• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene?

    2017-08-30 08:26:50JianGao高建QianQianYu于倩倩JuanZhang張娟YangLiu劉洋RuoFeiJia賈若飛JunHan韓俊XiaoMingWu吳曉明YuLinHua華玉林andShouGenYin印壽根
    Chinese Physics B 2017年9期
    關(guān)鍵詞:韓俊張娟劉洋

    Jian Gao(高建),Qian-Qian Yu(于倩倩),Juan Zhang(張娟), Yang Liu(劉洋),Ruo-Fei Jia(賈若飛),Jun Han(韓俊), Xiao-Ming Wu(吳曉明),?,Yu-Lin Hua(華玉林),?,and Shou-Gen Yin(印壽根),§

    1 School of Materials Science and Engineering,Tianjin University of Technology,Tianjin 300222,China

    2 Key Laboratory of Display Materials and Photoelectric Devices,Ministry of Education,Tianjin 300222,China

    3 Tianjin Key Laboratory of Photoelectric Materials and Devices,Tianjin 300222,China

    Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene?

    Jian Gao(高建)1,2,3,Qian-Qian Yu(于倩倩)1,2,3,Juan Zhang(張娟)1,2,3, Yang Liu(劉洋)1,2,3,Ruo-Fei Jia(賈若飛)1,2,3,Jun Han(韓俊)1,2,3, Xiao-Ming Wu(吳曉明)1,2,3,?,Yu-Lin Hua(華玉林)1,2,3,?,and Shou-Gen Yin(印壽根)1,2,3,§

    1 School of Materials Science and Engineering,Tianjin University of Technology,Tianjin 300222,China

    2 Key Laboratory of Display Materials and Photoelectric Devices,Ministry of Education,Tianjin 300222,China

    3 Tianjin Key Laboratory of Photoelectric Materials and Devices,Tianjin 300222,China

    We chose pentacene as a hole injection layer(HIL)to fabricate the high performance blue fluorescent organic light emitting devices(OLEDs).We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120°C.Then we performed the tests of scanning electron microscopy,atomic force microscopy,and Kelvin probe to explore the effect of annealing on the pentacene films.The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing.The optimal device with 120°C annealed pentacene film and n-doped electron transport layer(ETL)presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m2at 12 V,which are reduced by 26%and improved by 50%compared with those of the control device.

    organic light-emitting device(OLED),annealing,pentacene film,hole injection

    1.Introduction

    The organic light-emitting diodes(OLEDs)have now been accepted as a dream display owing to their attractive features such as high display quality,slim body,flexibility,low power consumption,and so on.[1–4]Improving their electroluminescent(EL)performance is a primary goal in the development of technological applications.Since OLEDs can potentially be used in portable and wearable electronic devices, the researchers are also interested in the low driving voltage devices based on the point of view of energy saving.Hence, lots of studies have focused on thin films treatments and the exploitation of organic materials for low driving voltage and high luminance.[5–7]Currently,several methods for reducing the driving voltage of OLEDs have been reported.Introducing a p-type or n-type doping structure in the charge transport layer is the most commonly used method.[8–10]However,the co-evaporation process is complicated,and the minor doping ratio is inaccurate to control.It is worth mentioning that inserting an injection layer between the electrode and the organic layer is easy and effective.[11–13]

    It is well known that an effective injection layer requires appropriate energy level matching and high carrier mobility.[14]As a p-type material,pentacene is one of the most promising organic semiconductors due to its high mobility and stability,which has been widely used in organic field effect transistors(OFETs).[15,16]Furthermore,some works on OLEDs comprising pentacene thin films have also been reported previously.Shi et al.[17]reduced the hole injection by introducing pentacene thin films to balance the recombination of electrons and holes,which improved the efficiency of the OLEDs.We hope that a pentacene thin film can function as an effective hole injection layer(HIL)in OLED with high carrier injection ability to improve the performance of the OLED.By investigation,the carrier mobility of the pentacene thin film can be improved through thermal annealing in OFETs.[15,18]

    In this work,we introduce this method to the OLEDs and reveal that relatively high annealing temperature could induce pentacene to develop into high crystallinity films with highlyordered,large-sized,and smooth shape.As an HIL in OLEDs, the annealed pentacene film will be used to improve the hole injection ability at a low driving voltage.Simultaneously,the n-doped electron transport layer(ETL)will also be adopted to balance the hole–electron pairs in the emission layer(EML), which results in high luminance and low driving voltage for OLEDs.

    2.Experiment

    2.1.Device fabrication

    The cleaning of the ITO glass substrate with a sheet resistance of 20 ?/sq is subsequently performed with detergent, deionized water,acetone,and is opropanol in an ultra-sonic bath for 10 min each.After drying,the surface of ITO is treated under UV/O3for 15 min.All organic films are deposited on a pre-cleaned ITO glass substrate using a thermal evaporation of BOC Edwards Auto 500 thermal evaporation system in an M.Braun 20 G glove box with a deposition rate of 2 nm/min,and an in-situ quartz crystal is used to monitor the thickness of the vacuum depositions. Figure 1 shows the principle scheme of the OLED.Fluorescent blue dye N6,N6,N12,N12-tetrap-tolylchichrysene-6, 12-diamine(DNCA)doped into a host material 9,10-Di(2-naphthyl) anthracene(ADN)serves as the emission layer (EML),which is sandwiched between the hole transport layer (HTL)of N,N’-Bis-(1-naphthalenyl)-N,N’-bis-phenyl-(1,1’-biphenyl)-4,4’-diamine(NPB)and the electron transport layer (ETL)of 4,7-diphnenyl-1,10-phenanthroline(Bphen).A pentacene film is introduced as an HIL.

    Fig.1.(color online)Principle scheme of an OLED.

    2.2.Annealing conditions and test instruments

    The thermal annealing tests were carried out in a vacuum oven(VC 20,M.BRAUN).The samples were kept for 1 h at different temperatures(such as 100°C,120°C,and 150°C). The OLED performance measurements were carried out using a Keithley 2400 source and a PR650 scan spectrometer in a glove box.We characterized the surface morphology and crystallinity of the deposited pentacene films by using atomic force microscopy(AFM,Bruker Innova),scanning electron microscopy(SEM,Rigaku D/max 2500),and x-ray diffraction (XRD,Hitachi SU8010).The energy levels were measured by a Kelvin probe(KP020).

    3.Results and discussion

    The EL characteristics of the pentacene-based OLEDs with different annealing temperatures were investigated.The structures of different devices are listed as follows:

    A:ITO/NPB(40 nm)/ADN:DNCA(30 nm, 6 wt.%)/Bphen(20 nm)/LiF(0.8 nm)/Al(120 nm);

    B:ITO/pentacene(5 nm)/NPB(40 nm)/ADN:DNCA (30 nm,6 wt.%)/Bphen(20 nm)/LiF(0.8 nm)/Al(120 nm); the structures of devices C,D,and E are the same as that of device B(pentacene with out annealing),except for the pentacenefilms annealed at different temperatures at 100°C,120°C,and 150°C.

    Fig.2.(color online)Current density–luminance–voltage characteristics of devices A–E.

    From Fig.2,it can be found that the current density of device B is lower than that of device A at the same bias.That is to say,the insertion of the pentacene film does not improve the hole injection ability of the OLEDs,which is probably because the pentacene film appears as a grain of amorphous phase.When the thickness of the pentacene film is thin,the vacancies and defects exist in the film,which results in a reduced injection current at a constant voltage.[18]However,the current density of devices B–D is improved with the increase of the annealing temperature,and device D shows the highest current density under the same driving voltage.It is worth mentioning that the current density of device E obviously decreases when the annealing temperature reaches 150°C.By inspecting the change of J–V curves,we find that appropriate heat treatment of the pentacene thin films(device D)may improve the hole injection ability in the OLEDs.But we alsofind that the brightness of device D is not increased significantly.So the effect of annealing on the pentacene films needs to be further investigated.

    Here we explored the morphology,roughness,work function of the pentacene films through a series of tests.Figure 3 shows the SEM images of the pentacene thin films obtained under different annealing conditions(without annealing,100°C,120°C,and 150°C annealing).From Figs.3(a)–3(c),with the increase of the annealing temperature,the pen-tacene films become more ordered,large-sized,and smooth. However,voids appearing in Fig.3(d)apparently break the continuity of the thin films,which may account for the decrease of the current density of device E with 150°C annealing.Among these images,the pentacene film in Fig.3(c) presents the best continuities and smoothness.

    Fig.3.SEM images showing the morphology of the pentacene films:(a)without annealing sample,(b)100°C annealed sample,(c) 120°C annealed sample,(d)150°C annealed sample.

    Fig.4.(color online)AFM images(1μm×1μm)of 5 nm pentacene thin films on ITO/glass:(a)before and(b)–(d)after annealing (100°C,120°C,and 150°C).

    Figure 4 shows the AFM topographic images of the pentacene thin films before and after annealing at 100°C,120°C, and 150°C.In Fig.4(a),many small projections are observed, and the bright parts are probably a grain of the bulk phase pentacene.[19,20]More bright parts disappear as the temperature increases.When the temperature reaches 120°C,some adjacent grains join together,which suggests that local recrystallization has occurred due to the annealing(Fig.4(c)).However,from Fig.4(d),150°C annealing causes such a desorption effect that the thin film has been undermined.Moreover, from the roughness data labeled on the AFM images,the lowest roughness(Ra=1.32 nm,Rq=1.05 nm)of the pentacenefilm is obtained under the annealing of 120°C.

    To confirm the formation of the crystallinity for the pentacene film and the improvement of the hole injection ability, further exploration is provided through the measurements of XRD and Kelvin probe.Figure 5 shows the XRD patterns of the pentacene films before and after annealing at 100°C, 120°C,and 150°C.

    Fig.5.(color online)XRD patterns of the pentacene films on sapphire substrate before and after annealing(100°C,120°C,and 150°C).The thickness of the pentacene film is 50 nm.

    The intensity of the(001)diffraction peak from the thinfilm phase of the non-annealed pentacenefilm is relatively low. When the annealing temperature reaches 120°C,the intensity of the(001)peak becomes markedly stronger,and a series of (00k)peaks related to the crystalline structure of pentacene are observed.It can be attributed to the fact that some adjacent pentacene grains join together via a recrystallization process under the annealing of 120°C.Furthermore,120°C annealing also facilitates the pentacene molecules to form the bulk phase which is corresponding to the(001′)peak at 6.18°.[19]The bulk phase of pentacene indicates that the adhesion between pentacene and ITO is improved.[21–23]Thus the pentacene film forms a crystalline shape,which optimizes the interface contact between ITO and pentacene molecules.Meanwhile the defects in the pentacene grains could be repaired under appropriate thermal annealing.With the temperature increasing to 150°C,the intensities of the(00k)peaks are significantly reduced,which indicates that the crystalline structure of pentacene has been damaged.

    Figure 6 shows the work function of the pentacene films under various conditions(without annealing,100°C, 120°C,and 150°C annealed).The average values of work function under the conditions are?5.0280 eV,?5.0175 eV,?4.9854 eV,and?5.0489 eV,respectively.Among these values,the highest work function of the pentacene film is obtained when the annealing temperature reaches 120°C,which will be beneficial for the hole injection from ITO to HIL. The energy level diagram of pentacene inserted between ITO and NPB is shown in Fig.7,the highest occupied molecular orbital(HOMO)levels of pentacene and ITO are?5.0 eV and?4.7 eV,respectively.The hole injection barrier at pentacene(annealing at120°C)/ITOinterface is 0.2854 eV,which is 0.0426 eV lower than that of pentacene(without annealing)/ITO.The results provide solid evidence that the 120°C annealed pentacene film can lower the hole injection barrier and improve the hole transport ability under a certain bias.

    Fig.6.(color online)The work function of the pentacene films with different annealing conditions measured by a Kelvin probe(film prepared on the ITO glass substrate with a thickness of 5 nm).Inset shows the carrier mobility of the OFETs based on the pentacene films annealed at different temperatures.

    Fig.7.(color online)Energy levels and hole injection diagram of the device.

    Moreover,the carrier mobility of the pentacene films annealed at different temperature was measured by organic field effect transistors.The inset of Fig.6 shows the change in carrier mobility as a function of annealing temperature.The carrier mobility of the device without thermal annealing is about 1.15×10?2cm2/V·s.When the annealing temperature reaches 120°C,the pentacene film exhibits a more crystalline form with best continuities and smoothness,which is beneficial to improving the carriermobility(4.69×10?2cm2/V·s)of the device.Considering the p-type character of pentacene,the results indicate that the hole transport ability of the pentacenefilm will also be improved with an optimal annealing temperature.

    The current density of device D has been improved markedly based on the enhancement of the hole injection ability.However,the brightness of device D is not improved obviously as expected.As is known,the total current density of OLEDs is equal to the current density of the injected electrons from the cathode plus the part of the hole current density flowing to the anode without recombination.[24–26]The injected electrons from the cathode into the EML can be considered as the same due to the equal electrons injection barrier for these devices.However,the current density of device D is higher than that of device B,which results from excessive holes disrupting the balance of recombination.That is to say,excessive holes accumulated in the EML induce exciton quenching.The fraction of hole current density reaching the counter electrode without recombination in device D is higher than that of device B.The unbalanced number of electrons and holes injected into the EML would affect the efficiency and luminance of the devices.To improve the performance of the OLED,the electron injection and transport ability should be enhanced.So we introduced an n-doping ETL in the OLED to enhance the electron transport ability,and further discussed the effect of charge balance.

    To prove the above theory,we fabricated another group of OLEDs named devices 1–5.The only difference compared to the previous devices is that we replaced the Bphen(20 nm) by Bphen(10 nm)/Bphen:Mg(10 wt.%,10 nm).As shown in Fig.8,there is an obvious increase in luminance and current density of device 4 compared with those of devices 1 and 2 at the same driving voltage.

    Fig.8.(color online)The EL characteristics of devices 1–5:(a)current density–luminance–voltage characteristics,(b)current efficiency–power efficiency–current density characteristics.

    Table 1 shows the EL performances of devices 1–5. Through the annealing of the pentacene film,the turn-on voltage and the driving voltage are reduced to 2.6 V and 5.1 V for device 4,which have been reduced by 35%and 20%compared with those of device 1.As the voltage increases to 12 V,device 4 presents a very high luminance of 134800 cd/m2,whereas devices 1 and 2 show the luminance of 92120 cd/m2and 89810 cd/m2.The luminance improvement at a constant currentdensity corresponds to the increased current efficiency and power efficiency.As seen from Fig.8,combining the 120°C annealed pentacene film and the n-doped ETL structure,the hole and electron injection abilities have been simultaneously improved.The balanced hole–electron pairs are beneficial for exciton’s formation under a low driving voltage,which results in the EL performance improvement of the OLEDs.

    Table 1.The EL performances of the OLEDs.

    4.Conclusion

    We use a simple approach to effectively improve the EL performance of the blue fluorescent organic light-emitting device by introducing the annealed pentacene film as the hole injection layer.The pentacene film can form a highly-ordered, large-sized and smooth lamellar shape after a critical annealing at temperature 120°C,which could induce the pentacene molecules to develop into a high crystallinity film and improve the hole transport ability of the devices.Furthermore, combined with an n-doped ETL,the electron transport ability has been enhanced so as to improve the charge balance in the EML,which results in a high luminance and a low driving voltage of OLEDs.The optimal OLED(device 4)exhibits a low turn-on voltage of 2.6 V and a driving voltage of 5.1 V at 1000 cd/m2,which are obviously reduced by 0.9 V and 1.4 V respectively compared with those of the control device. Meanwhile,this device also presents a very high luminance of 134800 cd/m2at 12 V,which is 1.5 times higher than that of the control device.These results indicate that this simple and effective approach may fulfill the requirements of OLED with low driving voltage and high luminance.

    [1]Zhang Q S,Li B,Huang S,Nomura H,Tanaka H and Adachi C 2014 Nat.Photon.8 1

    [2]Cao J,Jiang X Y and Zhang Z L 2006 Appl.Phys.Lett.89 252108

    [3]Luo J,Li X Z,Hou Q,Peng J B,Yang W and Cao Y 2007 Adv.Mater. 19 1113

    [4]Miao Y Q,Gao Z X,Zhang A Q,Li Y H,Wang H,Jia H S,Liu X G and Tsuboi T 2015 Chin.Phys.B 24 057802

    [5]Hu Y,Zhou D Y,Wang B,Wang Z K and Liao L S 2016 Appl.Phys. Lett.108 153303

    [6]Zhang Q S,Li J,Shizu K,Huang S,Hirata S,Miyazaki H and Adachi C 2012 J.Am.Chem.Soc.134 14706

    [7]Udagawa K,Sasabe H,Cai C and Kido J 2014 Adv.Mater.26 5062

    [8]Wemken J H,Krause R,Mikolajick T and Schmind G 2012 J.Appl. Phys.111 074502

    [9]Nikiforov G O 2016 Org.Electron 36 120

    [10]Zhou D Y,Zu F S,Zhang Y J,Shi X B,Aziz H and Liao L S 2014 Appl.Phys.Lett.105 083301

    [11]Zhang X W,You F J,Zheng Q H,Zhang Z L,Cai P,Xue X G,Xiong J and Zhang J 2016 Org.Electron 39 43

    [12]Siemund H and G?bel H 2016 IEEE Trans.Electron Devices 63 3700

    [13]Takada M,Furuta S,Kobayashi T,Nagase T,Shinagawa T,Lzaki M and Naito H 2016 J.Appl.Phys.120 185501

    [14]Qian L,Zheng Y,Choudhury K R,Bera D,So F,Xue J and Holloway P H 2010 Nano Today 5 384

    [15]Xiang L Y,Wang W and Gao Feng Li 2016 IEEE Trans.Electron Devices 63 4440

    [16]Raghuwanshi V,Bharti D,Varun I,Mahato A K and Tiwari S P 2016 Org.Electron 34 284

    [17]Shi S W and Ma D G 2005 Semicond.Sci.Technol.20 1213

    [18]Guo D,Ikeda S,Saiki K,Miyazoe H and Terashima K 2006 J.Appl. Phys.99 094502

    [19]Ahn T,Jung H,Suk H J and Yi M H 2009 Synth.Met.159 1277

    [20]Dinelli F,Murgia M,Biscarini F and De Leeuw D M 2004 Synth.Met. 146 373

    [21]Fukuda K,Sekitani T and Someya T 2009 Appl.Phys.Lett.95 023302

    [22]Ji T,Jung S and Varadan V K 2008 Org.Electron 9 895

    [23]Fukuda K,Yokota T,Kuribara K,Sekitani T,Zschieschang U,Klauk H and Someya T 2010 Appl.Phys.Lett.96 053302

    [24]Zhang F J,Xu Z,Zhao S L,Zhao D W,Yuan G C and Cheng Z M 2008 Appl.Surf.Sci.255 1942

    [25]Park Y W,Choi H J,Choi J H,Park T H,Jeong J W,Song E H and Ju B K 2012 IEEE Electron Device Lett.33 1156

    [26]Yun C,Cho H,Kang H,Lee Y M,Park Y and Yoo S 2009 Appl.Phys. Lett.95 053301

    7 March 2017;revised manuscript

    22 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/098507

    ?Project supported by the National Natural Science Foundation of China(Grant No.60906022),the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100),the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006),and the National High Technology Research and Development Program of China(Grant No.2013AA014201).

    ?Corresponding author.E-mail:wxm@tjut.edu.cn

    ?Corresponding author.E-mail:yulinhua@tjut.edu.cn

    §Corresponding author.E-mail:sgyin@tjut.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    韓俊張娟劉洋
    Clinical study of warm needling moxibustion combined with entecavir in the treatment of compensated cirrhosis due to chronic hepatitis B
    A class of two-dimensional rational maps with self-excited and hidden attractors
    夢寐以求的生日禮物
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    劉洋作品
    藝術(shù)家(2019年9期)2019-12-17 08:28:19
    韓俊:推進鄉(xiāng)村治理體系和治理能力現(xiàn)代化取得新成效
    發(fā)自內(nèi)心地喜歡勘探
    ——記西北油田科技創(chuàng)新功勛獎獲得者韓俊
    中國石化(2019年4期)2019-06-11 07:44:16
    有風吹過
    少年文藝(2019年3期)2019-03-20 12:30:38
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    Critically discuss current and likely future developments relating to metadata
    卷宗(2014年1期)2014-03-20 01:28:52
    日韩欧美免费精品| 一区在线观看完整版| 大陆偷拍与自拍| kizo精华| 男人添女人高潮全过程视频| 国产精品久久久久久精品古装| a 毛片基地| 91精品国产国语对白视频| 国产1区2区3区精品| 亚洲av男天堂| 欧美精品一区二区免费开放| 叶爱在线成人免费视频播放| 美女午夜性视频免费| 亚洲第一av免费看| 国产欧美日韩一区二区三区在线| 国产日韩欧美视频二区| 午夜福利视频精品| 久久久精品94久久精品| 亚洲av男天堂| 精品国产一区二区久久| 永久免费av网站大全| 两个人免费观看高清视频| 国产精品影院久久| 99热全是精品| 美女国产高潮福利片在线看| 亚洲成人手机| 一区二区三区四区激情视频| 两个人看的免费小视频| √禁漫天堂资源中文www| 99精品久久久久人妻精品| 老鸭窝网址在线观看| 性色av乱码一区二区三区2| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美在线一区二区| 日本黄色日本黄色录像| 亚洲精品粉嫩美女一区| 亚洲欧美色中文字幕在线| 亚洲全国av大片| 12—13女人毛片做爰片一| 曰老女人黄片| 日韩免费高清中文字幕av| 国产成人免费无遮挡视频| 制服人妻中文乱码| 99热网站在线观看| 这个男人来自地球电影免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲av美国av| 国产主播在线观看一区二区| 人人妻,人人澡人人爽秒播| 午夜视频精品福利| 日韩中文字幕欧美一区二区| 搡老熟女国产l中国老女人| 大片免费播放器 马上看| 黄色怎么调成土黄色| 黑人欧美特级aaaaaa片| 色综合欧美亚洲国产小说| 欧美黄色淫秽网站| 国产成人免费观看mmmm| 操美女的视频在线观看| 制服诱惑二区| 这个男人来自地球电影免费观看| 汤姆久久久久久久影院中文字幕| a级毛片在线看网站| 1024视频免费在线观看| 男女边摸边吃奶| 久久天躁狠狠躁夜夜2o2o| 天天操日日干夜夜撸| 肉色欧美久久久久久久蜜桃| 日韩视频一区二区在线观看| 欧美日本中文国产一区发布| 日本精品一区二区三区蜜桃| a级片在线免费高清观看视频| 久久天堂一区二区三区四区| 久久天堂一区二区三区四区| 少妇被粗大的猛进出69影院| 男人添女人高潮全过程视频| 久久狼人影院| 欧美av亚洲av综合av国产av| 亚洲av成人不卡在线观看播放网 | 香蕉丝袜av| 香蕉丝袜av| 国产精品久久久久久人妻精品电影 | 91精品伊人久久大香线蕉| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕一二三四区 | 免费观看人在逋| 人成视频在线观看免费观看| 啪啪无遮挡十八禁网站| 桃红色精品国产亚洲av| 香蕉国产在线看| bbb黄色大片| 性少妇av在线| 亚洲av男天堂| 色综合欧美亚洲国产小说| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 日日夜夜操网爽| 窝窝影院91人妻| netflix在线观看网站| 欧美乱码精品一区二区三区| 日韩免费高清中文字幕av| 老司机在亚洲福利影院| 99热全是精品| 三上悠亚av全集在线观看| 欧美日韩亚洲高清精品| 超碰97精品在线观看| av线在线观看网站| 亚洲少妇的诱惑av| 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 麻豆av在线久日| 最黄视频免费看| 18禁裸乳无遮挡动漫免费视频| 欧美少妇被猛烈插入视频| 青青草视频在线视频观看| 国产1区2区3区精品| 女人爽到高潮嗷嗷叫在线视频| 久久精品亚洲熟妇少妇任你| 黄色视频在线播放观看不卡| 99热全是精品| 免费在线观看影片大全网站| 久久人人97超碰香蕉20202| 国产亚洲精品第一综合不卡| 新久久久久国产一级毛片| 啦啦啦免费观看视频1| 黄片小视频在线播放| 欧美日本中文国产一区发布| 亚洲av日韩精品久久久久久密| 99精国产麻豆久久婷婷| 久久久久久久久久久久大奶| 亚洲人成电影观看| 国产熟女午夜一区二区三区| 亚洲精品久久久久久婷婷小说| 久久香蕉激情| 亚洲伊人久久精品综合| 法律面前人人平等表现在哪些方面 | e午夜精品久久久久久久| 亚洲成国产人片在线观看| 欧美一级毛片孕妇| 日本猛色少妇xxxxx猛交久久| 欧美大码av| 久久久久久久精品精品| 欧美乱码精品一区二区三区| 亚洲精品第二区| 动漫黄色视频在线观看| 老熟妇仑乱视频hdxx| 亚洲第一av免费看| 久热这里只有精品99| 十八禁网站免费在线| 90打野战视频偷拍视频| 亚洲精品中文字幕一二三四区 | 久久亚洲国产成人精品v| 女性生殖器流出的白浆| 满18在线观看网站| tocl精华| 99香蕉大伊视频| 熟女少妇亚洲综合色aaa.| 国产高清videossex| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 亚洲专区中文字幕在线| 日本91视频免费播放| 久久精品熟女亚洲av麻豆精品| 99精品欧美一区二区三区四区| av天堂在线播放| 久久免费观看电影| 久久久久久久久免费视频了| 亚洲国产欧美网| 十八禁网站网址无遮挡| 一区福利在线观看| 国产精品国产av在线观看| 亚洲av日韩精品久久久久久密| 麻豆av在线久日| 欧美一级毛片孕妇| 搡老乐熟女国产| 午夜福利视频精品| 9热在线视频观看99| 日韩欧美国产一区二区入口| 国产精品国产av在线观看| 香蕉丝袜av| 波多野结衣一区麻豆| 老司机午夜十八禁免费视频| 国产一区二区 视频在线| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 日本91视频免费播放| 一本一本久久a久久精品综合妖精| 天堂中文最新版在线下载| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 午夜福利视频精品| 天堂俺去俺来也www色官网| 欧美av亚洲av综合av国产av| 美女高潮喷水抽搐中文字幕| 捣出白浆h1v1| 最近最新中文字幕大全免费视频| 精品久久久久久电影网| 亚洲欧洲精品一区二区精品久久久| 91精品国产国语对白视频| 老司机在亚洲福利影院| 丁香六月天网| 日本精品一区二区三区蜜桃| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 窝窝影院91人妻| 国产精品99久久99久久久不卡| 欧美精品高潮呻吟av久久| 日韩三级视频一区二区三区| 丝袜人妻中文字幕| 婷婷丁香在线五月| 一级毛片女人18水好多| 搡老熟女国产l中国老女人| 韩国高清视频一区二区三区| 国产一区有黄有色的免费视频| 国产精品九九99| 大香蕉久久成人网| 人人妻人人澡人人爽人人夜夜| 黄频高清免费视频| 18禁裸乳无遮挡动漫免费视频| 亚洲三区欧美一区| 91av网站免费观看| 男男h啪啪无遮挡| 在线永久观看黄色视频| 亚洲成国产人片在线观看| 超碰97精品在线观看| 亚洲七黄色美女视频| 色视频在线一区二区三区| 国产精品影院久久| 久久久久久久久久久久大奶| 一本大道久久a久久精品| 亚洲国产精品999| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美精品综合一区二区三区| 女性生殖器流出的白浆| 黄色a级毛片大全视频| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 老司机亚洲免费影院| kizo精华| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 制服诱惑二区| 手机成人av网站| 一个人免费在线观看的高清视频 | 国产在线一区二区三区精| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲国产成人精品v| 少妇的丰满在线观看| 久久久久久人人人人人| 天天操日日干夜夜撸| 国产精品一区二区免费欧美 | 亚洲欧洲精品一区二区精品久久久| av线在线观看网站| 午夜精品久久久久久毛片777| 老司机亚洲免费影院| 欧美日韩中文字幕国产精品一区二区三区 | 18在线观看网站| 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看| 国产精品免费大片| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 欧美日韩黄片免| 亚洲黑人精品在线| 午夜日韩欧美国产| 久久久水蜜桃国产精品网| 一级毛片电影观看| 日韩 欧美 亚洲 中文字幕| 在线观看免费午夜福利视频| 在线观看www视频免费| 欧美在线一区亚洲| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 欧美97在线视频| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 欧美一级毛片孕妇| 国产在线一区二区三区精| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 母亲3免费完整高清在线观看| 午夜福利影视在线免费观看| 五月开心婷婷网| 亚洲情色 制服丝袜| 青春草视频在线免费观看| 国产区一区二久久| 十八禁高潮呻吟视频| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 伦理电影免费视频| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 久久国产精品影院| 亚洲一区二区三区欧美精品| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美一区二区综合| 亚洲精品国产av成人精品| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 午夜视频精品福利| 在线观看免费日韩欧美大片| 丰满少妇做爰视频| 蜜桃在线观看..| 亚洲成国产人片在线观看| 亚洲伊人色综图| 免费观看a级毛片全部| 亚洲熟女毛片儿| 免费观看人在逋| 久久精品国产综合久久久| 在线精品无人区一区二区三| 9色porny在线观看| 亚洲视频免费观看视频| 多毛熟女@视频| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 操出白浆在线播放| 国产欧美日韩一区二区三区在线| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频 | 日本vs欧美在线观看视频| 18禁观看日本| 日本wwww免费看| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 黄色 视频免费看| a在线观看视频网站| 久久国产精品影院| 十八禁人妻一区二区| 水蜜桃什么品种好| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 欧美日韩成人在线一区二区| 不卡一级毛片| 欧美日韩一级在线毛片| 日韩制服丝袜自拍偷拍| 国产麻豆69| 亚洲专区中文字幕在线| 久久这里只有精品19| 自线自在国产av| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 一区二区av电影网| 在线观看人妻少妇| 可以免费在线观看a视频的电影网站| 热re99久久精品国产66热6| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 建设人人有责人人尽责人人享有的| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 青草久久国产| 老汉色∧v一级毛片| 国产精品偷伦视频观看了| 不卡av一区二区三区| 久久精品国产亚洲av高清一级| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩国产mv在线观看视频| videosex国产| 亚洲欧美一区二区三区久久| 免费女性裸体啪啪无遮挡网站| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 精品福利永久在线观看| 亚洲欧美激情在线| 69精品国产乱码久久久| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡动漫免费视频| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看 | 丰满饥渴人妻一区二区三| 一区二区三区精品91| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 悠悠久久av| 久久精品久久久久久噜噜老黄| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 男人添女人高潮全过程视频| 正在播放国产对白刺激| 捣出白浆h1v1| 亚洲av成人一区二区三| 亚洲七黄色美女视频| 下体分泌物呈黄色| 国产精品久久久久久人妻精品电影 | 又紧又爽又黄一区二区| tocl精华| 亚洲精品一区蜜桃| 久久久久视频综合| 国产xxxxx性猛交| av网站在线播放免费| 久久久精品免费免费高清| 欧美国产精品一级二级三级| 亚洲精品久久成人aⅴ小说| svipshipincom国产片| 另类亚洲欧美激情| 精品一区二区三区av网在线观看 | 成年美女黄网站色视频大全免费| 国产精品久久久久久精品电影小说| 午夜福利在线观看吧| 亚洲熟女毛片儿| 成人黄色视频免费在线看| 亚洲精品国产区一区二| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| av在线app专区| 各种免费的搞黄视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情久久老熟女| 考比视频在线观看| 脱女人内裤的视频| 久久中文字幕一级| av免费在线观看网站| 久久性视频一级片| www.自偷自拍.com| 亚洲成国产人片在线观看| 在线观看免费视频网站a站| 夜夜夜夜夜久久久久| 精品一区二区三卡| 国产片内射在线| 久久av网站| 啦啦啦在线免费观看视频4| 大陆偷拍与自拍| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 黄色视频在线播放观看不卡| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 在线av久久热| 两个人免费观看高清视频| 久久人人爽av亚洲精品天堂| 日日摸夜夜添夜夜添小说| 黄色视频不卡| 欧美 亚洲 国产 日韩一| 中亚洲国语对白在线视频| 蜜桃国产av成人99| e午夜精品久久久久久久| 啦啦啦免费观看视频1| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| 国产黄色免费在线视频| 成年av动漫网址| 成年女人毛片免费观看观看9 | 女人爽到高潮嗷嗷叫在线视频| 日本a在线网址| 一二三四在线观看免费中文在| 美女大奶头黄色视频| 婷婷色av中文字幕| 久久久久久亚洲精品国产蜜桃av| 国产精品国产av在线观看| 国精品久久久久久国模美| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 欧美日韩视频精品一区| 波多野结衣av一区二区av| 精品欧美一区二区三区在线| 精品乱码久久久久久99久播| 欧美日韩国产mv在线观看视频| 久久久久久久久久久久大奶| 亚洲国产成人一精品久久久| 99久久精品国产亚洲精品| 欧美97在线视频| 精品第一国产精品| 丝袜美腿诱惑在线| 久久国产精品影院| 一区在线观看完整版| 一个人免费看片子| 成人影院久久| 老司机影院毛片| a级毛片黄视频| 男人操女人黄网站| 国产精品麻豆人妻色哟哟久久| 欧美大码av| 国产成人精品在线电影| 曰老女人黄片| 麻豆国产av国片精品| av在线app专区| 亚洲欧洲日产国产| 国产精品.久久久| 一边摸一边抽搐一进一出视频| 成人手机av| 女人高潮潮喷娇喘18禁视频| 欧美精品av麻豆av| 日韩熟女老妇一区二区性免费视频| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜制服| 在线观看www视频免费| 桃花免费在线播放| 午夜福利乱码中文字幕| 亚洲 欧美一区二区三区| 亚洲国产精品一区二区三区在线| 婷婷成人精品国产| 婷婷丁香在线五月| 亚洲精品美女久久av网站| 国产精品熟女久久久久浪| 欧美日韩成人在线一区二区| 国产野战对白在线观看| 成人影院久久| 精品国产一区二区三区久久久樱花| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久精品精品| 狠狠狠狠99中文字幕| 丝袜在线中文字幕| 久久久国产一区二区| 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 一区二区三区精品91| 亚洲成人免费av在线播放| 丰满迷人的少妇在线观看| 香蕉丝袜av| 999久久久精品免费观看国产| 一本色道久久久久久精品综合| 深夜精品福利| 女性被躁到高潮视频| 中文字幕人妻熟女乱码| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲| av超薄肉色丝袜交足视频| 在线亚洲精品国产二区图片欧美| 午夜成年电影在线免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲五月色婷婷综合| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精| 一本大道久久a久久精品| 制服诱惑二区| 美女中出高潮动态图| 国产1区2区3区精品| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 国产亚洲av高清不卡| 十分钟在线观看高清视频www| 深夜精品福利| 欧美激情久久久久久爽电影 | 99九九在线精品视频| 亚洲五月婷婷丁香| av在线老鸭窝| 色视频在线一区二区三区| 国产成人精品无人区| 久久久久久人人人人人| 欧美另类一区| 国产男女超爽视频在线观看| 精品国产超薄肉色丝袜足j| 777米奇影视久久| 国产欧美日韩精品亚洲av| 色婷婷久久久亚洲欧美| 国产国语露脸激情在线看| 国产欧美日韩一区二区三 | 岛国毛片在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 国产欧美日韩一区二区三区在线| 欧美国产精品一级二级三级| 美女脱内裤让男人舔精品视频| 欧美日韩黄片免| 免费久久久久久久精品成人欧美视频| 国产成人精品在线电影| 天堂俺去俺来也www色官网| 色综合欧美亚洲国产小说| videosex国产| 亚洲中文字幕日韩| 自拍欧美九色日韩亚洲蝌蚪91| 女性生殖器流出的白浆| 午夜两性在线视频| 91麻豆av在线| 90打野战视频偷拍视频| 精品国产超薄肉色丝袜足j| 久久久国产一区二区| 亚洲av电影在线进入| 侵犯人妻中文字幕一二三四区| 亚洲成国产人片在线观看| 国产在线免费精品| 秋霞在线观看毛片| 婷婷丁香在线五月| 亚洲av电影在线进入| 另类精品久久| 欧美国产精品一级二级三级| 91av网站免费观看| 在线永久观看黄色视频| 高清欧美精品videossex| 久久久国产成人免费| 美女中出高潮动态图| 午夜91福利影院| 欧美人与性动交α欧美精品济南到| 两个人免费观看高清视频| 老司机深夜福利视频在线观看 | 国产精品香港三级国产av潘金莲|