• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    久久久久久久久久人人人人人人| 亚洲色图 男人天堂 中文字幕 | 老熟女久久久| 女的被弄到高潮叫床怎么办| 丝袜喷水一区| 另类亚洲欧美激情| 国产一区二区三区综合在线观看 | 国产熟女欧美一区二区| 美女大奶头黄色视频| 日韩av不卡免费在线播放| 中文天堂在线官网| 纵有疾风起免费观看全集完整版| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 一级黄片播放器| 国产亚洲精品第一综合不卡 | 不卡视频在线观看欧美| 永久网站在线| 亚洲国产av新网站| 在线观看国产h片| 毛片一级片免费看久久久久| 水蜜桃什么品种好| 99久久人妻综合| 亚洲丝袜综合中文字幕| 丝袜在线中文字幕| 一级黄片播放器| 精品99又大又爽又粗少妇毛片| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕人妻熟人妻熟丝袜美| 国产成人精品一,二区| 亚洲精品久久成人aⅴ小说 | 成人手机av| 久久精品国产自在天天线| 成人国语在线视频| 国产日韩一区二区三区精品不卡 | 超碰97精品在线观看| 精品人妻在线不人妻| 永久网站在线| 夫妻午夜视频| a级毛色黄片| 少妇的逼水好多| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| 国产精品久久久久成人av| 蜜桃久久精品国产亚洲av| 免费看光身美女| 日本色播在线视频| 最后的刺客免费高清国语| 欧美成人午夜免费资源| 五月开心婷婷网| 日韩伦理黄色片| 91在线精品国自产拍蜜月| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 日本色播在线视频| 午夜91福利影院| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 国产片内射在线| 一本一本综合久久| 成人午夜精彩视频在线观看| 一区二区三区精品91| av天堂久久9| 韩国av在线不卡| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 观看美女的网站| 超碰97精品在线观看| 不卡视频在线观看欧美| 色婷婷av一区二区三区视频| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 最新的欧美精品一区二区| 亚洲精品国产色婷婷电影| 99热6这里只有精品| 热99久久久久精品小说推荐| 国产精品国产三级专区第一集| 中文字幕最新亚洲高清| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 成人国产麻豆网| 毛片一级片免费看久久久久| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 久久女婷五月综合色啪小说| 午夜av观看不卡| 国产av国产精品国产| 一边摸一边做爽爽视频免费| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 日本欧美国产在线视频| 国产不卡av网站在线观看| 欧美亚洲 丝袜 人妻 在线| 久久人人爽av亚洲精品天堂| 免费看av在线观看网站| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 欧美3d第一页| 亚洲av二区三区四区| 亚洲国产精品专区欧美| 欧美精品亚洲一区二区| 黄色一级大片看看| 中文精品一卡2卡3卡4更新| a级毛片黄视频| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 蜜桃在线观看..| 街头女战士在线观看网站| 久久久久久久精品精品| tube8黄色片| 亚洲国产精品一区二区三区在线| 国产精品女同一区二区软件| av黄色大香蕉| 亚洲精品视频女| 一级二级三级毛片免费看| 91精品国产九色| 国产欧美亚洲国产| xxx大片免费视频| a 毛片基地| 欧美激情 高清一区二区三区| 哪个播放器可以免费观看大片| 亚洲成人手机| 久热这里只有精品99| 国产毛片在线视频| 国产伦精品一区二区三区视频9| av电影中文网址| 免费人成在线观看视频色| 免费观看在线日韩| 久久ye,这里只有精品| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 亚洲无线观看免费| 一级毛片 在线播放| 久久久久网色| 欧美激情极品国产一区二区三区 | av在线播放精品| 在线观看美女被高潮喷水网站| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 国产免费现黄频在线看| 夫妻午夜视频| 久久精品国产鲁丝片午夜精品| 日本-黄色视频高清免费观看| 黑人猛操日本美女一级片| 婷婷色av中文字幕| 午夜福利在线观看免费完整高清在| 国产精品欧美亚洲77777| 999精品在线视频| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 国产乱来视频区| videosex国产| 国产片内射在线| 三上悠亚av全集在线观看| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 伊人久久国产一区二区| av播播在线观看一区| 91精品国产国语对白视频| 久久国产精品男人的天堂亚洲 | 亚洲欧洲精品一区二区精品久久久 | 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 夜夜骑夜夜射夜夜干| 免费看不卡的av| 欧美日韩精品成人综合77777| av电影中文网址| 免费看不卡的av| 日韩精品有码人妻一区| 狂野欧美白嫩少妇大欣赏| 精品人妻熟女毛片av久久网站| 亚洲一级一片aⅴ在线观看| 少妇熟女欧美另类| 精品熟女少妇av免费看| 欧美性感艳星| 丁香六月天网| 爱豆传媒免费全集在线观看| 妹子高潮喷水视频| 美女大奶头黄色视频| 亚洲,一卡二卡三卡| 日本欧美视频一区| 亚洲欧洲国产日韩| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 美女xxoo啪啪120秒动态图| av线在线观看网站| 五月天丁香电影| 人妻 亚洲 视频| 3wmmmm亚洲av在线观看| 少妇 在线观看| 伦理电影大哥的女人| 大码成人一级视频| 三上悠亚av全集在线观看| 纵有疾风起免费观看全集完整版| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 少妇人妻 视频| 曰老女人黄片| 免费高清在线观看日韩| 免费大片18禁| 亚洲丝袜综合中文字幕| 亚洲一级一片aⅴ在线观看| 免费日韩欧美在线观看| 一级黄片播放器| 国产一区二区三区av在线| 中文精品一卡2卡3卡4更新| 国产精品久久久久久av不卡| 18禁动态无遮挡网站| av电影中文网址| 肉色欧美久久久久久久蜜桃| 高清视频免费观看一区二区| 在线观看人妻少妇| 国产av精品麻豆| 在线观看免费日韩欧美大片 | 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 中国三级夫妇交换| 国产成人a∨麻豆精品| 精品一区二区三卡| 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 精品酒店卫生间| 亚洲综合色惰| 久久久久精品性色| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 久久 成人 亚洲| 午夜精品国产一区二区电影| www.av在线官网国产| 国产精品秋霞免费鲁丝片| 成人毛片60女人毛片免费| 人人妻人人澡人人看| 五月天丁香电影| 国产探花极品一区二区| 日本wwww免费看| 成人漫画全彩无遮挡| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 青春草国产在线视频| 免费大片黄手机在线观看| 婷婷色综合大香蕉| 久久国产亚洲av麻豆专区| videos熟女内射| 制服丝袜香蕉在线| 日韩成人av中文字幕在线观看| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 丰满乱子伦码专区| 亚洲av不卡在线观看| 在线看a的网站| 国产精品女同一区二区软件| 欧美精品亚洲一区二区| 伦理电影免费视频| 日本黄色片子视频| 熟女电影av网| 欧美性感艳星| 丝袜喷水一区| 欧美bdsm另类| 午夜老司机福利剧场| 大又大粗又爽又黄少妇毛片口| 这个男人来自地球电影免费观看 | 午夜老司机福利剧场| 老女人水多毛片| 午夜日本视频在线| 久久久久久久精品精品| 丁香六月天网| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 简卡轻食公司| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 一级毛片我不卡| 国产色婷婷99| 超色免费av| 亚洲欧美日韩卡通动漫| 亚洲少妇的诱惑av| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 涩涩av久久男人的天堂| 国产精品无大码| 国产亚洲精品久久久com| 日韩在线高清观看一区二区三区| 国产欧美日韩综合在线一区二区| 一区二区三区乱码不卡18| 两个人免费观看高清视频| 亚洲精品日韩在线中文字幕| 少妇的逼好多水| 97精品久久久久久久久久精品| 亚洲第一av免费看| 91精品三级在线观看| 国产极品粉嫩免费观看在线 | 精品久久久噜噜| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 老熟女久久久| av网站免费在线观看视频| 欧美性感艳星| 日日啪夜夜爽| 久久免费观看电影| 亚洲精品久久午夜乱码| 午夜福利视频在线观看免费| 久久久午夜欧美精品| 王馨瑶露胸无遮挡在线观看| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 久久久久国产网址| 亚洲熟女精品中文字幕| 亚洲国产欧美在线一区| 国产在视频线精品| 考比视频在线观看| 国产一区二区在线观看日韩| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 美女主播在线视频| 插阴视频在线观看视频| 考比视频在线观看| 26uuu在线亚洲综合色| 春色校园在线视频观看| 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 少妇的逼水好多| 少妇丰满av| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 日韩制服骚丝袜av| 国产亚洲精品第一综合不卡 | 精品少妇内射三级| 色94色欧美一区二区| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 国产在线免费精品| av卡一久久| 国产免费现黄频在线看| 最后的刺客免费高清国语| 老司机影院毛片| 丝袜美足系列| 观看av在线不卡| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 日本黄色片子视频| 欧美人与性动交α欧美精品济南到 | 在线观看免费日韩欧美大片 | 少妇人妻久久综合中文| 亚洲少妇的诱惑av| 国产欧美另类精品又又久久亚洲欧美| 男人添女人高潮全过程视频| 97在线视频观看| 精品视频人人做人人爽| 欧美另类一区| 亚洲国产精品999| 成人影院久久| 亚洲在久久综合| xxxhd国产人妻xxx| 久久久久久久久久久免费av| 性色avwww在线观看| 国产av精品麻豆| 亚洲综合精品二区| 夜夜看夜夜爽夜夜摸| 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 欧美 亚洲 国产 日韩一| 永久网站在线| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 女性被躁到高潮视频| 纵有疾风起免费观看全集完整版| 少妇人妻精品综合一区二区| 2022亚洲国产成人精品| 国产精品久久久久久久久免| 一区二区三区精品91| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 97在线人人人人妻| 欧美精品国产亚洲| 18+在线观看网站| 搡老乐熟女国产| 亚洲欧美成人精品一区二区| 久久青草综合色| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 国产免费现黄频在线看| 久久国内精品自在自线图片| 国产精品 国内视频| 简卡轻食公司| 婷婷色麻豆天堂久久| 久久久精品区二区三区| 最新中文字幕久久久久| 国产亚洲精品第一综合不卡 | 亚洲精品日本国产第一区| 久久99一区二区三区| 国产成人aa在线观看| 久久久午夜欧美精品| 欧美丝袜亚洲另类| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 人妻 亚洲 视频| 亚洲国产精品一区三区| 女人久久www免费人成看片| 亚洲婷婷狠狠爱综合网| 在线看a的网站| 亚洲人与动物交配视频| 男人操女人黄网站| 精品人妻一区二区三区麻豆| 少妇的逼好多水| 久久毛片免费看一区二区三区| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 一本一本综合久久| 2022亚洲国产成人精品| 久久久久久久国产电影| 亚洲精品乱久久久久久| 少妇的逼水好多| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 国产亚洲精品久久久com| 久久久久久久久久久久大奶| 免费看av在线观看网站| 亚洲国产av新网站| 日韩电影二区| 天堂8中文在线网| www.av在线官网国产| 成人无遮挡网站| 成年美女黄网站色视频大全免费 | 国产欧美日韩综合在线一区二区| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 人成视频在线观看免费观看| 青春草国产在线视频| 欧美日韩精品成人综合77777| 伊人久久国产一区二区| 9色porny在线观看| 精品酒店卫生间| 婷婷色综合www| 精品人妻偷拍中文字幕| 在线观看www视频免费| 亚洲精品日韩av片在线观看| av在线app专区| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 最近的中文字幕免费完整| 国产精品无大码| 亚洲精品一区蜜桃| 亚洲欧洲日产国产| 人妻制服诱惑在线中文字幕| 99久久精品国产国产毛片| 亚洲精品亚洲一区二区| 欧美 日韩 精品 国产| 色吧在线观看| 考比视频在线观看| 久久 成人 亚洲| 亚洲第一区二区三区不卡| 亚洲精品第二区| 欧美bdsm另类| 精品一区二区三卡| 天美传媒精品一区二区| 国产精品久久久久久久电影| 欧美xxxx性猛交bbbb| 亚洲色图 男人天堂 中文字幕 | 大片免费播放器 马上看| 国产免费福利视频在线观看| 最近手机中文字幕大全| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 精品久久久久久电影网| 99久久精品一区二区三区| 最近中文字幕高清免费大全6| 国产高清不卡午夜福利| 狂野欧美激情性bbbbbb| 日本午夜av视频| 免费黄频网站在线观看国产| 中国国产av一级| 亚洲av二区三区四区| 久久久久精品性色| 美女主播在线视频| 国产色婷婷99| 亚洲精品久久午夜乱码| 成年美女黄网站色视频大全免费 | 国产成人91sexporn| 一个人免费看片子| 丰满迷人的少妇在线观看| 亚洲人成77777在线视频| 亚洲国产色片| 3wmmmm亚洲av在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人av激情在线播放 | 啦啦啦中文免费视频观看日本| 熟女电影av网| 久久99热6这里只有精品| 亚洲国产av新网站| 午夜免费男女啪啪视频观看| 久久韩国三级中文字幕| 伊人亚洲综合成人网| 国产精品蜜桃在线观看| 一级片'在线观看视频| 欧美激情国产日韩精品一区| av电影中文网址| 欧美亚洲 丝袜 人妻 在线| 精品亚洲乱码少妇综合久久| 免费av中文字幕在线| 性高湖久久久久久久久免费观看| 欧美日韩av久久| 哪个播放器可以免费观看大片| 在线观看一区二区三区激情| 天美传媒精品一区二区| 日本黄大片高清| 在线观看www视频免费| 日韩大片免费观看网站| 国产成人一区二区在线| 大香蕉97超碰在线| 一区在线观看完整版| 日本欧美视频一区| 啦啦啦中文免费视频观看日本| 三级国产精品欧美在线观看| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 成人免费观看视频高清| 狂野欧美白嫩少妇大欣赏| 草草在线视频免费看| 国产午夜精品一二区理论片| 欧美日韩国产mv在线观看视频| 2022亚洲国产成人精品| 老女人水多毛片| 黄片播放在线免费| 男女免费视频国产| 特大巨黑吊av在线直播| 亚洲欧洲日产国产| 欧美最新免费一区二区三区| 中文字幕精品免费在线观看视频 | 人人妻人人爽人人添夜夜欢视频| 国产黄频视频在线观看| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说| 日本免费在线观看一区| 亚洲高清免费不卡视频| 女人久久www免费人成看片| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 丰满乱子伦码专区| 久久这里有精品视频免费| 高清av免费在线| 亚洲三级黄色毛片| 欧美精品国产亚洲| 日本欧美视频一区| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 内地一区二区视频在线| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 国产精品蜜桃在线观看| 观看av在线不卡| 国产欧美日韩一区二区三区在线 | 国产亚洲精品久久久com| 免费观看在线日韩| 我要看黄色一级片免费的| 你懂的网址亚洲精品在线观看| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 最近中文字幕2019免费版| 国模一区二区三区四区视频| 久久久久久久久久人人人人人人| 99九九在线精品视频| 人人妻人人澡人人爽人人夜夜| 久久午夜福利片| 美女脱内裤让男人舔精品视频| 一本久久精品| av.在线天堂| 久久久久网色| 一级,二级,三级黄色视频| 晚上一个人看的免费电影| av免费观看日本| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 97在线人人人人妻| 亚洲精品乱久久久久久| 成人综合一区亚洲| 黑人猛操日本美女一级片| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 看十八女毛片水多多多| 成人无遮挡网站| 久久人妻熟女aⅴ| a 毛片基地| 久久99精品国语久久久| 欧美亚洲日本最大视频资源| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 国产成人精品一,二区|