看| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看 | 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 亚洲,欧美精品.| 久久久国产成人精品二区| 一区二区三区激情视频| 亚洲七黄色美女视频| 免费在线观看日本一区| av欧美777| 午夜老司机福利片| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 午夜a级毛片| 久99久视频精品免费| 欧美激情久久久久久爽电影| a级毛片a级免费在线| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 成人av在线播放网站| 色老头精品视频在线观看| 亚洲精品美女久久av网站| 国产激情久久老熟女| 亚洲全国av大片| 母亲3免费完整高清在线观看| 人人妻人人看人人澡| 国产av一区二区精品久久| 国产成人aa在线观看| 小说图片视频综合网站| 免费搜索国产男女视频| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 亚洲av成人精品一区久久| 美女午夜性视频免费| 在线观看免费午夜福利视频| 熟女电影av网| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看 | 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 两个人的视频大全免费| 两性夫妻黄色片| 婷婷亚洲欧美| 精品国产乱码久久久久久男人| 免费观看精品视频网站| 精品国产美女av久久久久小说| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 日本a在线网址| 一级毛片精品| 88av欧美| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影免费在线| 免费在线观看影片大全网站| 午夜免费激情av| 天天一区二区日本电影三级| 国产精品自产拍在线观看55亚洲| 免费观看精品视频网站| 中文字幕人妻丝袜一区二区| 国产片内射在线| 在线视频色国产色| 亚洲欧美激情综合另类| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 国产片内射在线| 国产精品综合久久久久久久免费| 国产成年人精品一区二区| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看| 青草久久国产| 99精品在免费线老司机午夜| 97碰自拍视频| 国产精品久久久久久人妻精品电影| 日日爽夜夜爽网站| 丁香欧美五月| 国模一区二区三区四区视频 | 欧美成人免费av一区二区三区| 亚洲一区中文字幕在线| 欧美性猛交╳xxx乱大交人| 国产1区2区3区精品| 啦啦啦免费观看视频1| 高清毛片免费观看视频网站| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 亚洲无线在线观看| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 毛片女人毛片| 一区二区三区国产精品乱码| 巨乳人妻的诱惑在线观看| 一边摸一边抽搐一进一小说| 99精品在免费线老司机午夜| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 日本a在线网址| 蜜桃久久精品国产亚洲av| 悠悠久久av| 免费观看人在逋| 亚洲av中文字字幕乱码综合| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 精品国产美女av久久久久小说| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| 夜夜夜夜夜久久久久| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 成人特级黄色片久久久久久久| 亚洲黑人精品在线| 国语自产精品视频在线第100页| 日日干狠狠操夜夜爽| 亚洲一区二区三区不卡视频| 制服丝袜大香蕉在线| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 久久国产精品人妻蜜桃| 88av欧美| 欧美最黄视频在线播放免费| 亚洲中文av在线| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| 在线播放国产精品三级| 宅男免费午夜| 欧美大码av| 午夜免费观看网址| 亚洲av成人精品一区久久| 宅男免费午夜| 高潮久久久久久久久久久不卡| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 国产成年人精品一区二区| 欧美久久黑人一区二区| 亚洲av成人av| 成人欧美大片| 亚洲av日韩精品久久久久久密| 黄色a级毛片大全视频| 亚洲激情在线av| 亚洲天堂国产精品一区在线| 日本精品一区二区三区蜜桃| 午夜精品一区二区三区免费看| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 午夜福利免费观看在线| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 手机成人av网站| 岛国在线免费视频观看| 国产精品98久久久久久宅男小说| 久久久久国内视频| 不卡一级毛片| 成人av在线播放网站| 国产爱豆传媒在线观看 | 18禁黄网站禁片免费观看直播| 国产69精品久久久久777片 | 一级片免费观看大全| 成人国产综合亚洲| 久久久久国内视频| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 老司机福利观看| av在线播放免费不卡| 欧美极品一区二区三区四区| 一进一出好大好爽视频| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久| 成人欧美大片| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 久久亚洲真实| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| av福利片在线| 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 精品国产美女av久久久久小说| 最新美女视频免费是黄的| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 男人舔女人的私密视频| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| 亚洲精品国产一区二区精华液| 黄色女人牲交| 国产精品一区二区免费欧美| 变态另类丝袜制服| 欧美日韩国产亚洲二区| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 日本一二三区视频观看| 伊人久久大香线蕉亚洲五| 国产区一区二久久| 亚洲美女视频黄频| 人妻丰满熟妇av一区二区三区| 久久久久久国产a免费观看| 国产熟女xx| 一夜夜www| 亚洲一区中文字幕在线| 男人的好看免费观看在线视频 | 成人国语在线视频| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 91成年电影在线观看| 搞女人的毛片| 精品久久久久久久末码| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 美女免费视频网站| 精品久久久久久久久久久久久| 18禁国产床啪视频网站| 国产99久久九九免费精品| 视频区欧美日本亚洲| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 亚洲人成网站在线播放欧美日韩| 国产成人aa在线观看| 久久国产乱子伦精品免费另类| 精品日产1卡2卡| 亚洲国产看品久久| 国产aⅴ精品一区二区三区波| 变态另类丝袜制服| 搞女人的毛片| 午夜免费激情av| 天天躁夜夜躁狠狠躁躁| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 国产激情偷乱视频一区二区| 制服丝袜大香蕉在线| 国产精品免费视频内射| 99在线视频只有这里精品首页| 99国产极品粉嫩在线观看| 可以免费在线观看a视频的电影网站| 少妇被粗大的猛进出69影院| 国产精品野战在线观看| 午夜亚洲福利在线播放| 中文亚洲av片在线观看爽| 日本一区二区免费在线视频| 国产一区在线观看成人免费| 亚洲av成人精品一区久久| 一个人免费在线观看的高清视频| 天天一区二区日本电影三级| 禁无遮挡网站| 最好的美女福利视频网| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 亚洲av成人一区二区三| a级毛片在线看网站| 亚洲成人久久性| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| netflix在线观看网站| 日韩中文字幕欧美一区二区| 精品无人区乱码1区二区| 国产精品香港三级国产av潘金莲| 中文字幕久久专区| 亚洲九九香蕉| 午夜两性在线视频| 国产视频内射| 久久99热这里只有精品18| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 精品国产亚洲在线| 成人国语在线视频| 免费在线观看完整版高清| 9191精品国产免费久久| 国产精品 国内视频| 亚洲精品在线美女| 女人被狂操c到高潮| 少妇被粗大的猛进出69影院| 亚洲中文日韩欧美视频| 欧美黑人巨大hd| 少妇粗大呻吟视频| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 亚洲国产精品999在线| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 18禁黄网站禁片午夜丰满| 男女下面进入的视频免费午夜| 国产探花在线观看一区二区| 性色av乱码一区二区三区2| 女同久久另类99精品国产91| 久99久视频精品免费| 99re在线观看精品视频| 国产片内射在线| a级毛片a级免费在线| 亚洲欧美精品综合一区二区三区| 国产真实乱freesex| 国产不卡一卡二| 啦啦啦韩国在线观看视频| 亚洲精品中文字幕一二三四区| 国产99白浆流出| 少妇的丰满在线观看| 欧美黑人欧美精品刺激| 亚洲va日本ⅴa欧美va伊人久久| 一本久久中文字幕| 无遮挡黄片免费观看| 午夜久久久久精精品| 极品教师在线免费播放| 国产精品久久久久久久电影 | 成人av在线播放网站| 99re在线观看精品视频| 日日爽夜夜爽网站| 欧美黑人巨大hd| 亚洲av成人不卡在线观看播放网| √禁漫天堂资源中文www| 亚洲av日韩精品久久久久久密| av免费在线观看网站| 免费在线观看黄色视频的| 亚洲精品久久成人aⅴ小说| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美一级毛片孕妇| 国产高清视频在线观看网站| 免费在线观看视频国产中文字幕亚洲| 91国产中文字幕| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| 国产成人精品久久二区二区91| 人妻夜夜爽99麻豆av| 一卡2卡三卡四卡精品乱码亚洲| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 国产精品美女特级片免费视频播放器 | 国产精品av视频在线免费观看| 看黄色毛片网站| 十八禁人妻一区二区| 欧美av亚洲av综合av国产av| 国产探花在线观看一区二区| 久久亚洲真实| 女人高潮潮喷娇喘18禁视频| 91老司机精品| 人成视频在线观看免费观看| 波多野结衣高清无吗| 精品久久久久久久久久久久久| 丝袜美腿诱惑在线| 老汉色∧v一级毛片| 亚洲男人的天堂狠狠| 久久久久久国产a免费观看| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 1024手机看黄色片| 国产精品av视频在线免费观看| 黑人操中国人逼视频| 毛片女人毛片| 男女下面进入的视频免费午夜| 在线国产一区二区在线| 久久性视频一级片| 在线观看一区二区三区| 一级毛片高清免费大全| 亚洲五月婷婷丁香| 国产又色又爽无遮挡免费看| 在线国产一区二区在线| 亚洲成av人片免费观看| 99re在线观看精品视频| 亚洲av成人一区二区三| tocl精华| 国内揄拍国产精品人妻在线| 国产熟女xx| 午夜精品久久久久久毛片777| 国产免费av片在线观看野外av| 久久精品亚洲精品国产色婷小说| 99精品久久久久人妻精品| 日韩欧美一区二区三区在线观看| 久久精品亚洲精品国产色婷小说| 久久性视频一级片| av欧美777| 国产午夜精品论理片| av福利片在线| 18禁国产床啪视频网站| 日韩精品中文字幕看吧| 国产成人一区二区三区免费视频网站| 免费在线观看完整版高清| 手机成人av网站| 国产97色在线日韩免费| 国产午夜精品久久久久久| 中文亚洲av片在线观看爽| 欧美极品一区二区三区四区|