• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance enhancement of CMOS terahertz detector by drain current?

    2017-08-30 08:26:42XingxingZhang張行行XiaoliJi紀(jì)小麗YimingLiao廖軼明JingyuPeng彭靜宇ChenxinZhu朱晨昕andFengYan閆鋒
    Chinese Physics B 2017年9期

    Xingxing Zhang(張行行),Xiaoli Ji(紀(jì)小麗),Yiming Liao(廖軼明), Jingyu Peng(彭靜宇),Chenxin Zhu(朱晨昕),and Feng Yan(閆鋒)

    College of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    Performance enhancement of CMOS terahertz detector by drain current?

    Xingxing Zhang(張行行),Xiaoli Ji(紀(jì)小麗)?,Yiming Liao(廖軼明), Jingyu Peng(彭靜宇),Chenxin Zhu(朱晨昕),and Feng Yan(閆鋒)

    College of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    In this paper,we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor field effect transistors(MOSFETs)both theoretically and experimentally.The analytical model,which is based on the small signal equivalent circuit of MOSFETs,predicts the significant improvement of the voltage responsivity Rvwith the bias current.The experiment on antennas integrated with MOSFETs agrees with the analytical model,but the Rvimprovement is accompanied first by a decrease,then an increase of the low-noise equivalent power(NEP)with the applied current.We determine the trade off between the low-NEP and high-Rvfor the current-biased detectors.As the best-case scenario,we obtained an improvement of about six times in Rvwithout the cost of a higher NEP.We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.

    drain current,CMOS terahertz detectors,voltage responsivity,noise equivalent power

    1.Introduction

    Recently,there has been a large increase of practical interest in metal-oxide semiconductor field-effect transistor (MOSFET)-based terahertz detectors owing to their advantages,including their low cost,low power consumption,wide spectral response,and their high compatibility with CMOS logic circuits.Further,there has been a significant focus on the research and development of high-performance terahertz detectors that are fabricated by various advanced CMOS technologies.Sherry et al.[1]used a more advanced 65-nm silicon-on-insulator(SOI)process technology.Sengupta et al.[2]used the modified circuit concepts in combination with a cost-efficient 0.13-μm CMOS technology and the silicon germanium-based BiCMOS technology.In addition,more researchers have used the thinned substrate technology.[3–5]Although these fabricated chips have a high-Rvand low-NEP compared to those obtained by standard technologies,the fabrications clearly require dedicated facilities as well as more advanced process technologies,which inevitably increase the product cost and manufacturing complexities.Instead of the advanced technologies,recent developments pertaining to CMOS terahertz detectors have demonstrated that the asymmetric FET structures have the potential to dramatically improve the detector performance.These asymmetric structures include the asymmetry when feeding the incoming radiation with a special antenna,[6]the asymmetry between the source and drain structures,[7]and the asymmetry boundary conditions that are due to a current biased to the channel of the devices.[8–12]In the latter case,the external field that induced the electron concentration and potential near the drain side change dramatically,resulting in the device being more sensitive to the external perturbations.However,it should also be noted out that the impressive improvement obtained with the applied current is accompanied by an increase of the detection noise,which limits the applicability of the current-biasing scheme to applications.

    In this work,we present an analytical model for current biased terahertz detectors based on the small-signal equivalent circuit of MOSFETs.Then,we study the Rvand NEP under the current bias condition using antenna-integrated Si MOSFET detectors.Furthermore,we designed a current–mode circuit integrated with the detectors to provide the signal amplification inside the pixel.

    2.Small-signal equivalent circuit-based model

    We can use sub-micro MOSFETs for terahertz detection as nonlinear properties of plasma wave excitations in FET channels enable their response at frequencies that are appreciably higher than the device cutoff frequency.[13–17]The basic mechanism and operating mode of CMOS terahertz detectors have been described in detail in many studies.When terahertz signals are coupled to the gate terminals of MOSFETs,the transistors under the modified gate voltage rectify the signals,generating a DC source–drain voltage,and they can be detected.

    Fig.1.(color online)Schematic diagram of MOSFETs operating in the terahertz detection mode.

    To illustrate the effect of the current bias on the detector response,we first utilize an analytical model to extract Rvand NEP of the current-biased MOSFET detector based on the small-signal equivalent circuit.Figure 1 shows the schematic geometry of MOSFETs used for terahertz detection;here,the drain current Idsis provided by a power supply Vdcconnected with a resistor R.When the terahertz radiation vRF=VRFsinωt is imported from the source side of the channel,the transistors under the modified gate voltage rectify the signal and generate a dc current and voltage at the drain side as follows:

    where Gdsis the channel’s conductance,which can be readily adjusted by controlling the drain current in the strong inversion condition.By defining FET operation conditions by the values of Vgs,Vds,and Ids,we can then calculate Gdsas

    Substituting Eqs.(1)and(3)into Eq.(2),we can then describe an analytic expression for the rectified voltage ΔU, including the current bias,as

    The equation links the current-induced enhancement of the rectified signal with the ratio of Ids/Ids,sat,and predicts that the voltage response ΔU of the MOSFET detector sharply increases when the applied current Idsapproaches the saturation current Ids,satfor a given gate voltage.The small-signal analysis of the current-mode provides equations in a similar way to the one developed using the hydrodynamic equation described in Ref.[8].For the zero-current situation in the strong inversion condition,equation(6)reducesto the well-known relation

    The Rvof the current-biased MOSFET detector can be calculated from Eq.(6)as

    where Rinis the real part of the input impedance of the detector.

    When we consider only the thermal noise in the circuit, NEP of the detectors in the voltage read-out circuit can be written as follows:

    where SV,Rchand SV,Rrepresent the fluctuations in the thermal noise-voltage fluctuation spectral density induced by the channel resistance and the additional resistor R,respectively.

    3.Experimental and results

    We fabricated the MOSFET detectors studied here using 0.18-μm standard CMOS technology integrated with a 650-GHz patch antenna with an area Sdetof 1.1×104μm2. The gate length and width of the MOSFETs are 0.18μm and 0.5μm,respectively,and the threshold voltage Vthis 0.5 V.We obtained a terahertz source with a wavelength ranging from 610–680 GHz using an Agilent E8257D signal generator and VDI AMC-T136 frequency multiplier.We measured the ΔU of the devices using the standard lock-in technique,and we measured the noise-voltage fluctuation spectral density of the detector using an Agilent 35670a signal analyzer.Additional components such as integrated amplifiers are not included in the measurement to avoid the excess noise,which makes the study of the pure MOSFET devices with regards to the NEP more difficult.

    According to Eq.(8),we can calculate Rvusing ΔU and the incident power Pinon the detector.To obtain Pin,we first calibrated the space distribution of the incident power density, and the radiation power received by the antenna is then calculated as:

    where Pdis the power density on the detector position and Sdetrepresents the antenna area in the detector.

    Figure 2 shows the Rvof the detector with the current bias for gate voltages ranging from 0.40 V to 0.53 V.We see that Rvfor a given gate voltage first increases significantly with the current,after which it saturates and reaches a maximum voltage responsivity Rv,max,which is marked by the arrow in the figure.The solid curve in Fig.2 is related to the calculated responsivity using Eq.(6)for the gate bias Vgs=0.49 V.The calculated curve agrees well with the experimental data in the sub-threshold and linear regions of the transistors.However, the deviation between the theoretical calculation and the measured values at the large Idsis significant.There was a previous report of a similar phenomenon in InGaAs/GaAs HEMT detectors,where the deviation is considered to be due to the current saturation of the transistors.[18]To understand the reason for this,we extracted the gate-bias dependence of the saturation current from the Rvof the detector,Rv?Idscurves, and from the Ids?Vdscharacteristics of MOSFETs.The results are shown in Fig.3.We observe that two datasets exhibit good agreement,confirming the relationship between the responsivity saturation and the drain-current saturation.Under the condition of saturation currents,the electric field near the drain remains finite with drain currents,leading to the stable channel’s conductance and the responsivity saturation.

    Fig.2.(color online)Bias-current dependence of R v for CMOS detector under 680-GHz radiation with a 1 kHz electronic chopper.The solid line represents the theoretical calculation using Eq.(6)for the gate bias V gs=0.49 V.The arrow in the figure shows the value of the current that corresponds to the saturated R v.

    Figure 4 shows the current bias dependence of the Rv,maxunder the various gate biases.For the range of the relatively low bias current,Rv,maxfollows a linear dependence with the current as follows:

    where K1and K2are 4.3 kV/(W·μA)and 2.4 kV/W,respectively.Using the equation,we can predict the possible Rvenhancement of detectors for a given current.

    Fig.3.Saturation drain current versus the gate bias obtained using two different methods.The hollow circle data are extracted from the R v–I ds curve in Fig.2,while the solid circle data are extracted from I ds–V ds characteristics of MOSFETs,as shown in the inset of the figure.

    Fig.4.(color online)Bias-current dependence of R v,max.The dashed line is the linear fitting curve.

    Fig.5.(color online)Measured S V of detectors under the condition for R v,max.The dashed lines represent the fitting obtained using the noise model,considering the thermal noise and G?r noise source.

    Next,we focus on the noise characteristics of the device. Figure 5 shows the measured voltage-fluctuation spectral density SVof detectors under the various currents.The spectra exhibit frequency dependence,and the bias current enhances the noise level of the detectors.The high-frequency roll-off behavior above 104Hz,which we observed even in the zerocurrent bias condition,is considered from the loading of the device with an external RC circuit.On the other hand,on the low-frequency side,the noise in the MOSFETs is usually modeled by the thermal noise from the channel resistance.We evaluated the thermal noise spectral density SV,Tfor the detectors.The results are listed in Table 1,and show that the estimated values obtained from the thermal noise are much smaller than the ones observed in Fig.5,indicating that other noise sources may be involved besides the thermal noise.

    Table 1.Main parameters used in S V?f fitting.

    The G?r noise is one important fluctuation within the range of the low frequencies owing to trapping and de-trapping processes between the carriers and deep-level traps in the oxide layer near the Si/SiO2interface of MOSFETs.When we considered the G?r noise mechanism,the total noise spectral density can be expressed as

    Here,SV,G?ris expressed as[19]

    with

    where N and NTare the total number of free carriers and traps, respectively,and τ is the capture and emission time constant of the carriers.

    The proposed model demonstrates a close fit to the experimental frequency characteristic of SV,as shown in Fig.5.The parameter values used in the fitting are listed in Table 1.Values such as the intrinsic carrier concentration and trap concentration are obtained from standard MOSFET values.Table 1 also shows the SVconstituents under three fixed currentvalues. We observe that SV,G?rprevails in the measured frequency region when the current flows in the detectors.At the current of 0.6μA,the G?r noise is about one order of magnitude greater than the thermal noise.The increase in the bias current enhances the G?r noise dramatically,from 2.3×10?14V2/Hz at 0.6μA to 1.8×10?12V2/Hz at 3.7μA,while the thermal noise component shows a relatively weak current dependence. The significant enhancement of the G?r noise may be due to the larger trapping and de-trapping time constants as well as the channel resistance under the higher currents.

    Figure 6 shows the bias current dependence of the NEP that was evaluated from the experimental data of Rv,maxand SVat a frequency of 1 kHz.We observe that the magnitude of NEP first decreases and then increases with the applied current.As shown as the black dot in Fig.6,the detector with an applied current of 2.3μA has the same NEP value as that of the unbiased detector.We then determined the trade off between low-NEP and high-Rvfor the current-biased detectors by comparing the data of NEP and Rvin Fig.4.We found that the performance of CMOS terahertz detectors could be improved by introducing small drain currents below 2.3μA. In the best-case scenario,we can obtain an improvement by a factor of six in Rvwithout the need for a more costly NEP. The results reveal that even though there is a relative increase in the voltage noise with the current bias,we may register an unambiguous current-bias condition to provide a high-quality signal amplification for CMOS terahertz detectors.

    Fig.6.(color online)Bias-current dependence of NEP evaluated from the experimental data of R v,max and S V for a modulation frequency of 1 kHz.The black dot shows that the detector with the applied current of 2.3μA has the same NEP value as that of the unbiased detector.

    For MOSFETs,terahertz detection can be self-amplified using the drain current.However,the present current supply scheme using a dc power source with a resistor is not a suitable solution for large-array integrated circuits(ICs).For an increased integration and sensitivity of the CMOS detectors,we then propose an on-chip circuit with the current mirror structure for current-biased CMOS terahertz detectors.

    Figure 7 shows the current supplying circuit,which consists of a sub-circuit with a current source(M1–M4)and antenna-coupled FET pairs(M5,M6)in differential operation.In the current-source circuit,the cascode current mirror is the core structure,and can increase the output resistance of a current source and suppress the effect of channel-length modulation on the accuracy of the applied current Ids.The cascode structure can shield the transistor M3 from the variations that are due to the detection circuits,and the voltage bias Vds3is equal to Vds1with high accuracy.[20]By designing suitable-sized MOSFETs,the relationship between Idsand the reference IREF,as shown in Fig.7,can then be written as

    The equation indicates that a reference current IREFcan provide multiple detectors with stable current Idsfor array detectors.A CMOS terahertz detector that is integrated with such a current-supply circuit is more conductive to those applications.

    Fig.7.Schematic diagram applied for CMOS terahertz detectors operating in the current mode.The dashed square indicates the lowfrequency equivalent circuit of an antenna-coupled CMOS detector with its high-frequency one presented in the zoomed-up area.

    4.Conclusions

    We studied the influence of the drain-to-source current on the performance of CMOS terahertz detectors.The analytical model based on the small-signal equivalent circuit of MOSFETs predicts the improvement in the Rvof MOSFET detectors with the bias current.We performed an experiment using antennas integrated with MOSFETs,and the results agree with the analytical model,but the improvement in the Rvthat is obtained using the applied current is accompanied first by a decrease,then an increase in NEP.We find that there is a marked improvement beyond the Rvand NEP values of the unbiased device.Further,we designed the current-supply circuit integrated with the detector for practical devices.

    [1]Sherry H,Hadi R A,Grzyb J,?jefors E,Cathelin A,Kaiser A and Pfeiffer U R 2011 Radio Frequency Integrated Circuits Symposium (RFIC)1–4

    [2]Sengupta K,Seo D,Yang Land Hajimiri A 2015 IEEE Trans.Terahertz Sci.Tech.5 427

    [3]Schuster F,Coquillat D,Videlier H,Sakowicz M,Teppe F,Dussopt L, Giffard B,Skotnicki T and Knap W 2011 Optics Express 19 7827

    [4]Hadi R A,Sherry H,Grzyb J,Zhao Y,Forster W,Keller H,Cathelin A, Kaiser A and Pfeiffer U R 2012 IEEE Journal of Solid-State Circuits 47 2999

    [5]Schuster F,Videlier H,Dupret A,Coquillat D,Sakowicz M,Rostaing J,Tchagaspanian M,Giffard B and Knap W 2011 IEEE International Solid-State Circuits Conference 42

    [6]Lisauskas A,Pfeiffer U,?jefors E,Bolivar P H,Glaab D and Roskos H G 2009 J.Appl.Phys.105 114511

    [7]Ryu M W,Lee J S,Park K,Kim K R,Park W K and Han S T 2013 Simulation of Semiconductor Processes and Devices(SISPAD)200

    [8]Dyakonov M and Shur M 1993 Phys.Rev.Lett.71 2465

    [9]Tombet S B,Tanimoto Y,Satou A,Suemitsu T,Wang Y,Minamide H, Ito H,Fateev D V,Popov V and Otsuji T 2014 Appl.Phys.Lett.104 262104

    [10]Lisauskas A,Boppel S,Matukas J,Palenskis V,Minkevi?ius L,Valu?is G,Bolívar P H and Roskos H G 2013 Appl.Phys.Lett.102 153505

    [11]Veksler D,Teppe F,Dmitriev A P,Kachorovskii V Y,Knap W and Shur M S 2006 Phys.Rev.B 73 125328

    [12]Lu J Q and Shur M S 2001 Appl.Phys.Lett.78 2587

    [13]Fatimy A E,Teppe F,Dyakonova N,Knap W,Seliuta D,Valusis G, Shchepetov A,Roelens Y,Bollaert S,Cappy A and Rumyantsev S 2006 Appl.Phys.Lett.89 131926

    [14]Knap W,Deng Y,Rumyantsev S,Lu J Q,Shur M S,Saylor C A and Brunel L C 2002 Appl.Phys.Lett.80 3433

    [15]Knap W,Kachorowskii V,Deng Y,Rumyantsev S,Lu J Q,Gaska R, Shur M S,Simin G,Hu X and Khan M A 2002 J.Appl.Phys.91 9346

    [16]Meziani Y M,Lusakowski J,Dyakonova N,Knap W,Seliuta D,Sirmulis E,Deverson J,Valusis G,Boeuf F and Skotnicki T 2006 IEICE Trans.Electr.E89-C 993

    [17]Dyer G C,Crossno J D,Aizin G R,Mikalopas J,Shaner E A,Wanke M C,Reno J L and Allen S J 2009 Proc.SPIE 721503

    [18]Elkhatib T A,Kachorovskii V Y,Stillman W J,Rumyantsev S,Zhang X C and Shur M S 2011 Appl.Phys.Lett.98 243505

    [19]Haartman M V and?stling M 2007 Low-frequency Noise in Advanced MOS Devices(Springer Scienceamp;Business Media)pp.11–12

    [20]Behzad R 2003 Design of Analog CMOS Integrated Circuits(Xi’an: Xi’an Jiaotong University Press)pp.116–121

    17 April 2017;revised manuscript

    7 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/098401

    ?Project supported by the National Key Ramp;D Program of China(Grant No.2016YFB-0402403),the Natural Science Foundation of Jiangsu Province, China(Grant No.BK20141321),CAST Project,China(Grant No.08201601),and the National Science Foundation for Young Scholars of China(Grant No.61404072).

    ?Corresponding author.E-mail:xji@nju.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    h日本视频在线播放| 欧美绝顶高潮抽搐喷水| 又爽又黄a免费视频| 精品无人区乱码1区二区| 男人和女人高潮做爰伦理| 久久久久九九精品影院| 免费搜索国产男女视频| 国产精品久久视频播放| 欧美成人a在线观看| 天天躁日日操中文字幕| 免费人成视频x8x8入口观看| 免费人成视频x8x8入口观看| 欧美xxxx黑人xx丫x性爽| 免费搜索国产男女视频| 日日摸夜夜添夜夜爱| 欧美性感艳星| 国产一区二区三区在线臀色熟女| 国产黄a三级三级三级人| 亚洲av免费在线观看| 波多野结衣高清作品| 免费av毛片视频| 久久精品久久久久久噜噜老黄 | 午夜亚洲福利在线播放| 超碰av人人做人人爽久久| 综合色丁香网| 最近中文字幕高清免费大全6| 91久久精品国产一区二区成人| 99国产精品一区二区蜜桃av| 99国产精品一区二区蜜桃av| 久久午夜福利片| 亚洲av免费高清在线观看| 简卡轻食公司| 一进一出抽搐动态| 国产69精品久久久久777片| 又爽又黄无遮挡网站| 秋霞在线观看毛片| 97超级碰碰碰精品色视频在线观看| 麻豆av噜噜一区二区三区| 91精品国产九色| 别揉我奶头 嗯啊视频| 亚洲天堂国产精品一区在线| 久久久精品大字幕| 国产欧美日韩精品一区二区| 中国美白少妇内射xxxbb| 欧美绝顶高潮抽搐喷水| 一级黄色大片毛片| 精品一区二区三区视频在线观看免费| 久久热精品热| 亚洲美女黄片视频| 亚洲欧美成人综合另类久久久 | 国产久久久一区二区三区| 国产又黄又爽又无遮挡在线| 国产成人a区在线观看| 亚洲三级黄色毛片| 免费av观看视频| 国产av麻豆久久久久久久| 小蜜桃在线观看免费完整版高清| 国产大屁股一区二区在线视频| 美女被艹到高潮喷水动态| 国产成人一区二区在线| 老熟妇乱子伦视频在线观看| 国产精品亚洲一级av第二区| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 国产av在哪里看| 欧美bdsm另类| 香蕉av资源在线| 国产黄a三级三级三级人| 国产高清有码在线观看视频| 日本欧美国产在线视频| 三级毛片av免费| 亚洲欧美精品综合久久99| 国产91av在线免费观看| av国产免费在线观看| 91av网一区二区| 国产精品免费一区二区三区在线| 男女边吃奶边做爰视频| 欧美性感艳星| 禁无遮挡网站| 午夜爱爱视频在线播放| 国产69精品久久久久777片| 天堂影院成人在线观看| 美女被艹到高潮喷水动态| 久久久久久久久中文| 国产伦一二天堂av在线观看| 久久久久国产精品人妻aⅴ院| 免费无遮挡裸体视频| 寂寞人妻少妇视频99o| 波多野结衣高清无吗| 村上凉子中文字幕在线| 国产精品一及| 国产精品人妻久久久影院| 男女之事视频高清在线观看| 欧美xxxx黑人xx丫x性爽| 99热全是精品| 日韩欧美国产在线观看| 在线播放无遮挡| 欧美潮喷喷水| 日韩在线高清观看一区二区三区| 一个人看的www免费观看视频| 亚洲一区二区三区色噜噜| 中文字幕av成人在线电影| 日本与韩国留学比较| 久久精品国产亚洲av香蕉五月| 久久精品久久久久久噜噜老黄 | 成人综合一区亚洲| 国产成人一区二区在线| 插逼视频在线观看| 日本五十路高清| 欧美bdsm另类| 亚洲国产欧美人成| 日本a在线网址| 久久国内精品自在自线图片| 国产黄色视频一区二区在线观看 | 日本 av在线| 天堂√8在线中文| 午夜亚洲福利在线播放| 最近手机中文字幕大全| 久久精品国产亚洲网站| 国产av一区在线观看免费| 国产在线男女| 三级经典国产精品| 亚洲一区二区三区色噜噜| 亚洲欧美日韩无卡精品| 美女黄网站色视频| av在线天堂中文字幕| 国产精华一区二区三区| 亚洲人与动物交配视频| 亚洲av电影不卡..在线观看| 麻豆一二三区av精品| 成人高潮视频无遮挡免费网站| 成年版毛片免费区| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影| 九色成人免费人妻av| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| 97超级碰碰碰精品色视频在线观看| 日本在线视频免费播放| 欧美潮喷喷水| 国产毛片a区久久久久| 日韩人妻高清精品专区| 久久人人精品亚洲av| 看免费成人av毛片| 亚洲四区av| 人妻制服诱惑在线中文字幕| av在线观看视频网站免费| 亚洲欧美中文字幕日韩二区| av国产免费在线观看| 3wmmmm亚洲av在线观看| 少妇人妻一区二区三区视频| 国产成年人精品一区二区| 欧美性猛交╳xxx乱大交人| 在线观看午夜福利视频| 久久精品夜色国产| 一卡2卡三卡四卡精品乱码亚洲| 久久人妻av系列| 搞女人的毛片| 寂寞人妻少妇视频99o| 国产精品福利在线免费观看| 亚洲18禁久久av| 女人十人毛片免费观看3o分钟| 成人性生交大片免费视频hd| 精品久久久久久成人av| 成人美女网站在线观看视频| 少妇的逼水好多| 亚洲国产高清在线一区二区三| 身体一侧抽搐| 亚洲自拍偷在线| 国产精品人妻久久久影院| 免费观看人在逋| 精品人妻熟女av久视频| 99热这里只有精品一区| 可以在线观看毛片的网站| 日本成人三级电影网站| 日本与韩国留学比较| 在线免费观看的www视频| 一级毛片电影观看 | 欧美高清性xxxxhd video| 最近手机中文字幕大全| 桃色一区二区三区在线观看| 精品国内亚洲2022精品成人| av天堂中文字幕网| 男人舔奶头视频| www.色视频.com| 日本免费a在线| 精品人妻熟女av久视频| 成人美女网站在线观看视频| 亚洲色图av天堂| 神马国产精品三级电影在线观看| 亚洲精品色激情综合| 99国产精品一区二区蜜桃av| 韩国av在线不卡| 日韩一区二区视频免费看| 亚洲一区二区三区色噜噜| 菩萨蛮人人尽说江南好唐韦庄 | 午夜免费激情av| 国产单亲对白刺激| 99久久精品一区二区三区| 欧美最新免费一区二区三区| 久久欧美精品欧美久久欧美| 久久久久久国产a免费观看| 久久久久国内视频| 精品午夜福利视频在线观看一区| 尾随美女入室| 我的老师免费观看完整版| 国产蜜桃级精品一区二区三区| 少妇裸体淫交视频免费看高清| 非洲黑人性xxxx精品又粗又长| 精品久久久噜噜| 夜夜看夜夜爽夜夜摸| 热99在线观看视频| 一区二区三区四区激情视频 | 麻豆精品久久久久久蜜桃| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在 | 别揉我奶头~嗯~啊~动态视频| 直男gayav资源| 亚洲欧美日韩东京热| 亚洲自拍偷在线| av在线天堂中文字幕| 能在线免费观看的黄片| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 日本色播在线视频| 淫秽高清视频在线观看| 三级毛片av免费| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看| 床上黄色一级片| 精品一区二区三区视频在线| 国产成人a区在线观看| 国产一级毛片七仙女欲春2| av免费在线看不卡| 嫩草影院入口| 日本在线视频免费播放| 国产毛片a区久久久久| 亚洲精品日韩av片在线观看| 亚洲性夜色夜夜综合| 能在线免费观看的黄片| 国产精品电影一区二区三区| 亚洲成人久久性| 国产av不卡久久| 麻豆成人午夜福利视频| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 国产成年人精品一区二区| 午夜免费激情av| 精品一区二区三区av网在线观看| 高清午夜精品一区二区三区 | 日韩欧美一区二区三区在线观看| av视频在线观看入口| 成熟少妇高潮喷水视频| 日韩国内少妇激情av| 草草在线视频免费看| 国产成人a∨麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 婷婷精品国产亚洲av| 亚洲成人精品中文字幕电影| 色综合站精品国产| 一本一本综合久久| 国产探花在线观看一区二区| 国产高潮美女av| 欧美一区二区国产精品久久精品| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 国产精品综合久久久久久久免费| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 精品国内亚洲2022精品成人| 中文字幕av成人在线电影| 欧美一区二区国产精品久久精品| 久久精品夜色国产| 国产av麻豆久久久久久久| 国产高清视频在线播放一区| 亚洲精品粉嫩美女一区| 久99久视频精品免费| 午夜日韩欧美国产| 神马国产精品三级电影在线观看| 我要看日韩黄色一级片| 久久99热6这里只有精品| 国产精品亚洲美女久久久| 色在线成人网| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲网站| 91在线观看av| 午夜福利18| 69人妻影院| 人妻久久中文字幕网| 在线观看66精品国产| 久久中文看片网| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 亚洲精品日韩av片在线观看| 国产精品爽爽va在线观看网站| 99久国产av精品| av天堂在线播放| 日本一二三区视频观看| h日本视频在线播放| 亚洲av一区综合| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 高清毛片免费看| 无遮挡黄片免费观看| 在线免费观看不下载黄p国产| 日本黄大片高清| 午夜福利在线观看吧| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 欧美+日韩+精品| 精品午夜福利在线看| 免费看日本二区| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 午夜福利高清视频| 免费看美女性在线毛片视频| 久久久久久久久久久丰满| 色哟哟哟哟哟哟| 97在线视频观看| 干丝袜人妻中文字幕| 国产白丝娇喘喷水9色精品| 久久久成人免费电影| 简卡轻食公司| 国产伦在线观看视频一区| av在线观看视频网站免费| 国产黄色小视频在线观看| 午夜久久久久精精品| 精品一区二区三区人妻视频| 国产av不卡久久| 久久99热6这里只有精品| 内射极品少妇av片p| 99久久精品热视频| 中国美女看黄片| 一级毛片aaaaaa免费看小| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 国产又黄又爽又无遮挡在线| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 2021天堂中文幕一二区在线观| 能在线免费观看的黄片| 久久久久久九九精品二区国产| 一本一本综合久久| 女同久久另类99精品国产91| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 国产日本99.免费观看| 内射极品少妇av片p| 欧美bdsm另类| 美女cb高潮喷水在线观看| 亚洲人成网站在线观看播放| 国产精品无大码| 久久韩国三级中文字幕| 国产高清三级在线| 男女啪啪激烈高潮av片| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 老熟妇乱子伦视频在线观看| 五月玫瑰六月丁香| 欧美中文日本在线观看视频| 一级黄色大片毛片| 国产精品三级大全| 欧美3d第一页| 欧美区成人在线视频| 久久久久久久午夜电影| 午夜福利成人在线免费观看| 久久精品91蜜桃| 一夜夜www| 欧美日本视频| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产精品免费一区二区三区在线| 又黄又爽又刺激的免费视频.| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 国产av在哪里看| 少妇熟女欧美另类| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 一本一本综合久久| 国产成人精品久久久久久| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 俺也久久电影网| .国产精品久久| 日韩av在线大香蕉| 亚洲av二区三区四区| 欧美zozozo另类| 国产成人freesex在线 | 少妇的逼水好多| 国产一区二区亚洲精品在线观看| 国产av麻豆久久久久久久| 亚洲精品粉嫩美女一区| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 男人的好看免费观看在线视频| 欧美日本视频| 久久人人爽人人爽人人片va| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 亚洲欧美日韩高清专用| 色综合色国产| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 一区福利在线观看| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 一级毛片久久久久久久久女| 黄色欧美视频在线观看| 黄片wwwwww| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看| av在线播放精品| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 蜜桃亚洲精品一区二区三区| 91久久精品电影网| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 少妇丰满av| 亚洲人与动物交配视频| 亚洲av五月六月丁香网| 在线观看美女被高潮喷水网站| 亚洲在线观看片| 免费av毛片视频| 精品人妻一区二区三区麻豆 | 一级毛片电影观看 | 亚洲欧美清纯卡通| 悠悠久久av| 99热6这里只有精品| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 亚洲自偷自拍三级| 在线播放无遮挡| 国产高清有码在线观看视频| 中文亚洲av片在线观看爽| 国产真实乱freesex| 91午夜精品亚洲一区二区三区| 日本黄色片子视频| 亚洲美女视频黄频| 国产色爽女视频免费观看| 国产成人福利小说| 亚洲国产日韩欧美精品在线观看| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 亚洲成人久久爱视频| 国产一区二区三区av在线 | 国产老妇女一区| 老司机影院成人| 亚洲精品在线观看二区| 国产私拍福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 日本在线视频免费播放| www.色视频.com| 免费观看精品视频网站| 中国国产av一级| 老熟妇乱子伦视频在线观看| 1024手机看黄色片| av中文乱码字幕在线| 在线看三级毛片| 欧美日韩精品成人综合77777| 人妻久久中文字幕网| 美女黄网站色视频| 麻豆一二三区av精品| 最近中文字幕高清免费大全6| 欧美不卡视频在线免费观看| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 欧美极品一区二区三区四区| 国产精品一区二区三区四区久久| 亚洲欧美成人精品一区二区| 99国产精品一区二区蜜桃av| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 久久婷婷人人爽人人干人人爱| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| av在线亚洲专区| 毛片一级片免费看久久久久| 91久久精品电影网| 晚上一个人看的免费电影| 婷婷六月久久综合丁香| 99久久精品一区二区三区| 日韩成人av中文字幕在线观看 | 国产片特级美女逼逼视频| 免费看a级黄色片| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 欧美绝顶高潮抽搐喷水| 99久久精品国产国产毛片| 神马国产精品三级电影在线观看| 亚洲国产精品久久男人天堂| 亚洲国产欧美人成| 伦理电影大哥的女人| 男人的好看免费观看在线视频| 身体一侧抽搐| 99热这里只有是精品在线观看| 国产高清激情床上av| 国产色爽女视频免费观看| 舔av片在线| 在线观看66精品国产| 国产黄色视频一区二区在线观看 | 亚洲真实伦在线观看| 特大巨黑吊av在线直播| 国产一区亚洲一区在线观看| 久久久久久久久久成人| 男人的好看免费观看在线视频| 日日啪夜夜撸| 国产在视频线在精品| 狂野欧美激情性xxxx在线观看| 国产精品一区二区三区四区免费观看 | 大又大粗又爽又黄少妇毛片口| 久久综合国产亚洲精品| 高清午夜精品一区二区三区 | 亚洲成av人片在线播放无| 美女内射精品一级片tv| 老熟妇仑乱视频hdxx| 色av中文字幕| 国产精品三级大全| 精品福利观看| 午夜激情福利司机影院| 免费av毛片视频| 看黄色毛片网站| 日日摸夜夜添夜夜爱| 亚洲一区二区三区色噜噜| 久久99热6这里只有精品| 久久这里只有精品中国| 国产精品野战在线观看| 少妇猛男粗大的猛烈进出视频 | 九色成人免费人妻av| 久久久久国产精品人妻aⅴ院| 久久久国产成人免费| 久久精品国产自在天天线| 成人一区二区视频在线观看| 两个人视频免费观看高清| 国产熟女欧美一区二区| 成人鲁丝片一二三区免费| 日韩三级伦理在线观看| 日韩国内少妇激情av| 99在线视频只有这里精品首页| 亚洲欧美日韩无卡精品| 亚洲三级黄色毛片| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 性欧美人与动物交配| 国产亚洲91精品色在线| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 欧美日韩在线观看h| 黄色欧美视频在线观看| 日日摸夜夜添夜夜爱| 久久精品人妻少妇| 日本在线视频免费播放| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 成人午夜高清在线视频| 中文亚洲av片在线观看爽| 成人av在线播放网站| 欧美又色又爽又黄视频| 老司机福利观看| 成年女人永久免费观看视频| 国产高清不卡午夜福利| 夜夜夜夜夜久久久久| 天堂动漫精品| 99久久九九国产精品国产免费| 最近的中文字幕免费完整| 久久精品国产清高在天天线| 国产免费男女视频| 1024手机看黄色片| 久久欧美精品欧美久久欧美| 91精品国产九色| 国产蜜桃级精品一区二区三区| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 赤兔流量卡办理| 校园人妻丝袜中文字幕| av福利片在线观看| 国产欧美日韩一区二区精品| 欧美又色又爽又黄视频| 欧美成人免费av一区二区三区| 婷婷六月久久综合丁香| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 一个人看视频在线观看www免费| 男女视频在线观看网站免费| 精品一区二区三区视频在线观看免费| 最近2019中文字幕mv第一页| 少妇人妻一区二区三区视频| 国产精品永久免费网站| АⅤ资源中文在线天堂| 国产精品亚洲美女久久久| 亚洲高清免费不卡视频| 麻豆久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| avwww免费| 日韩大尺度精品在线看网址| 久久久精品94久久精品| 久久久久国产网址| 99久久精品国产国产毛片| 日日啪夜夜撸| 高清毛片免费看| 少妇的逼好多水| 亚洲国产日韩欧美精品在线观看| 日日摸夜夜添夜夜爱| 寂寞人妻少妇视频99o| 一级av片app| 国产成年人精品一区二区| 搡老熟女国产l中国老女人| 嫩草影院入口|