康振偉,高占臣,張飛豹,倪 勇,蔣劍雄
(杭州師范大學(xué)有機(jī)硅化學(xué)及材料技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,浙江 杭州311121)
硅基載鈀催化劑在Heck和Suzuki反應(yīng)中的研究進(jìn)展
康振偉,高占臣,張飛豹,倪 勇,蔣劍雄
(杭州師范大學(xué)有機(jī)硅化學(xué)及材料技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,浙江 杭州311121)
硅材料因具有大的比表面積,表面存在硅羥基易于功能化,且具有物理化學(xué)性質(zhì)穩(wěn)定、來源豐富等優(yōu)點(diǎn),因此成為了理想的鈀金屬催化劑的載體,在Heck和Suzuki反應(yīng)中受到了廣泛的關(guān)注.文章對(duì)近年來硅基催化劑載體進(jìn)展進(jìn)行了總結(jié),包括介孔硅材料、硅基有機(jī)-無機(jī)雜化材料、無定形硅材料等體系,并對(duì)其在Heck反應(yīng)和Suzuki反應(yīng)中的應(yīng)用進(jìn)行了簡要介紹.
Heck反應(yīng);Suzuki反應(yīng);硅材料;催化劑載體
Mizoroki[1]和Heck[2]分別于1971和1972獨(dú)立發(fā)現(xiàn)了Heck反應(yīng),從而開辟了Heck偶聯(lián)反應(yīng)的研究領(lǐng)域.這一經(jīng)典的Heck有機(jī)反應(yīng)是指在堿性條件下,金屬催化劑催化鹵代芳烴、苯甲酰氯或芳基重氮鹽等與烯烴反應(yīng)生成取代烯烴的C-C偶聯(lián)反應(yīng).該反應(yīng)由于底物適用性廣,且能高效地一步合成C-C鍵,產(chǎn)物具有高區(qū)域選擇性和立體選擇性,在有機(jī)合成中占有非常重要的地位.Heck反應(yīng)被廣泛應(yīng)用于醫(yī)藥、農(nóng)藥、發(fā)光材料以及高聚物等的有機(jī)合成領(lǐng)域中,是催化化學(xué)和有機(jī)合成的研究熱點(diǎn),為眾多天然產(chǎn)物、生物活性物質(zhì)、精細(xì)化學(xué)品及其中間體提供了有效的合成手段[3-6].
1981年,Suzuki等[7]發(fā)現(xiàn)鹵代芳烴和芳基硼酸在Pd(PPh3)4的催化下,發(fā)生C-C交叉偶聯(lián)反應(yīng),稱之為Suzuki-Miyaura偶聯(lián)反應(yīng).相比于其他的C-C偶聯(lián)反應(yīng),該反應(yīng)條件溫和,易于進(jìn)行,受空間位阻影響小,具有收率較高、選擇性好、副產(chǎn)物少、產(chǎn)物易處理、有機(jī)硼試劑危害小等優(yōu)點(diǎn).Suzuki偶聯(lián)反應(yīng)是構(gòu)建聯(lián)芳烴鍵的最有效方法之一[8-11],而聯(lián)苯類化合物是重要的有機(jī)原料.經(jīng)過幾十年的發(fā)展,Suzuki偶聯(lián)反應(yīng)已被廣泛應(yīng)用在液晶材料[12]、天然產(chǎn)物[13]以及醫(yī)藥中間體[14]等有機(jī)合成領(lǐng)域.
在Heck反應(yīng)和Suzuki反應(yīng)中,催化劑起著至關(guān)重要的作用,是Heck反應(yīng)和Suzuki反應(yīng)研究的重點(diǎn).傳統(tǒng)均相鈀催化劑催化Heck反應(yīng)和Suzuki反應(yīng)雖然具有分散性好、催化活性高及選擇性好等優(yōu)點(diǎn),但是均相催化劑很難分離,對(duì)產(chǎn)物造成污染,且存在回收困難及無法循環(huán)利用等缺點(diǎn),大大限制了Heck反應(yīng)和Suzuki反應(yīng)在工業(yè)上的廣泛應(yīng)用.因此,設(shè)計(jì)合成出高活性、易回收及可循環(huán)使用的負(fù)載型催化劑成為Heck反應(yīng)和Suzuki反應(yīng)催化體系的研究重點(diǎn).負(fù)載型鈀催化劑是通過化學(xué)作用或物理作用使鈀與載體結(jié)合而制得的一類多相催化劑,這類催化劑不但具有較高的催化活性,而且還有易分離、能重復(fù)利用等優(yōu)點(diǎn).
催化劑載體是負(fù)載型催化劑的重要組成部分,主要用于支持活性組分,使催化劑具有特定的物理性狀.硅基材料由于具有穩(wěn)定性較好、表面存在硅羥基、來源豐富等優(yōu)點(diǎn),是理想的負(fù)載型催化劑的載體.硅基載體主要包括介孔硅材料、硅基有機(jī)-無機(jī)雜化材料以及無定形硅材料3種.目前,硅基載體負(fù)載型催化劑在一系列有機(jī)合成反應(yīng)中表現(xiàn)出較好的應(yīng)用前景,因此探索和開發(fā)硅基載體負(fù)載型催化劑極具吸引力.本文主要綜述了近年來硅基載體負(fù)載鈀催化劑體系催化Heck反應(yīng)和Suzuki偶聯(lián)反應(yīng)研究進(jìn)展,以期為相關(guān)研究提供有益的啟示.
2005年,Crudden等[15]采用巰基對(duì)介孔分子篩SBA-15進(jìn)行改性,然后負(fù)載鈀催化劑,得到SBA-15-SH-Pd.并考察該催化劑在Suzuki反應(yīng)中的催化性能(圖1),結(jié)果顯示,該催化劑在水相中具有較高的催化活性,80 ℃反應(yīng)5 h,催化4-溴苯乙酮與苯硼酸的Suzuki反應(yīng)產(chǎn)率可達(dá)到98%.同時(shí)非均相實(shí)驗(yàn)測(cè)試表明偶聯(lián)反應(yīng)是在載體表面進(jìn)行.此外,作者以4-溴苯乙酮與苯硼酸的Suzuki反應(yīng)為模型,考察了該催化劑SBA-15-SH-Pd的循環(huán)使用情況,在DMF與水的混合溶劑中,循環(huán)利用4次,產(chǎn)率依然可到達(dá)95%,以水為溶劑,循環(huán)利用4次,催化反應(yīng)產(chǎn)率為92%.
圖1 Crudden等研究制備的催化劑SBA-15-SH-Pd及催化Suzuki反應(yīng)Fig.1 Crudden prepared the catalyst SBA-15-SH-Pd for Suzuki reaction
2006年,Yang等[16]先在介孔分子篩SBA-15上嫁接親水性的聚乙二醇,然后與鈀-三苯基膦絡(luò)合物配位,制得親水性介孔分子篩SBA-15負(fù)載鈀催化劑SBA-Si-PEG-Pd(Ph3)n(圖2).此催化劑有利于Suzuki偶聯(lián)反應(yīng)在水相中進(jìn)行,反應(yīng)結(jié)束后,用乙醚萃取,有機(jī)物進(jìn)入有機(jī)相中,催化劑則留水相中,可直接通過簡單過濾回收,且該催化劑催化碘苯與對(duì)甲氧基苯硼酸的Suzuki反應(yīng)產(chǎn)率為91%,循環(huán)使用該催化劑5次,催化活性無明顯下降,產(chǎn)率依然可達(dá)到89%.
圖2 催化劑SBA-Si-PEG-Pd(Ph3)n合成路線及其催化Suzuki反應(yīng)Fig.2 Catalyst SBA-Si-PEG-Pd(Ph3)n synthesis route and catalytic Suzuki reaction
圖3 Li等制備的催化劑SBA-16-IPr(10%)-Pd及其催化Suzuki反應(yīng)Fig.3 Li prepared the catalyst SBA-16-IPr(10%)-Pd for Suzuki reaction
2010年,Li等[17]采用正硅酸乙酯與帶有i-Pr基團(tuán)的有機(jī)硅烷在模板劑存在下進(jìn)行共縮合反應(yīng),然后負(fù)載鈀催化劑,制得一種立方籠狀結(jié)構(gòu)介孔催化劑SBA-16-IPr(10%)-Pd(圖3).并使用0.5 mol%Pd用量的該催化劑應(yīng)用于氯代芳烴與苯硼酸的Suzuki偶聯(lián)反應(yīng)中考察催化活性,在80 ℃下反應(yīng),產(chǎn)率可達(dá)到50%~92%.而且該催化劑在p-氯苯乙酮與芳基硼酸的Suzuki反應(yīng)中循環(huán)使用8次,催化活性無明顯下降,反應(yīng)產(chǎn)率仍可達(dá)到為84%.
2010年,Dhara等[18]將硅烷偶聯(lián)劑KH550改性的MCM-41并與2,6-二乙?;拎し磻?yīng),然后負(fù)載鈀催化劑,得到MCM-41負(fù)載N3型希夫堿絡(luò)合Pd催化劑(圖4).作者以KF為堿,DMF為溶劑,100 ℃條件下,使用該催化劑催化溴代芳烴與苯硼酸的Suzuki反應(yīng),催化活性較好,產(chǎn)率可到90%~98%.通過熱過濾實(shí)驗(yàn)表明,絡(luò)合的Pd在反應(yīng)過程中不會(huì)從載體上流失.
圖4 MCM-41負(fù)載N3型希夫堿絡(luò)合Pd催化劑合成路線Fig.4 The synthetic route of MCM-41 supported N3schiff base complex Pd catalyst
2014年,Koner等[19]將介孔分子篩MCM-41進(jìn)行改性,然后縮合鄰香蘭素,再以氯化鈀為鈀源,將金屬元素Pd負(fù)載到改性的介孔分子篩MCM-41上,制得催化劑M(P1)-41(圖5).實(shí)驗(yàn)表明,該催化劑能夠高效催化C-C鍵形成的Suzuki交叉偶聯(lián)反應(yīng),適用于催化各種鹵代芳烴與芳基硼酸的Suzuki偶聯(lián)反應(yīng).其中溴苯、對(duì)硝基溴苯和對(duì)甲氧基溴苯參與的Suzuki偶聯(lián)反應(yīng)的轉(zhuǎn)化率均高達(dá)100%.同時(shí),催化劑容易回收重復(fù)利用,該催化劑循環(huán)利用5次,催化活性基本沒降低.
2015年,Nikpour等[20]報(bào)道采用Y-氯丙基三甲氧基硅烷改性的MCM-41負(fù)載二苯基硫代卡巴腙配合物,然后負(fù)載Pd(OAc)2,制得催化劑MCM-41-dtz-Pd(II)(圖6).并將該催化劑應(yīng)用于氯代芳烴與三苯基氯化錫的Suzuki偶聯(lián)反應(yīng)中.實(shí)驗(yàn)結(jié)果表明,該催化劑催化活性較好,以碳酸鉀為堿,聚乙二醇(PEG)為溶劑,在室溫下反應(yīng)3 h,可達(dá)到最高產(chǎn)率為97%.循環(huán)利用5次,催化活性無明顯降低.
2016年,Yu等[21]以聚環(huán)氧乙烷-聚環(huán)氧丙烷-聚環(huán)氧乙烷三嵌段共聚物(P123)為模板劑,采用正硅酸乙酯(TEOS)在酸性條件下水解制得SBA-15.使用3-氨丙基三甲氧基硅烷對(duì)SBA-15進(jìn)行修飾,再與乙二醛反應(yīng)后負(fù)載鈀催化劑,制得Pd-diimine@SBA-15(圖7).并將該催化劑應(yīng)用于鹵代芳烴與苯硼酸的Suzuki反應(yīng)中,以K3PO4為堿,i-PrOH/H2O(體積比1∶1)為溶劑,80 ℃氮?dú)獗Wo(hù)條件下,0.05%Pd用量的該催化劑催化溴代芳烴與苯硼酸的產(chǎn)率可達(dá)到84%~99%,而氯代芳烴與苯硼酸的反應(yīng)產(chǎn)率低于20%.
圖5 催化劑M(P1)-41的合成路線Fig.5 The synthetic route of catalyst M(P1)-41
圖6 催化劑MCM-41-dtz-Pd(II)的合成路線Fig.6 The synthetic route of catalyst MCM-41-dtz-Pd(II)
圖7 催化劑Pd-diimine@SBA-15的合成路線Fig.7 The synthetic route of catalyst Pd-diimine@SBA-15
此外,作者以溴苯和苯硼酸的Suzuki反應(yīng)考察了催化劑Pd-diimine@SBA-15和Pd@SBA-15的循環(huán)使用情況,催化劑Pd-diimine@SBA-15循環(huán)使用4次,產(chǎn)率依然可達(dá)到85%,而催化劑Pd@SBA-15循環(huán)使用4次,產(chǎn)率下降到19%.
2016年,Nourolah等[22]采用3-氯丙基三甲氧基硅烷對(duì)MCM-41進(jìn)行改性,再與S-甲基異硫脲鹽酸鹽反應(yīng),然后以醋酸鈀為鈀源,將Pd負(fù)載到改性MCM-41上,再經(jīng)硼氫化鈉還原,制得催化劑Pd(0)-SMT-MCM-41(圖8).以碳酸鉀為堿,聚乙二醇(PEG)為溶劑,該催化劑可以高效地催化鹵代芳烴與四苯基硼酸鈉、苯硼酸、三苯基氯化錫的Suzuki偶聯(lián)反應(yīng),即使催化不活潑的氯代芳烴參與的Suzuki反應(yīng),也表現(xiàn)出了高效的催化活性.并且作者將該催化劑應(yīng)用于氯代芳烴與丙烯酸丁酯的Heck反應(yīng)中,在碳酸鉀為堿,DMF為溶劑反應(yīng)體系中,Heck反應(yīng)產(chǎn)率可達(dá)到92%以上.
圖8 催化劑Pd(0)-SMT-MCM-41的合成路線Fig.8 The synthetic route of catalyst Pd(0)-SMT-MCM-41
2017年,Maryam等[23]采用3-胺丙基三乙氧基硅烷對(duì)MCM-41進(jìn)行改性,然后縮合香草醛,再以醋酸鈀為鈀源,將Pd負(fù)載到改性的介孔分子篩MCM-41上,經(jīng)硼氫化鈉還原,制得零價(jià)鈀催化劑Pd-Vanillin-MCM-41(圖9).該催化劑在水相中催化Suzuki反應(yīng),表現(xiàn)出較好的催化活性,以碳酸鉀為堿,水為溶劑,催化碘代芳烴、溴代芳烴與苯硼酸的Suzuki反應(yīng),產(chǎn)率可達(dá)80%以上,催化鹵代芳烴與三苯基氯化錫的Suzuki反應(yīng)產(chǎn)率高達(dá)85%以上.并且該催化劑重復(fù)使用5次,催化活性無明顯降低.
圖9 催化劑Pd-Vanillin-MCM-41的合成路線Fig.9 The synthetic route of catalyst Pd-Vanillin-MCM-41
2017年,Pathak等[24]采用SBA-15為載體,經(jīng)與3-疊氮基丙基三甲氧基硅烷和N,N-二甲基-2-丙炔基胺反應(yīng)后,以PdCl2為鈀源,得到負(fù)載型鈀催化劑D-2PA-Pd(II)@SBA-15(圖10).該催化劑在Suzuki反應(yīng)中具有高效的催化活性,以K2CO3為堿,DMF為溶劑,120 ℃條件下,該催化劑催化碘苯與苯硼酸的反應(yīng)產(chǎn)率可以高達(dá)100%,循環(huán)使用5次,產(chǎn)率依然可以保持在90%.但催化氯苯參與的Suzuki反應(yīng)幾乎沒有催化效果.
圖10 催化劑D-2PA-Pd(II)@SBA-15的合成路線Fig.10 The synthetic route of catalyst D-2PA-Pd(II)@SBA-15
2006年,Trilla等[25]制備了硅基有機(jī)-無機(jī)雜化材料(OIH)負(fù)載Pd催化劑,然后用該催化劑在DMF溶劑相中催化Suzuki反應(yīng)研究其催化效果(圖11).實(shí)驗(yàn)發(fā)現(xiàn),此催化劑擁有相當(dāng)好的催化活性,用0.2 mol%鈀用量的催化劑,催化溴代芳烴和苯硼酸的Suzuki反應(yīng),110 ℃反應(yīng)1 h,可以達(dá)到100%的產(chǎn)率,循環(huán)使用該催化劑10次,反應(yīng)產(chǎn)率依然可以達(dá)到94%以上.
圖11 硅基有機(jī)-無機(jī)雜化材料(OIH)負(fù)載Pd催化劑合成路線Fig.11 The synthetic route of organic-inorganic hybrid material (OIH) supported Pd catalyst
2008年,Trilla等[26]又將該催化劑繼續(xù)研究催化Sonogashira和Heck反應(yīng),結(jié)果同樣顯示該催化劑的催化活性很好(圖12).在Sonogashira反應(yīng)中,該催化劑循環(huán)使用4次,反應(yīng)產(chǎn)率仍然可以達(dá)到85%以上.但是該催化劑在Heck偶聯(lián)反應(yīng)中,回收并第二次重復(fù)使用該催化劑時(shí),發(fā)現(xiàn)Heck反應(yīng)產(chǎn)率明顯下降,表明此催化劑在Heck反應(yīng)的高溫條件下不穩(wěn)定.作者使用HR-TEM對(duì)二次使用的該催化劑進(jìn)行表征,發(fā)現(xiàn)大量的鈀納米粒子團(tuán)聚在載體表面,造成催化活性降低.
2015年,Zhang等[27]采用咪唑鎓鹽型有機(jī)-無機(jī)雜化硅材料(IBOIHS)與PdCl2[PPh2(CH2)2Si(OEt)3]2反應(yīng),制得負(fù)載型鈀催化劑PdPPh2-IBOIHS(圖13).并將該催化劑應(yīng)用于Suzuki偶聯(lián)反應(yīng)中,作者以氫氧化鈉為堿,異丙醇為溶劑,使用2 mol%鈀用量的該催化劑催化4-碘苯乙酮、4-溴苯乙酮與芳基硼酸的Suzuki反應(yīng),80 ℃反應(yīng)12 h,反應(yīng)產(chǎn)率可達(dá)85%~99%.
圖12 硅基有機(jī)-無機(jī)雜化材料(OIH)負(fù)載Pd催化劑催化Sonogashira和Heck反應(yīng)Fig.12 Organic-inorganic hybrid material (OIH) supported Pd catalyst for Sonogashira and Heck reaction
圖13 催化劑PdPPh2-IBOIHS的合成路線Fig.13 The synthetic route of catalyst PdPPh2-IBOIHS
2003年,Baleizao等[28]報(bào)道了采用硅膠作為載體,負(fù)載環(huán)鈀肟催化劑(圖14),并將硅膠負(fù)載環(huán)鈀肟配合物催化劑用于Suzuki反應(yīng)研究其催化性能.研究表明,在純水溶劑中,該催化劑在Suzuki反應(yīng)中顯示出相當(dāng)高的催化活性,重復(fù)使用7次該催化劑,催化活性幾乎沒降低,即使是催化氯代芳烴參與的Suzuki反應(yīng)也顯示出比較好的催化活性.
2007年,Lee等[29]報(bào)道了采用一種38~60 μm粒徑的無定形硅材料為載體負(fù)載鈀催化劑(圖15).實(shí)驗(yàn)表明,在室溫條件下,用該催化劑催化溴代芳烴、碘代芳烴與芳基硼酸的Suzuki反應(yīng),產(chǎn)率可高達(dá)99%.此外,該催化劑催化溴苯與芳基硼酸的Suzuki反應(yīng)產(chǎn)率為99%,循環(huán)使用4次后,反應(yīng)產(chǎn)率依然可達(dá)到95%.該催化劑表現(xiàn)出很高的催化活性,但稍微不足的是,催化氯代芳烴與芳基硼酸的Suzuki反應(yīng)產(chǎn)率僅為7%.
圖14 硅膠負(fù)載環(huán)鈀肟催化劑的合成路線Fig.14 The synthetic route of silica supported palladium catalyst
圖15 無定形硅材料負(fù)載鈀催化劑Fig.15 Amorphous silicon material supported palladium catalyst
2014年,Ghiaci等[30]以230目的硅膠為載體,經(jīng)胺丙基三甲氧基硅烷修飾,再與三聚氯腈和3-(3-胺丙基)-1-甲基咪唑溴鹽反應(yīng)后負(fù)載鈀催化劑,制得一種新型的負(fù)載氮雜環(huán)卡賓鈀催化劑SiO2-pA-Cyanuric-NH-Pd(圖16).作者以碳酸鉀作為堿,水為溶劑,當(dāng)使用0.5 mol%Pd用量的該催化劑時(shí),100 ℃條件下催化碘代芳烴、溴代芳烴與芳基硼酸的Suzuki偶聯(lián)反應(yīng),產(chǎn)率可達(dá)88%~96%.即使該催化劑催化氯代芳烴和芳基硼酸的Suzuki偶聯(lián)反應(yīng),也表現(xiàn)出較好的催化活性,反應(yīng)產(chǎn)率可達(dá)到59%.此外,該催化劑在碘苯和芳基硼酸的Suzuki偶聯(lián)反應(yīng)中循環(huán)使用5次,反應(yīng)產(chǎn)率依然可達(dá)到95%.
圖16 催化劑SiO2-pA-Cyanuric-NH-Pd的合成路線Fig.16 The synthetic route of catalyst SiO2-pA-Cyanuric-NH-Pd
圖17 硅膠負(fù)載氮雜環(huán)卡賓鈀催化劑Fig.17 Silica supported nitrogen heterocyclic carbene palladium catalyst
2015年,Martinez等[31]采用60目的硅膠為載體負(fù)載鈀催化劑,制得了氮雜環(huán)卡賓鈀催化劑a和b(圖17).實(shí)驗(yàn)結(jié)果表明,催化劑a催化2,4-二甲基溴苯和4-甲氧基芳基硼酸的Suzuki反應(yīng),催化活性較低,60 ℃反應(yīng)20 h,反應(yīng)產(chǎn)率僅40%.而催化劑b比催化劑a的催化活性則要好很多,在相同的反應(yīng)條件下,b催化反應(yīng)產(chǎn)率可以達(dá)到85%.而且他們還發(fā)現(xiàn)催化劑b經(jīng)甲氧基三甲基硅烷處理后,可以增加催化劑的活性,催化2,4-二甲基溴苯和4-甲氧基芳基硼酸的Suzuki反應(yīng),60 ℃反應(yīng)5 h,產(chǎn)率可高達(dá)95%以上.但稍微不足的是,經(jīng)甲氧基三甲基硅烷處理后的催化劑b的循環(huán)使用效果比較差,該催化劑循環(huán)使用6次后,反應(yīng)產(chǎn)率低于20%.
2016年,Mondal[32]采用3-胺丙基三乙氧基硅烷改性硅膠(60~120目)為載體,與苯甲酰氯縮合,再以醋酸鈀為鈀源,將Pd負(fù)載到改性硅膠上,制得催化劑Pd-benzamize@SiO2(圖18).并將該催化劑應(yīng)用于Suzuki反應(yīng)中,以碳酸鉀作為堿,i-PrOH/H2O(體積比為1∶1)為溶劑,使用0.22 mol%Pd用量的催化劑在室溫條件下催化溴代芳烴與芳基硼酸的Suzuki偶聯(lián)反應(yīng),產(chǎn)率可達(dá)94%以上.即使該催化劑催化不活潑的氯代芳烴和芳基硼酸的Suzuki反應(yīng),產(chǎn)率也可達(dá)到40%左右.此外,作者以對(duì)溴硝基苯與苯硼酸的反應(yīng)作為Suzuki反應(yīng)模型,考察了該催化劑的重復(fù)使用性能,首次催化該反應(yīng)產(chǎn)率為99%,重復(fù)使用6次后,反應(yīng)產(chǎn)率仍然可達(dá)到95%.
2017年,Tahshina等[33]采用60~120目的硅膠為原料,使用氯丙基三乙氧基硅烷對(duì)其官能化,然后與咪唑、1,3-二溴-2-丙醇反應(yīng)產(chǎn)物負(fù)載鈀催化劑,制得對(duì)稱型負(fù)載氮雜環(huán)卡賓鈀催化劑Pd-NHC-CPTES@SiO2(圖19).以K2CO3為堿,i-PrOH/H2O(體積比為1∶1)為溶劑,50 ℃條件下,該催化劑催化溴代芳烴與芳基硼酸的Suzuki反應(yīng),產(chǎn)率可達(dá)94%~98%.即使催化不活潑的氯代芳烴與芳基硼酸的Suzuki反應(yīng),產(chǎn)率也可達(dá)到60%以上.該催化劑在對(duì)溴硝基苯與苯硼酸的反應(yīng)中循環(huán)使用6次,反應(yīng)產(chǎn)率無明顯下降,依然可達(dá)到85%.
圖18 催化劑Pd-benzamize@SiO2的合成路線Fig.18 The synthetic route of catalyst Pd-benzamize@SiO2
圖19 催化劑Pd-NHC-CPTES@SiO2的合成路線Fig.19 The synthetic route of catalyst Pd-NHC-CPTES@SiO2
近年來,用于Heck反應(yīng)和Suzuki反應(yīng)的硅基載體材料以其獨(dú)特的優(yōu)勢(shì)得到了長足的發(fā)展.硅基材料具有大的比表面積、良好的機(jī)械強(qiáng)度和表面易于功能化等特點(diǎn),作為鈀等貴金屬催化劑的載體,可以實(shí)現(xiàn)高的催化活性,選擇性好且轉(zhuǎn)化效率高等.設(shè)計(jì)和開發(fā)新型的硅基載體材料,并應(yīng)用于規(guī)模化生產(chǎn),是今后開發(fā)具有實(shí)際應(yīng)用價(jià)值的催化劑載體的重要研究方向.
[1] MIZOROKI T, MORI K, OZAKI A. Arylation of olefin with aryl iodide catalyzed by palladium [J]. Bull Chem Soc Jap,1971, 44(2): 581-583.
[2] HECK R F, NOLLEY J P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl,benzyl, and styryl halides[J]. J Org Chem, 1972, 37(14): 2320-2322.
[3] ZAPF A, BELLER M. Fine chemical synthesis with homogeneous palladium catalysts: exampies, status and trends[J]. Top Catal,2002, 19(1): 101-109.
[4] SHIBASAKI M, VOGL E M, OHSHIMA T. Asymmetric Heck reaction[J]. Adv Synth Catal, 2004, 346(13): 1533-1552.
[5] MAJUMDAR K C, SINHA B. Palladium-mediated total synthesis of bioactive natural products[J]. Synthesis, 2013, 45(10): 1271-1299.
[6] ZAFAR M N, MOHSIN M A, DANISH M, et al.Palladium catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions (Review)[J]. Russ J Coord Chem,2014, 40(11): 781-800.
[7] MIYAURA N, YANAGI T, SUZUKI A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presebce of bases[J]. Synth Commun, 1981, 11(7): 513-515.
[8] LITTKE A F, FU G C. Palladium-catalyzed coupling reactions of aryl chlorides[J]. Angew Chem Int Ed, 2002, 41(22): 4176-4211.
[9] SHEN X, JONES G O, WATSON D A, et al. enantioselective synthesis of axially chiral biaryls by the pd-catalyzed suzuki-miyaura reaction: substrate scope andquantum mechanical investigations[J]. J Am Chem Soc, 2010, 132(32): 11278.
[10] LI Q H, DING Y, YANG X J.Nickel-catalyzed cross-coupling reaction of alkynyl bromides with Grignard reagents[J]. Chin Chem Lett, 2014, 25(9): 1296-1300.
[11] LI Q H, DING Y, HUANG N W.Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group[J]. Chin Chem Lett, 2014, 25(11): 1469-1472.
[12] XIN Y, WEN G A, ZENG W J, et al. Hyperbranched oxadiazole-containing polyfluorenes: toward stable blue light PLEDs[J]. Macromolecules, 2005, 38(16): 6755-6758.
[13] WU B, LIU Q S, SULIKOWSKI G A.Total synthesis of apoptolidinone[J]. Angew Chem Int Ed, 2004, 43(48): 6673-6675.
[14] RICHARDSON T I, CLARKE C A, LUGAR C W, et al. Novel 3-aryl indoles as progesterone receptor antagonists for uterine fibroids[J]. ACS Med Chem Lett, 2011, 2(2): 148-153.
[15] CRUDDEN C M, SATEESH M, LEWIS R. Mercaptopropyl-modified mesoporous silica: a remarkable support for the preparation of a reusable heterogeneous palladium catalyst for coupling reactions[J]. J Am Chem Soc, 2005, 127(28): 10045-10050.
[16] YANG Q, MA S M, LI J, et al. A water-compatible, highly active and reusable PEG-coated mesoporous silica-supported palladium complex and its application in Suzuki coupling reactions[J]. Chem Commun, 2006,37 (44): 2495-2497.
[17] YANG H Q, LI G A, MA Z C, et al.Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki-Miyaura coupling of aryl chlorides and C(sp3)-chlorides[J]. J Catal, 2010, 276(1): 123-133.
[18] DHARA K, SARKAR K, SRIMANI D, et al. A new functionalized mesoporous matrixsupportedPd(II)-Schiff base complex: an efficient catalyst for the Suzuki-Miyauracoupling reaction[J]. Dalton Trans, 2010, 39(28): 6395-6402.
[19] DAS S,BHUNIA S,MAITY T,et al. Suzuki cross-coupling reaction over Pd-Schiff-base anchored mesoporous silica catalyst[J]. J MolCatal A: Chem,2014, 394:188-197.
[20] GHORBANIC A,NIKPOUR F,GHORBANI F,et al. Anchoring of Pd(II) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C-C, C-O and C-N coupling reactions using Ph3SnCl[J]. RSC Adv,2015, 5(42): 33212-33220.
[21] YU J H, SHEN A, CAO Y C, et al. Preparation of Pd-Diimine@SBA-15 and its catalytic performance for the Suzuki coupling reaction[J].Catalysts, 2016, 6(12): 181/1-181/17.
[22] NOORI N, NIKOORAZM M, GHORBANI-CHOGHAMARANI A. Pd(0)-S-methylisothiourea grafted onto mesoporous MCM-41and its application as heterogeneous and reusable nanocatalyst for the Suzuki, Stille and Heck cross coupling reactions[J]. J Porous Mater, 2016, 23(6): 1467-1481.
[23] KHANMORADI M,NIKOORAZM M,GHORBANI-CHOGHAMARANI A. Synthesis and characterization of Pd schiff base complex immobilized onto functionalized nanoporous MCM-41 and its catalytic efficacy in the Suzuki, Heck and Stille coupling reactions[J]. Catal Lett, 2017, 147(5): 1114-1126.
[24] PATHAK A, SINGH A P. Synthesis and characterization of D-2PA-Pd(II)@SBA-15 catalyst via “click chemistry”: highly active catalyst for Suzuki coupling reactions[J]. J Porous Mater,2017, 24(2): 327-340.
[25] TRILLA M, PLEIXATS R, MAN M W C, et al. Hybrid organic-inorganic silica materials containing di(2-pyridyl) methylamine-palladium dichloride complex as recyclable catalysts for Suzuki cross-coupling reactions[J]. Tetrahedron Lett, 2006, 47(14): 2399-2403.
[26] TRILLA M, PLEIXATS R, MANM W C, et al. Hybrid organic-inorganic materials from di-(2-pyridyl)methylamine-palladium dichloride complex as recoverable catalysts for Suzuki, Heck and Sonogashira reactions[J]. Adv Synth Catal, 2008, 350(4): 577-590.
[27] ZHANG D C, CHENG T Y, LUI G H. An imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica promotes one-pot tandem Suzuki cross coupling-reduction of haloacetophenones and arylboronic acids[J]. Appl Catal B: Environ, 2015, (174/175): 344-349.
[28] BALEIZAO C, CORMA A, GARCIA H, et al. An oxime-carbapalladacycle complex covalently anchored to silica as an active and reusable heterogeneous catalyst for Suzuki cross-coupling in water[J]. Chem Commun, 2003(5): 606-607.
[29] LEE S M, YOON H J, KIM J H, et al. Highly active organosilane-based N-heterocyclic carbene-palladium complex immobilized on silica particles for the Suzuki reaction[J]. Pure Appl Chem, 2007, 79(9):1553-1559.
[30] GHIACI M, ZARGHANI M, KHOJASTEHNEZHAD A, et al. Preparation, characterization and first application of silica supported palladium-N-heterocyclic carbene as a heterogeneous catalyst for C-C coupling reactions[J].RSC Advances, 2014, 4(30): 15496-15501.
[31] MARTINEZ A, KRINSKY J, PENAFIEL I, et al. Heterogenization of Pd-NHC complexes onto a silica support and their application in Suzuki-Miyaura coupling under batch and continuous flow conditions[J]. Catal Sci Technol, 2015,5(1): 310-319.
[32] MONDAL M, DEWAN A, BEGUM T, et al. Suzuki-miyaura cross-coupling in aqueous medium using recyclable palladium/amide-silica catalyst [J]. Catal Lett, 2016, 146(9): 1718-1728.
[33] TAHSHINA B, MANOJ M, MANASH P B, et al. An immobilized symmetrical bis-(NHC) palladium complex as a highly effcient and recyclable Suzuki-Miyaura catalyst in aerobic aqueous media[J]. Dalton Trans, 2017, 46(2):539-546.
Progress on the Application of Silica Supported Palladium Catalysts in Heck and Suzuki Reactions
KANG Zhenwei,GAO Zhanchen,ZHANG Feibao,NI Yong,JIANG Jianxiong
(Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou 311121, China)
Silica materials become the ideal catalyst support in the palladium catalyzed Heck and Suzuki cross-coupling reactions for their high specific surface area, high thermal stability, diverse morphologies and tunable surface properties. This paper firstly summarizes the recent research progress of catalyst supports, such as mesoporous silica, organic-inorganic hybrid materials and amorphous silica materials, and then introduces the application of catalyst support in Heck and Suzuki reactions.
Heck reaction; Suzuki reaction; silica materials; catalyst support
2017-04-11
浙江省自然科學(xué)基金項(xiàng)目(Y4100131); 杭州市高層次留學(xué)回國人員(團(tuán)隊(duì))在杭創(chuàng)業(yè)創(chuàng)新項(xiàng)目(ZX15047002).
張飛豹(1976—),男,助理研究員,博士,主要從事有機(jī)硅材料研究.E-mail:feibaozhang@126.com
10.3969/j.issn.1674-232X.2017.04.002
O643.3
A
1674-232X(2017)04-0343-10