• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    2017-09-06 11:30:12呂玲玲朱元成左國(guó)防袁焜王永成
    關(guān)鍵詞:超氧化物血紅素多態(tài)

    呂玲玲 朱元成 左國(guó)防 袁焜 王永成

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)(2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理的理論研究

    呂玲玲*,1朱元成1左國(guó)防1袁焜1王永成2

    (1天水師范學(xué)院化學(xué)工程與技術(shù)學(xué)院,天水741001)
    (2西北師范大學(xué)化學(xué)化工學(xué)院,蘭州730070)

    采用密度泛函DFT-B3LYP理論對(duì)非血紅素鐵超氧化物活化丙烯分子多態(tài)反應(yīng)機(jī)理進(jìn)行了探討.研究結(jié)果表明氫原子抽取過程遵守單態(tài)反應(yīng)機(jī)制,主要在基態(tài)高自旋七重態(tài)勢(shì)能面進(jìn)行,且具有較低活化能(ΔG≠=65.6 kJ·mol-1),非血紅素鐵超氧化物可以作為有效氧化劑抽取氫原子。單態(tài)反應(yīng)機(jī)制可能歸因于近來建議的交換-加強(qiáng)反應(yīng)原則(EER,鐵中心具有較大交換穩(wěn)定作用)。對(duì)于O-O鍵的活化,在CASSCF(10,8)/6-31+G(d)//TZVP水平下,勢(shì)能面交叉區(qū)內(nèi),高自旋七重態(tài)(S1)和五重態(tài)(Q0)的自旋-軌道耦合(SOC)常數(shù)分別為2.26和2.19 cm-1。軌道分析表明兩條發(fā)生翻轉(zhuǎn)自旋軌道具有相同空間組成(π*sub),SOC禁阻,因此通過SOC作用反應(yīng)體系不可能有效地從七重態(tài)(S=3)勢(shì)能面系間穿越到五重態(tài)(S=2)勢(shì)能面,系間穿越可能發(fā)生在反應(yīng)最后的退出階段。

    非血紅素鐵超氧化物;多態(tài)反應(yīng)機(jī)理;系間竄越;自旋軌道耦合

    0 Introduction

    Mononuclear non-heme Fe enzymes catalyze a diverserangeofoxidationreactions,including hydroxylation,halogenation,ring closure,desaturation and electrophilic aromatic substrate that are important inmedical,pharmaceutical,andenvironmental applications[1-2].Several species including ferryl-oxo, ferric-superoxo,and ferric-peroxy have been proposed or found to act as oxidants in these enzymes[2]. However,our understanding of the non-heme ferricsuperoxo complexes is rather scant,as opposed to the well studied oxy-heme species.Thus,mononuclear non-hemecomplexesinenzymesandsynthetic analogueshaveattractedconsiderableinterest recently.Thelower-valentferric-superoxospecies havebeendirectlyobservedinnaphthalene dioxygenase(NDO)and homo-protoctaechute 2,3-dioxygenase(HPCD)[3].Furthermore,synthetic ferricsuperoxoandothermetal-superoxospecieswere recently reported to be capable of catalyzing oxidation, includingC-Hbondactivation[4].Interestingly, comparedwithhemeenzymes,manynon-heme enzymes can use ferric-superoxo species as an oxidant but only a few heme enzymes(tryptophan 2,3-dioxygenase(TDO),and indoleamine 2,3-dioxygenase (IDO)so far)use ferric-superoxo species[5-6],which has also attracted our attention as a candidate for the active oxidant in the non-heme enzymes catalysis. Morokuma and co-workers compared reactivity of several vital ferryl-oxo and ferric-superoxo model complexes including title non-heme complex 1 model through DFT calculations to provide clues for rational design of ferric-superoxo oxidants[2],where it has been shown that a dominant feature of these reactions is the two-state reactivity(TSR)and multistate reactivity (MSR)that transpires due to the close proximity of the different multi-spin states in the ground state[7].

    Scheme 1A model reaction for the propene catalyzed by non-heme ferric-superoxo species

    For ferric-superoxo complexes,the findings show that ferric-superoxo species can be converted to a ferryl-oxo complex via O-O bond cleavage,thus these species seem to shareonecommonfundamental feature of the TSR/MSR mechanisms,they involve energy profiles of at least two spin states that either crossing or remaininproximity.Thus,thetitle reaction possibly occurs on two or more potential energy surfaces(PESs)under thermal conditions.

    Therefore,detailed analyses of crossing seam between the different PESs are important in order to better understand the TSR/MSR mechanism of the propenecatalyzedbynon-hemeferric-superoxo species(Scheme 1).This kind of knowledge is essential for understanding the whole reaction mechanism and is useful for establishing an appropriate model for the O-O bond cleavage processes.To our knowledge,a deep theoretical study for the propene catalyzed by non-hemeferric-superoxospecieshasnotbeen reported.However,since an experimental proof of mechanism is not a simple matter,in this sense, theoretical chemistry,specifically density functionaltheory(DFT)has been playing an essential role in role inprovidingmechanisticdataandstructuresof unstableintermediatesandinderivinguseful concepts.In the present paper we have performed hybrid DFT calculations on the reactions of the propenecatalyzedbynon-hemeferric-superoxo compound 1 models(Fig.1)to paint global pictures and discussed crossing seams,spin-orbit coupling (SOC)and possible spin-inversion processes in the OO bond cleavage step.

    1 Computational details

    1.1 Geometrical optimization

    Energiesandgeometriesofthereaction intermediates and the transition states were calculated using the Gaussian 09 program package[8]and the unrestricted hybrid density functional UB3LYP with the 6-31+G(d)basis set[9].The basis set used in DFT calculationforsinglepointenergiesonfinal geometries is LACVP+*[10],which has been widely used for transition-metal-containing systems and has an effective potential that accounts for the scalar relativistic effects in iron.At the non-local functional UBP86 level,single-point energy calculations were performed using the LACVP+*basis set for all the atoms.The PCM approach for accounting solvent effects(single points with CH3CN as solvent)was applied in the UBP86/LACVP+*level.However, UBP86 tended to overstabilize the low-spin ground state resulting in a large energy splitting between spin states,and in some cases this lead to an incorrect ground state(see Supporting Information).In addition, previous investigations of transition metal compounds employing the B3LYP functional by other groups[11]and us[12]indicated that this approach shows a very promising performance to predict properties such as bond dissociation energies,geometries,and harmonic frequencies with an accuracy comparable to that obtained from highly correlated wave function based ab initio methods.

    1.2 Treatment of spin-orbit coupling

    The SOC matrix elements are treated by an accuratemulticentermean-field(RI-SOMF) approximation[13-15]with the reasonable complete active space self-consistent field,CASSCF(10,8)(ten activateelectronsoccupytheeightmetal-ligand activate orbitals).An efficient implementation of the SOMF concept was explained,which is based on the following formulation of the effective one-electron operator[16]:

    2 Results and discussion

    2.1 Electronicstructuresofferric-superoxo species

    The optimized geometries and energetic data for the septet,quintet,and triplet electronic states aredepictedinFig.1andTableS1(Supporting information),respectively.Inordertokeepthe discussion more simple,the goal complex,denoted as7(5)1side-onor7(5)[3]1end-on,is initially formed as Fe center and O2collide side-on or end-on with each other, where the superscripts denote the spin multiplicities. Comparedtothereactionmechanism,side-on complex,7(5)1side-onis not an important point discussed.

    We obtain a septet71end-oncomplex,wherein O2is bound end-on and is an Fe-superoxo complex.The electronic structure of71end-onis in detailed shown in Fig.2.From Fig.2,O2here is a superoxide,having a singly occupied π*⊥,which is perpendicular to the Fe-O-O plane,while the other doubly occupied π* orbital,π*∥in the Fe-O-O plane,forms a 3-e bond with the Fe dz2orbital.In other words,in the plane π*∥orbital of the superoxo interacts with the dz2orbital of the Fe in a π-type fashion,which leads to forming two new orbitals dz2±π*,as shown in Fig.2. Thus,the septet71end-onwill inv o lve ferromagnetic coupling of S=5/2 Fewith the S=1/2 superoxo anionO2-.

    Fig.1Optimized geometries of the different spin states non-heme Ferric-superoxo complexes at the UB3LYP/6-31+G(d)level

    Fig.2Electronic configurations of septet,quintet and triplet states of the end-on complex 1

    For the quintet51end-oncomplex,one character of51end-onis that its formal iron oxidation state can be assigned as Fe-peroxo.The reason is that the π*⊥orbital of the O2moiety in51end-onis doubly occupied. Formally,there are four unpaired α electrons in51end-on, spin density on Fe is 4.09.To identify some main atomic orbital interactions,the main antiferromagnetic orbital interactions were also inferred from overlaps calculated from the broken symmetry wave function (UB3LYP/6-31+G(d)),theresultscalculatedare plotted in Fig.3.Calculation results show that dz2±π*∥electronsareactuallyhighlypronetospinpolarization,i.e.,partial separation of α-and β-spin electrons in the dz2±π*∥orbital into spatially different regions,since electrons paired in orbital repel each other electrostatically.Restricted open-shell B3LYP calculations indeed show instability relative to brokensymmetry(BS)solutions.The overlap between dz2and π*∥is considerably better than the overlap of π*⊥and any Fe3d orbital,a nd the overlap is T=<dz2| π*∥>=0.64.The singlet coupling between dxzand π*∥electron pair is therefore strong enough to lead to a short of the Fe-O distances(0.201 8 nm)in51end-on,as compared with that(0.213 2 nm)of71end-on.

    As for31end-on,O2is bound end-on and is an Fe-superoxo complex,having a singly occupied π*⊥orbital and a doubly occupied π*∥orbital.Then31end-oninvolves ferromagnetic coupling of S=1/2 Fewith the S=1/2 superoxo anion O2-.Relative to71end-on,the DFT-calculated relative free energy of31end-onis 48.9 and 51.8 kJ·mol-1at the B3LYP/6-31+G(d)and B3LYP/LACVP+*levels,respectively.Compared with the coupling of51end-on,the singlet coupling between π*∥and dz2in31end-onis much stronger,the overlap T=<dz2

    |π*∥>≈1 with the covalent interaction,which will lead to decrease the distance of Fe-O bond (0.192 1 nm).

    Fig.3Spin natural orbitals(SNO)and natural orbitals(NO)obtained with the symmetry broken method in51end-on

    2.2 Hydrogen-atom abstraction

    The optimized geometries and relative energies in the triplet,quintet,and septet electronic states are shown in Fig.4 and Table S2(Supporting information), respectively.The calculated potential energy profiles forthedifferentspinstatesareshownin Fig.5.Initially,the three reactive states of7(5)[3]1end-onform reactant complexes,7(5)[3]R1,in which7(5)[3]1end-onis weakly bound to propene.An electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital.This leads to the transfer of a H-atom along with a spin-down electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate aferrichydroperoxoproductandaradicalon substrate.Thus,a strong π(O2-)bond is broken.Since the electron is transferred into the superoxo π*⊥orbital, this requires an end-on approach of the C-H bond of the substrate relative to the Fe-O-O plane to ensure good orbital overlap.

    As can be seen from Fig.5,the lower energy pathway of the H-abstraction process was occurred on the high-spin(HS)S=3 state PES.The transition state7TSHhas calculated barrier heights of ΔE≠=78.6 kJ· mol-1and ΔG≠=65.6 kJ·mol-1relative to7R1.If electronic energies and free energies in the gas-phase are compared,the spin state ordering in the reactants and transition states remains the same.This indicates that the reaction will take place through single-state reactivity on the HS S=3 state potential surface only, which is compared with the behavior of nonheme and heme iron-oxo complexes where generally two-or multi-state reactivity modes are obtained on competing spin state surfaces.This difference is possibly due to the exchange stabilization of the Fe center during the H-abstraction.

    Fig.4UB3LYP/6-31+G(d)optimized structures for the key species for the 2-propenol reactions of7(5)[3]1end-onwith propene

    Fig.5Energy profiles(in kJ·mol-1)for the 2-propenol reactions of7(5)[3]1end-onwith propene.All energy values are at the UB3LYP/LACVP+*level

    Basedontherecentlyproposedexchangeenhanced reactivity(EER)principle by Shaik et al[19], which states that if the number of identical-spin unpaired electrons on the metal center increases in the transition state(or the orbitals get more localizedon the metal center),this will maximize the exchange stabilization of the transition state.For the S=3,S=2, and S=1 spin states,during the H-abstraction,an electron shifts from the C-H bond to the O2π*⊥orbital andtherebythedelectronisfreedfromits antiferromagneticcoupling.i.e.,thenumberof unpaired d electrons of the Fe center is the same from reactantstoferrichydroperoxointermediate. Therefore,the condition of the smaller deformation energy of the reactants on the spin state,the HS S=5/ 2 state has a lower barrier as compared with the lowspin(LS)states,leading to single-state reactivity.The suggestion that the HS S=5/2 iron center of all these electronic structures has a high reactivity due EER is consistent with the experimental results of the key role of the HS non-heme iron center in O2activation.

    2.3 Calculations of O-O bond cleavage process 2.3.1Crossing of the different PESs.

    From Fig.5,the ground state product in quintet state,5P,will be formed from the intermediate in septet state,7IM1 via the transition state with the O-O bond broken.Therefore,at least a crossing and spin inversion process may be take place in the O-O cleavage reaction pathway.The geometric structure of the HS S=3 transition state,7TSOHis very different from those of the intermediate spin(IS)S=2,5TSOHand LS S=1,3TSOHtransition states(Fig.4).The7TSOHhas an O-O bond of 0.168 3 nm,which is shorter than those of the5TSOH,and3TSOH(0.1711,and 0.173 4 nm, respectively).These bond lengths indicate the7TSOHoccurs early in the O-O bond cleavage coordinate.As the O-Obond distanceincreases,theHSS=3 potentialenergysurfacesteeplyincreasesin energy and the S=2 potential energy surface gradually increases,which will lead to the crossing of different spin surfaces.

    It is noted that the likelihood of such a crossover seems significant in view of the fact that the spin state surfaces are so close and cross from7IM1 to the crossing region(Fig.5).And,the7IM1-5IM1 energy gap is very small(Fig.5).As such,a change in the geometry of the septet complex7IM1 in the direction ofthequintetcomplexgeometry,5IM1,causes crossingbetweenthetwostates.Thereafter,the reactioncanproceedonthequintetsurfaceor bifurcate again to the septet surface.These willdepend on the magnitude of the transition probability. Among the factors that affect the magnitude of the transition probability is the SOC interaction between the states.Let us then discuss the SOC interaction.

    Table 1Contributions to the calculated ZFS between SOC and Spin-Spin(SS)(all numbers are in cm-1) in the crossing region

    Table 2Calculated SOC matrix elements(cm-1)of septet and quintet states in the crossing region by CASSC (10,8)method

    2.2.2 Spin-orbit coulping(SOC)inthecrossingregion. Because of the intricate interplay of the spin-spin (SS)dipolar interaction with the SOC of the quintet state in the crossing seam,here we considered it desirable to include the calculation ofzero-field splitting(ZFS)parameters(D-tensor,D=Dzz-1/2(Dxx+

    Dyy))[20].The ZFS and SOC matrix elements were evaluated at the CASSCF(10,8)wave function with 6-31+G(d)and TZVP basis sets using quasi-degenerate perturbationtheory.Thesecalculationswere performed with the program ORCA 2.8[18].The mixing of the S=3 and S=2 levels in the crossing seam by the spin-dependent terms in the Hamiltonian is treated approximately.Only the elements of SOC operator between the lowest HS septet state and the lowest three quintets are considered,where elements between quintets and triplets are ignored.These detailed results of the ZFS calculations are shown in Table 1. From the results in Table 1,the main contribution is from the second-order SOC interaction,while the SS contributions are negligible.The SOC part contains three parts:the SOC of electronic excited states of the same spin(Sexcited=Sground;ΔS=0,D(0))into the ground state;from states differing by one spin flip(Sexcited= Sground±1;ΔS=-1,D(-1)and ΔS=+1,D(+1));and the elements of quintets,S=2→triplets,S=1(S=-1), which are ignored(D(-1)=0.0).The ΔS=0 contribu-tions are found to make significant contributions to Dxx=-0.099 cm-1,Dyy=-0.202 cm-1,and Dzz=-0.193 cm-1, with the main contribution arising from the same spin states(i.e.,the quintet ground state→excited quintet mixing).In addition,it is very small that the SOC contributions come from the spin-raising ΔS=+1 excitations corresponding to the quintet ground state septet mixing,which indicates that the quintet and septetmixingcanbeforbiddenbytheSOC interaction.

    In order to further understand the mechanism of intersystem crossing from the septet state to quintet state PES,the ROHF orbitals for the construction of the quintet and septet CASCI wave functions to be used in the SOC evaluation have been generated in the crossing region by quintet ROHF calculations, which were performed with the GAMESS program package[21].At least eight active orbitals,as given in Fig.6(in order to save space,the two nonactive doubly occupied orbitals are omitted),are found to be essential to reproduce the qualitative trends of SOC in the O-O bond cleavage step.The SOC matrix elements between the septet state and the quintet states in the crossing region are indicated in Table 2,we computed the SOC constants of the sextet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively.These values are very low and provide a first hint that intersystem crossing may be forbidden primarily for an electronic reason.For facile spin flip from the S=3 to S=2 surfaces,the crossing points are required to have similar geometries and energies.Moreover,the electronic configurations must be able to SOC.SOC is effectively a localized,singlecenter,one-electron operator and can be written as

    Fig.6Electronic configurations of the SOC interactions of the septet state and quintet states(Q0,Q1and Q2)in the vicinity of thecrossing region for the O-O bond breaking step.The labels S and Q refer to the spin states septet and quintet, respectively.

    where L is the orbital angular momentum operator, and S is the spin operator,while L·S=I is the angular momentum of electron(see formulations 2 and 3 in Computational details);the φ is the space part of the molecular orbital,θ the spin of the electron.The L+S-+ L-S+operator in Eq.4 performs a spin-flip and this process is accompanied by achange in the orbital due to the L+/L-raising/lowering operator[22].Therefore, two orbitals of opposite spins in SOC have to different spatial components.In addition,SOC is also feasible only if two microstates differ solely in the occupation of two orbitals with the same spin states or two microstates have the same Msfor the two different spin states and these two orbitals can couple through the Lzoperator.

    Orbital analysis on the SOC mechanism are listed in Fig.6,for both spin states,S1and Q0,the Fe center remains HS ferric with strong bonding interaction with the O atom.Hence,the major difference in the electronic structure between the S=3 and S=2 spin states at the crossing point lies in the spin of electron residing in the singly occupied π*sub,with α for S=3 and β for S=2.Obviously,two spin orbitals have the same spatial component in their wave functions(π*sub). Therefore,theS=3surfacecannoteffectively intersystem cross to the S=2 surface through the SOC interactionsastheorbitalangularmomentum operators associated with SOC in Eq.4 require a change in orbital occupation.Thus,thereaction system can still proceed on the S=3 surface.

    We also explored the SOC interaction of the septet state and two low lying quintet excited states, Q1and Q2,involving mostly Fe-3d excitations due to a transition metal complex where there are a number of near-degenerate states for close lying metal d-orbials. From Fig.6,because the SOC constant(ζFe)is an order of magnitude greater than the SOC values for oxygen, it is a reasonable approximation to consider only the Fe contribution when discussing spin-orbit mixing with quintet states.Thus for the SOC matrix elements of S1and Q1can be written as[17,23]

    where η is the Ms-dependent weighing factor,and θ=α and/or β.In this case,for the septet state,S1,the fundamentalopen-shellconfigurationhasone dominantcoefficient,i.e.C0=0.961,whilethe coefficient for quintet state is CQ1=0.87.Thus,the Q1state is generated from the septet S1state by electron shifts from φ5to φ1,lead to the d-atomic orbital matrix elements,Based on transfer of d orbitals under the operator of Lx,y,zoperators,the former will generate a y component of the SOC,the latter will lead to z component of the angular momentum,which is consistent with the calculated SOC values of<7φcm-1at CASSCF(10,8)/6-31+G(d)level.Similarly,the Q2state originates from the septet S1state by electron shifts from φ5to φ2,leading thereby to an x,y components of SOC with theelements,respectively.These calculated results show that the Q1and Q2states in crossing point will produce a significant one-center SOC interaction.Therefore,this can enhance the probability of intersystem crossing from the septet to the quintet state.However, these spin-flip pathways(S1→Q1,S1→Q2)are unfeasible because the excited crossing points have signifi-cantly higher in energy than the S1state,Q1and Q2are approximately 56.2 and 64.2 kJ·mol-1higher than the S1state at the CASSCF(10,8)/6-31+G(d),respectively.Thus,the O-O bond homolysis step should remain on the S=3 surface as the reaction proceeds, overcoming an activation free energy of 124.9 kJ·mol-1(Fig.5),while the intersystem crossing is possibly occurred at the exit stage of the reaction.

    To further understand mechanism of the S1→Q0spin-flip,the corresponding splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region can be seen in Fig.7.In zero magnetic field,the lowest quintet state Q0is split into three spin states with eigenfunctions|Qx>,|Qy>,and|Qz>, with an energy splitting described by the parameter D. For splitting of Zeeman sublevels,the eigenfunctions of the quintet spin states are given by|Q±2>,|Q±1>, and|Q0>and can be related to those at zero field by mixing coefficients that depend on the strength and direction of the magnetic field.From Fig.7,three zero field sublevels Qx,Qy,and Qzare selectively populated,and their relative populations are carried over to the high field energy levels,Q±2,Q±1,and Q0,Qy,and Qzoverpopulation and some population on the Qxsublevel.The populations on Qy,and Qzlevels are nearly equal,1.17×10-1,whereas that on Qxis somewhat smaller,1.16×10-1.These different populations are mainly attributed to the SOC-ISC interactions(<7φ-1.57 cm-1),but these populations are very small, which indicate that intersystem crossing from septet to quintet is low efficient in the crossing region.

    Fig.7Splitting and population distributions of Zeeman sublevels of an S=2 species with an applied field B in the vicinity of the S1/Q0crossing region z axis of the molecule is defined as its Zeeman axis

    3 Conclusions

    In this study,the multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated using density functional theory calculations.For H-atom abstraction step,an electrophilic attack by a7(5)[3]1end-onspecies is enabled through a σ-attack of the superoxo π*⊥orbital. This leads to the transfer of a H-atom along with a spindown β electron from the C-H bond of the substrate into the π*⊥orbital of O2to generate a ferric hydroperoxo product and a radical on substrate.Thus,a strong π(O2-) bond is broken.The lower energy pathway of the H-abstraction process was occurred on the HS S=3 state potential energy surface(PES).By contrast,the corresponding quintet and triplet H-abstraction barriers are well higher in energy and will not play a role of importance.These are possibly due to the exchange stabilization of the Fe center during the H-abstraction.As for the O-O bond broken step,at least a crossing and spin inversion process may be taken place in the O-O cleavage reaction pathway.In order to quantitatively understand the crossing of the S=3,S=2,and S=1 PESs,we computed the SOC constants(2.26 and 2.19 cm-1at the CASSCF(10,8)/6-31+G(d)//TZVP levels,respectively) of the septet,S1and quintet,Q0state at the crossing re-gion.Orbital analysis show that the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions as the orbital angular momentum operators associated with SOC require a change in orbital occupation.Thus,the reaction system can still proceed on the S=3 surface.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Solomon E L,Brunold T C,Davis M I.Chem.Rev.,2010, 100:235-350

    [2](a)Nam W.Acc.Chem.Res.,2007,40:522-531 (b)Chung L W,Li X,Hirao H,et al.J.Am.Chem.Soc., 2011,133:20076-20079

    [3]Mbughuni M M,Charkrabarti M,Hayden J A,et al.Proc. Natl.Acad.Sci.U.S.A.,2010,107:16788-16793

    [4]Peterson R L,Himes R A,Kotani H,et al.J.Am.Chem. Soc.,2011,133:1702-1705

    [5]Sugimoto H,Ods S L,Otsuki T.Proc.Natl.Acad.Sci.U.S.A., 2006,103:2611-2616

    [6]Li F,Meier K K,Cranswick M A,et al.J.Am.Chem.Soc., 2011,133:7256-7259

    [7]Hirao H,Kumar D,Que L,et al.J.Am.Chem.Soc.,2006, 128:8590-8606

    [8]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09, Revision-D.01;Gaussian Inc.:Wallingford,CT,2009.

    [9]Ditchfield R,Hehre W J,Pople J.A.J.Chem.Phys.,1971, 54:724-732

    [10]Hay J P,Wadt W R.J.Chem.Phys.,1985,82:299-309

    [11]Lai W Z,Li C S,Chen H,et al.Angew.Chem.,Int.Ed., 2012,51:5556-5578

    [13]Sinnecker S,Neese F.J.Phys.Chem.A,2006,110:12267-12275

    [14]Neese F,Edward I,Solomon E I.Inorg.Chem.,1998,37: 6568-6582.

    [15]Hess B A,Marian C M,Wahlgren U,et al.Chem.Phys. Lett.,1996,251:365-371

    [16]Neese F.J.Am.Chem.Soc.,2006,128:10213-10222

    [17]Danovich D,Shaik S.J.Am.Chem.Soc.,1997,119:1773-17786

    [18]Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Version 2.8,Max-Planck Institute for Bioinorganic Chemistry,Germany,2010.

    [19](a)Shaik S,Chen H,Janardanan D.Nat.Chem.,2011,3: 19-27

    (b)Mas-Ballesté R,McDonald A R,Reed D,et al.Chem. Eur.J.,2012,18:11747-11760

    [21]Granovsky A A.GAMESS Program,Moscow State University, Russia,2007.

    [22]Pau M Y M.Proc.Natl.Acad.Sci.U.S.A.,2007,104:18355-18362

    Theoretical Investigation on the Multi-State Reaction Mechanism for the Propene Catalyzed by Non-Heme Ferric-Superoxo Species

    Lü Ling-Ling*,1ZHU Yuan-Cheng1ZUO Guo-Fang1YUAN Kun1WANG Yong-Cheng2
    (1College of Chemical Engineering and Technology,Tianshui Normal University,TianShui,Gansu 741001,China)
    (2College of Chemistry and Chemical Engineering,Northwest Normal University,LanZhou,730070,China)

    The multi-state reaction mechanism for the propene catalyzed by non-heme ferric-superoxo model complex has been investigated at the DFT-B3LYP level.The calculations show that non-heme ferric-superoxo complex can be considered as effective oxidants in hydrogen atom abstraction reaction(single-state-reactivity),for which we find a lower barrier of ΔG≠=65.6 kJ·mol-1on the septet spin state surface.Single-state-reactivity is possibly due to the recently proposed exchange-enhanced reactivity(EER)principle with larger exchange stabilization of the Fe center.For the O-O bond activated step,we computed the spin-orbit coupling(SOC)constants of the septet,S1and quintet,Q0state at the crossing region and found it to be 2.26 and 2.19 cm-1at the CASSCF (10,8)/6-31+G(d)//TZVP levels,respectively.Orbital analysis show that two spin orbitals have the same spatial component in their wave functions(π*sub),therefore,the S=3 surface cannot effectively intersystem cross to the S=2 surface through the SOC interactions,and the intersystem crossing is possibly occurred at the exit stage of the reaction.

    non-heme ferric-superoxo;multi-state reaction mechanism;intersystem crossing;spin-orbit coupling

    O641.12+1

    A

    1001-4861(2017)02-0329-11

    10.11862/CJIC.2017.028

    2016-02-04。收修改稿日期:2016-12-03。

    國(guó)家自然基金(No.21263022;21663025;2163024)、甘肅省教育廳導(dǎo)師基金和天水師范學(xué)院“青藍(lán)”人才工程基金資助項(xiàng)目。*

    。E-mail:lvling002@163.com

    猜你喜歡
    超氧化物血紅素多態(tài)
    分層多態(tài)加權(quán)k/n系統(tǒng)的可用性建模與設(shè)計(jì)優(yōu)化
    參差多態(tài)而功不唐捐
    新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
    超氧化物歧化酶保健飲用水及其制取方法探討
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    人多巴胺D2基因啟動(dòng)子區(qū)—350A/G多態(tài)位點(diǎn)熒光素酶表達(dá)載體的構(gòu)建與鑒定及活性檢測(cè)
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    麥苗中超氧化物歧化酶抗氧化活性研究
    煙堿型乙酰膽堿受體基因多態(tài)與早發(fā)性精神分裂癥的關(guān)聯(lián)研究
    富血紅素多肽研究進(jìn)展
    亚洲人成网站在线播放欧美日韩| 一级二级三级毛片免费看| 一进一出抽搐gif免费好疼| 美女被艹到高潮喷水动态| 老司机影院成人| av卡一久久| 免费观看人在逋| 亚洲熟妇中文字幕五十中出| 国产成人91sexporn| 久久精品国产自在天天线| 国产精品综合久久久久久久免费| 国产精品久久久久久久电影| 国产老妇女一区| 伦精品一区二区三区| 国产伦精品一区二区三区四那| 性欧美人与动物交配| 国产成人aa在线观看| 插阴视频在线观看视频| 卡戴珊不雅视频在线播放| 色综合站精品国产| 在线免费观看的www视频| 国产不卡一卡二| 最好的美女福利视频网| 亚洲av中文av极速乱| 三级男女做爰猛烈吃奶摸视频| 看免费成人av毛片| 免费av观看视频| 国产精品电影一区二区三区| 晚上一个人看的免费电影| 夜夜夜夜夜久久久久| 1024手机看黄色片| 禁无遮挡网站| 国产亚洲精品久久久com| 嫩草影院入口| 欧美成人a在线观看| 一个人观看的视频www高清免费观看| 欧美一区二区国产精品久久精品| 在线免费观看的www视频| 国产精品国产三级国产av玫瑰| 亚洲精品成人久久久久久| 久久久欧美国产精品| 中文字幕精品亚洲无线码一区| 性色avwww在线观看| 亚洲国产精品成人综合色| 午夜亚洲福利在线播放| 青青草视频在线视频观看| 免费看美女性在线毛片视频| 美女xxoo啪啪120秒动态图| 99九九线精品视频在线观看视频| 91久久精品国产一区二区三区| 久久久久久国产a免费观看| 日韩强制内射视频| 成人特级av手机在线观看| 国产av不卡久久| 亚洲自偷自拍三级| 亚洲内射少妇av| 淫秽高清视频在线观看| 97在线视频观看| 国产精品精品国产色婷婷| 淫秽高清视频在线观看| 我要搜黄色片| 我要看日韩黄色一级片| 最近视频中文字幕2019在线8| 亚洲欧洲日产国产| 国产一区二区激情短视频| 综合色av麻豆| 狂野欧美激情性xxxx在线观看| 有码 亚洲区| 有码 亚洲区| 国产精品三级大全| 97超视频在线观看视频| 日韩人妻高清精品专区| 在线观看免费视频日本深夜| 青春草视频在线免费观看| 精品国内亚洲2022精品成人| 99精品在免费线老司机午夜| 男女那种视频在线观看| 国产乱人偷精品视频| 久久人妻av系列| av专区在线播放| 久久久久久久久中文| 18+在线观看网站| 人人妻人人看人人澡| 麻豆成人av视频| 国内精品一区二区在线观看| 亚洲经典国产精华液单| 久久久久久久久久久免费av| 国产午夜福利久久久久久| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 91久久精品电影网| 男女啪啪激烈高潮av片| 亚洲成人精品中文字幕电影| 久久精品国产自在天天线| 亚洲国产欧美在线一区| 精品久久国产蜜桃| 哪个播放器可以免费观看大片| 天天躁夜夜躁狠狠久久av| 国产极品精品免费视频能看的| 久久热精品热| 欧美日韩在线观看h| 午夜a级毛片| 国产高清视频在线观看网站| 久久久久久久午夜电影| 美女xxoo啪啪120秒动态图| 日韩av在线大香蕉| 欧美成人一区二区免费高清观看| 一本久久精品| 精品一区二区三区视频在线| 最近的中文字幕免费完整| 非洲黑人性xxxx精品又粗又长| 国产单亲对白刺激| 中文字幕制服av| 中文字幕免费在线视频6| 亚洲美女搞黄在线观看| 久久久久久久久久久丰满| 久久久久久久久久久丰满| 男女那种视频在线观看| 国产欧美日韩精品一区二区| 亚洲无线观看免费| 婷婷亚洲欧美| 美女脱内裤让男人舔精品视频 | 久久久精品大字幕| av在线老鸭窝| 麻豆国产97在线/欧美| 在线观看免费视频日本深夜| 亚洲电影在线观看av| 在线天堂最新版资源| 久久久久久九九精品二区国产| 日韩av不卡免费在线播放| 日产精品乱码卡一卡2卡三| 久久精品国产自在天天线| 99久久中文字幕三级久久日本| 国产精品国产三级国产av玫瑰| 中文字幕熟女人妻在线| 夜夜爽天天搞| 亚洲欧美清纯卡通| 91在线精品国自产拍蜜月| 一级毛片久久久久久久久女| 少妇猛男粗大的猛烈进出视频 | 国产黄a三级三级三级人| 一级二级三级毛片免费看| 18禁在线无遮挡免费观看视频| 国产黄色视频一区二区在线观看 | 久久久国产成人精品二区| 亚洲图色成人| av专区在线播放| 成人永久免费在线观看视频| 精品熟女少妇av免费看| 波多野结衣高清无吗| 五月伊人婷婷丁香| 黑人高潮一二区| 欧美一区二区亚洲| 日韩欧美精品免费久久| 麻豆乱淫一区二区| 别揉我奶头 嗯啊视频| 可以在线观看毛片的网站| 黄色配什么色好看| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 男女边吃奶边做爰视频| 免费搜索国产男女视频| 午夜激情欧美在线| 国产久久久一区二区三区| 国内精品久久久久精免费| 国产探花极品一区二区| 亚洲国产高清在线一区二区三| 国产爱豆传媒在线观看| 亚洲欧美成人综合另类久久久 | 床上黄色一级片| 狠狠狠狠99中文字幕| 成人性生交大片免费视频hd| 一级av片app| 日韩视频在线欧美| www.av在线官网国产| 22中文网久久字幕| 成人国产麻豆网| 久久久精品欧美日韩精品| 欧美成人一区二区免费高清观看| 国产中年淑女户外野战色| 级片在线观看| 亚洲精华国产精华液的使用体验 | av卡一久久| 色视频www国产| 国产综合懂色| 国产在线男女| 小说图片视频综合网站| 最好的美女福利视频网| 国产私拍福利视频在线观看| 一夜夜www| 成人性生交大片免费视频hd| 精品久久久久久成人av| 内射极品少妇av片p| 男女啪啪激烈高潮av片| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区视频9| 国产私拍福利视频在线观看| 舔av片在线| 国产亚洲精品久久久com| 成年免费大片在线观看| 黄色欧美视频在线观看| 九草在线视频观看| 亚洲av中文av极速乱| 国产成年人精品一区二区| 中文字幕熟女人妻在线| 亚洲五月天丁香| 最近的中文字幕免费完整| 免费看日本二区| 联通29元200g的流量卡| 欧美不卡视频在线免费观看| 三级国产精品欧美在线观看| 少妇被粗大猛烈的视频| 国产高清视频在线观看网站| 嫩草影院新地址| 亚洲四区av| 欧美成人精品欧美一级黄| 日韩欧美在线乱码| 边亲边吃奶的免费视频| 久久99热这里只有精品18| 欧美日韩乱码在线| 久久久色成人| 男人狂女人下面高潮的视频| 国产成人午夜福利电影在线观看| 亚洲欧美精品自产自拍| 在线观看一区二区三区| 国国产精品蜜臀av免费| 禁无遮挡网站| 成人亚洲精品av一区二区| 亚洲性久久影院| 亚洲欧美精品自产自拍| 亚洲欧美成人综合另类久久久 | 嫩草影院精品99| 久久久国产成人免费| 九九爱精品视频在线观看| 亚洲国产日韩欧美精品在线观看| 免费观看在线日韩| www.色视频.com| 欧美性感艳星| 久久精品夜色国产| 一本精品99久久精品77| 人妻制服诱惑在线中文字幕| 波多野结衣高清无吗| АⅤ资源中文在线天堂| 国内精品宾馆在线| 中文字幕人妻熟人妻熟丝袜美| 级片在线观看| 国产视频内射| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 成人国产麻豆网| 夜夜爽天天搞| 国产精品伦人一区二区| 亚洲国产日韩欧美精品在线观看| 大型黄色视频在线免费观看| 久久婷婷人人爽人人干人人爱| 黄色视频,在线免费观看| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 一个人看的www免费观看视频| 免费观看a级毛片全部| 欧美一区二区亚洲| a级毛色黄片| a级一级毛片免费在线观看| 欧美区成人在线视频| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 51国产日韩欧美| 国产精品野战在线观看| 22中文网久久字幕| 有码 亚洲区| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 久久热精品热| 亚洲内射少妇av| 麻豆国产av国片精品| av专区在线播放| ponron亚洲| 变态另类丝袜制服| 欧美xxxx黑人xx丫x性爽| 校园春色视频在线观看| 欧美变态另类bdsm刘玥| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 日本欧美国产在线视频| 精品久久久噜噜| 男的添女的下面高潮视频| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 少妇的逼水好多| 亚洲精品日韩在线中文字幕 | 天堂网av新在线| av.在线天堂| 美女黄网站色视频| 中国美女看黄片| 欧美xxxx黑人xx丫x性爽| 欧美色视频一区免费| 51国产日韩欧美| 精品人妻熟女av久视频| 人妻系列 视频| 中文字幕制服av| 啦啦啦韩国在线观看视频| 内地一区二区视频在线| 亚州av有码| 97超碰精品成人国产| 夜夜爽天天搞| 亚洲欧美成人综合另类久久久 | 一级毛片电影观看 | 国产午夜精品一二区理论片| 99久久人妻综合| 亚洲在线自拍视频| 国产色婷婷99| 97超碰精品成人国产| 国产精品99久久久久久久久| 国语自产精品视频在线第100页| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频 | 中出人妻视频一区二区| 国产精品99久久久久久久久| 美女大奶头视频| 69av精品久久久久久| 国产精品永久免费网站| 全区人妻精品视频| av又黄又爽大尺度在线免费看 | 波多野结衣高清作品| 在现免费观看毛片| 精品国内亚洲2022精品成人| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 亚洲av免费高清在线观看| 成人一区二区视频在线观看| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 五月伊人婷婷丁香| 日韩av在线大香蕉| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| 青春草亚洲视频在线观看| 女的被弄到高潮叫床怎么办| 黄色配什么色好看| 日韩制服骚丝袜av| 久久久久九九精品影院| 老师上课跳d突然被开到最大视频| 亚洲中文字幕日韩| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 黄色日韩在线| 深夜精品福利| 久99久视频精品免费| 亚洲精华国产精华液的使用体验 | 熟女人妻精品中文字幕| 国产在线男女| 国产精品无大码| 69av精品久久久久久| 激情 狠狠 欧美| 久久精品国产亚洲网站| 久久鲁丝午夜福利片| 在线观看一区二区三区| 一个人观看的视频www高清免费观看| 高清在线视频一区二区三区 | 久久久久性生活片| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 99久久精品国产国产毛片| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 中文字幕熟女人妻在线| 久久草成人影院| 不卡视频在线观看欧美| 国产精品久久久久久精品电影| 日韩欧美精品免费久久| 高清在线视频一区二区三区 | 国产亚洲av片在线观看秒播厂 | 国产成人精品婷婷| av女优亚洲男人天堂| 又黄又爽又刺激的免费视频.| 日韩一本色道免费dvd| 天堂√8在线中文| 又爽又黄无遮挡网站| 女同久久另类99精品国产91| 色哟哟·www| 久久久国产成人精品二区| 三级经典国产精品| 深夜精品福利| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 在线观看美女被高潮喷水网站| 毛片一级片免费看久久久久| 亚洲成人久久爱视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频国产福利| 在线观看免费视频日本深夜| 国产精品福利在线免费观看| 在线免费观看的www视频| 国产视频首页在线观看| 午夜福利视频1000在线观看| 久久精品国产99精品国产亚洲性色| 国产大屁股一区二区在线视频| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久黄片| av卡一久久| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品三级大全| 1024手机看黄色片| 欧美一级a爱片免费观看看| 久久人人精品亚洲av| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 九九在线视频观看精品| 长腿黑丝高跟| 久久草成人影院| 午夜福利在线观看免费完整高清在 | 12—13女人毛片做爰片一| 日本av手机在线免费观看| 午夜福利成人在线免费观看| 我的老师免费观看完整版| 丝袜美腿在线中文| 日本三级黄在线观看| 午夜福利在线在线| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 2021天堂中文幕一二区在线观| 国模一区二区三区四区视频| 国产免费男女视频| 国产一区二区激情短视频| 99久久成人亚洲精品观看| 人人妻人人澡欧美一区二区| 美女cb高潮喷水在线观看| 日本熟妇午夜| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 午夜福利高清视频| 中国美女看黄片| 中国美白少妇内射xxxbb| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 永久网站在线| 美女xxoo啪啪120秒动态图| 国产精品电影一区二区三区| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线| 伦精品一区二区三区| 精品午夜福利在线看| 亚洲av不卡在线观看| ponron亚洲| 性色avwww在线观看| 亚洲精华国产精华液的使用体验 | 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 精品一区二区三区视频在线| 波野结衣二区三区在线| 一级二级三级毛片免费看| 可以在线观看毛片的网站| 丰满的人妻完整版| 国产亚洲欧美98| 成人毛片a级毛片在线播放| 能在线免费看毛片的网站| 国产精品.久久久| 亚洲,欧美,日韩| 久久久久久久久久黄片| 三级毛片av免费| 国产高清不卡午夜福利| av.在线天堂| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 国产不卡一卡二| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 性插视频无遮挡在线免费观看| av在线亚洲专区| 久久久精品94久久精品| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 国产美女午夜福利| 高清午夜精品一区二区三区 | 中文字幕久久专区| 搡女人真爽免费视频火全软件| 麻豆av噜噜一区二区三区| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 91精品一卡2卡3卡4卡| 国产av不卡久久| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人手机在线| 免费看光身美女| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 久久中文看片网| 色尼玛亚洲综合影院| www日本黄色视频网| 国产v大片淫在线免费观看| 国产av在哪里看| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 午夜精品在线福利| 国产精品久久久久久久电影| 久久6这里有精品| 久久久久久久久久成人| av在线天堂中文字幕| 97超碰精品成人国产| 久久久久久国产a免费观看| 久久久精品大字幕| 免费电影在线观看免费观看| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 99热全是精品| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 成人特级黄色片久久久久久久| 一区二区三区免费毛片| 久久久久国产网址| 欧美性感艳星| 日韩成人伦理影院| 欧美性猛交黑人性爽| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 老司机影院成人| 国内精品一区二区在线观看| 97超视频在线观看视频| 日本三级黄在线观看| 美女国产视频在线观看| 国产乱人偷精品视频| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 性欧美人与动物交配| 少妇人妻一区二区三区视频| 久久草成人影院| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 欧美bdsm另类| 亚洲欧美精品综合久久99| 26uuu在线亚洲综合色| 精品日产1卡2卡| 午夜a级毛片| 内地一区二区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 少妇被粗大猛烈的视频| 亚洲欧美精品综合久久99| 亚洲精品成人久久久久久| 免费看日本二区| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 日本在线视频免费播放| 久久久成人免费电影| 国内久久婷婷六月综合欲色啪| 国产成人91sexporn| 成年av动漫网址| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美成人综合另类久久久 | 别揉我奶头 嗯啊视频| 99热网站在线观看| 日本一本二区三区精品| 色综合亚洲欧美另类图片| 别揉我奶头 嗯啊视频| 91麻豆精品激情在线观看国产| 中文在线观看免费www的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人和女人高潮做爰伦理| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 久久精品夜色国产| 日本与韩国留学比较| 国产一级毛片在线| 国产不卡一卡二| 午夜久久久久精精品| 亚洲熟妇中文字幕五十中出| 国产在线男女| 超碰av人人做人人爽久久| 久久久久国产网址| 午夜福利在线观看吧| 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 校园人妻丝袜中文字幕| 国产精品国产高清国产av| 卡戴珊不雅视频在线播放| .国产精品久久| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 美女 人体艺术 gogo| 91aial.com中文字幕在线观看| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久精品电影小说 | av卡一久久| 九九在线视频观看精品| 久久九九热精品免费| 日本免费一区二区三区高清不卡| 久久99热6这里只有精品| 日韩中字成人| 高清毛片免费看| 国产成人精品婷婷| 97超碰精品成人国产| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲欧美一区二区av|