• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout?

    2017-08-30 08:26:46YaBinSun孫亞賓XiaoJinLi李小進JinZhongZhang張金中andYanLingShi石艷玲
    Chinese Physics B 2017年9期

    Ya-Bin Sun(孫亞賓),Xiao-Jin Li(李小進),Jin-Zhong Zhang(張金中),and Yan-Ling Shi(石艷玲)

    Shanghai Key Laboratory of Multidimensional Information Processing,Department of Electrical Engineering, East China Normal University,Shanghai 200241,China

    Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout?

    Ya-Bin Sun(孫亞賓),Xiao-Jin Li(李小進)?,Jin-Zhong Zhang(張金中)?,and Yan-Ling Shi(石艷玲)

    Shanghai Key Laboratory of Multidimensional Information Processing,Department of Electrical Engineering, East China Normal University,Shanghai 200241,China

    In this paper,we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors (HBTs)with a CBE layout,where we consider the distributed effects along the base region.The actual device structure is divided into three parts:a link base region under a spacer oxide,an intrinsic transistor region under the emitter window, and an extrinsic base region.Each region is considered as a two-port network,and is composed of a distributed resistance and capacitance.We solve the admittance parameters by solving the transmission-line equation.Then,we obtain the small signal equivalent circuit depending on the reasonable approximations.Unlike previous compact models,in our proposed model,we introduce an additional internal base node,and the intrinsic base resistance is shifted into this internal base node, which can theoretically explain the anomalous change in the intrinsic bias-dependent collector resistance in the conventional compact model.

    SiGe heterojunction bipolar transistors(HBT),small-signal equivalent circuit,distributed effects, CBE layout

    1.Introduction

    In recent years,SiGe heterojunction bipolar transistors (HBTs)have undergone rapid growth because of their high speed,high driving power,and low noise,and they have been applied to fields such as wireless communication,analog circuit,fast data acquisition,and conversion.[1–3]Small-signal equivalent circuit models,such as the lumped SGP,VBIC, HICUM,and Mextram,are often used to characterize transistor performance,optimize the device structure,and guide circuit design.[4–6]However,bipolar transistors are actually large distributed networks that are composed of a basic resistance and capacitance,and their design is not always as easy as described in the above lumped models.Although most transistor electrical performances can be effectively characterized by lumped models,there remain fundamental limitations with respect to actual device structures.[7]When extracting the small-signal model parameters in conventional Mextram,we find that the bias-dependent collector epilayer resistance RC1C2monotonously decreases as the base voltage VBCincreases, which clearly deviates from basic device physics theory,and the underlying physical mechanism should therefore be investigated.

    Owing to its special base structure,SiGe HBTs show a built-in multi-Mrad total dose hardness with no intentional hardening.[8–10]However,single-event effects(SEE)remain a serious problem,with recent results demonstrating a low linear energy-transfer threshold and high saturated cross sections.[11–14]A reduction in the sensitive area enclosed by deep trench isolation is considered an effective method of improving the net upset cross section.Therefore,a transistor with minimum feature size,i.e.,using only a single collector,base, and emitter(CBE)contacts,possesses a high SEE immunity, compared with standard devices with double collector and base contacts(CBEBC).[11,12]Furthermore,when the transistors are exposed to the space-energetic particle environment, the distributed effect is more significant because the irradiation damages are generally not uniformly distributed throughout the whole transistor structure.[8]Therefore,it is necessary to investigate the small-signal equivalent circuit based on the distributed effects for SiGe HBTs with a CBE layout.

    In the present work,in order to determine the physical mechanisms by which the extracted RCCdecreases as VBCincreases,we propose an improved small-signal equivalent circuit that is based on the distributed effects for SiGe HBTs with a CBE layout.The whole transistor is divided into three parts along the base region.Then,we obtain the high-frequency equivalent circuit under the cut-off mode by solving transmission line equations,and taking into account the distributed effects.The intrinsic base resistance RBIis pushed into the internal base node,and the added component of RBI(CTE+CTC)/3CTCis found to contribute to the declinedRCCas VBCincreases.Finally,we obtain the equivalent circuit in the forward-active mode by adding four additional modules into the equivalent circuit in the cut-off states.

    2.Background

    The conventional hybrid-.π small-signal equivalent circuit for SiGe HBTs under forward-active mode is depicted in Fig.1,as adopted in HICUM or Mextram.The collector series resistance and base series resistance are separately divided into two parts:a constant external part RCXand intrinsic bias-dependent epilayer resistance RC1C2,a constant external resistance RBX,and a variable intrinsic resistance RBI.

    Fig.1.Conventional small-signal equivalent circuit for SiGe HBTs.

    Fig.2.Extracted collector epitaxy layer resistance R C1C2 as a function of V BC.

    As demonstrated in our previous study,the small-signal model parameters can be precisely extracted based on the nonlinear rational function fitting.[15]However,we observed an abnormal variation of the collector epilayer resistance RC1C2, and it decreases as the base voltage VBCincreases,as shown in Fig.2.It appears that this variation deviates from basic device physics theory,and RC1C2is actually expected to increase as VBCdecreases.According to the cross-sectionalview of the intrinsic transistor under the emitter window,as shown in Fig.3, the depletion width WBCnarrows as VBCincreases,and this is because of the decreased reverse bias voltage.Consequently, the width of the neutral collector region WCKincreases,causing an increase in RC1C2.

    Fig.3.(color online)A simplified cross-sectional view of the intrinsic transistor.

    Therefore,in the conventional compact model,the obtained RC1C2contradicts basic device physics theory.In order to find the underlying physical mechanism,starting with the actual device structure,we propose an improved high frequency small-signal equivalent circuit for SiGe HBTs based on the distribution effects.The intrinsic base resistance RBIis pushed into the introduced internal base node,and contributes to the collector resistance with certain proportion,and this can fundamentally explain the above abnormal variation of RC1C2versus the base voltage VBC.

    3.Device-under-test and method for the proposed model

    The device evaluated in this work features a single-stripe CBE configuration,i.e.,with only one CBE,as opposed to the larger CBEBC stripe configuration.The typical cross-section is shown in Fig.4.The key process includes an n?collector epitaxy,a graded SiGe base epitaxy,an in-situ doped polysilicon emitter,LOCOS isolation,an n+collector sinker,and an ion-implanted extrinsic base.Along the base region,the whole transistor structure is divided into three parts:I)a link base region including the spacer oxide,II)an intrinsic transistor region,and III)an extrinsic BC junction containing metal silicide.

    In the present work,we separately determine the small signal equivalent circuit under the cut-off and forward-active mode.Each region is considered as a two-port network composed of several basic resistors and capacitors.We obtained the admittance parameters by solving the transmission line equation,and we then determine the small-signal equivalent circuit in the cut-off mode depending on some reasonable approximations,using the well-known π network characteristics,[16]as shown in Fig.5.Finally,we directly obtained the equivalent circuit in forward-active mode by adding four additional modules.

    Fig.4.(color online)Schematic cross-section for SiGe HBT with a single-stripe CBE structure.

    Fig.5.The well-known characteristics of the π network.

    4.Results and discussion

    4.1.Equivalent circuit under cut-off mode

    4.1.1.Link-base region

    As depicted in Fig.4,the link-base region contains only the BCjunction,and the distributed network is shown in Fig.6, where rblis the series-base resistance and cblis the shunt BC junction capacitance per unit length.We assume that all of the electrical elements along the link-base region are distributed uniformly.The total length of this region is assumed to be d.

    To determine the current i(z)and voltage v(z)at any position z,we have the following equation:

    Combined with the boundary conditions v(0)=V1and v(d)= V2,the general solution of Eq.(2)along the transmission line is given as

    and the two transfer admittances are:

    Then we can obtain the following equations:

    With respect to Fig.5,it is difficult to directly determine the equivalent circuit according to Eqs.(8)and(9).It is necessary to approximate the exponential term e±γdusing the Taylor series.Obviously,the more items taken in the Taylor series expansion,the more accurate will be the obtained equivalent circuit;however,the obtained equivalent circuit may be more complicated.Considering the trade-off between the accuracy and complexity,here,we approximated e±γdas a third-order Taylor expanded formula

    Then,substituting Eq.(10)into Eqs.(8)and(9),we obtain

    where RBL=d rbland CBL=d cblseparately represent the total series resistance and shunt capacitance for the link-base region.Then,the equivalent circuit for the link-base region of the SiGe HBT with the CBE layout can be simplified in the following form in Fig.7.

    Fig.6.Distributed network for the link-base region in the cut-off mode.

    Fig.7.Simplified equivalent circuit for the link-base region of the SiGe HBT with the CBE layout.

    4.1.2.Intrinsic transistor region

    The distributed network for the intrinsic transistor region is shown in Fig.8.Similar to the link-base region,we assume that the electrical parameters along the length direction are distributed uniformly.The series-intrinsic base resistance, BE junction,and BC junction shut capacitance per unit length are set as rbi,cte,and ctc,respectively.The total length of the intrinsic transistor is set as l.

    Fig.8.Distributed network for the intrinsic transistor region under cut-off mode.

    Fig.9.Equivalent distributed network of intrinsic transistor for solving Y11 and Y12,where the emitter terminal is connected to ground and the base terminal B1 is the applied voltage V1.

    First,we determine Y11and Y21for the two-port network in Fig.8.The base terminal B2and emitterterminal E1are separately applied to voltage V1and ground(here V2=0).Then, we reduce the distributed network to the form in Fig.9.With boundary conditions v(0)=V1,i(l)=0 and the similar approaches to the solution,Y11and Y21are written as

    Next,we obtain the admittance parameter Y22.Now, we apply emitter terminal E1to V2,and base terminal B2is grounded.The current i(z)and voltage v(z)at arbitrary position z satisfies the following equation:

    Considering the boundary conditions v(0)=0 and i(l)=0, the voltage v(z)and current i(z)along the intrinsic base region are determined by

    We assume thatiB2and iE1represent the current flowing into terminals B2and E1,anditcis the total current flowing into ground through ctc.According to Kirchhoff’s law,there existsiB2+iE1=itc,where

    where CTC=ctcl,CTE=ctel,and RBI=rbilare the total intrinsic BC junction capacitance,intrinsic BE junction capacitance,and intrinsic base resistance,respectively.Then,the distributed network of the intrinsic transistor is equivalent to that in Fig.10.

    Fig.10.Simplified equivalent circuit for the distributed network of the intrinsic transistor region.

    4.1.3.Extrinsic base region

    A heavily doped poly-silicon and metalsilicide with a low sheet resistance are generally employed in modern advanced SiGe HBT technology.[2]Consequently,the extrinsic base resistance RBXis significantly reduced,and is much smaller than RBLand RBI.Therefore,the distributed effect in the extrinsic base region is not obvious.For simplicity,the extrinsic base region is represented by a lumped parallel RC network, as shown in Fig.11,where CBCXis the extrinsic BC junction capacitance.

    Fig.11.Simplified equivalent circuit for the extrinsic base region.

    4.1.4.Equivalent circuit model for the whole transistor in cutof fmode

    Once the equivalent-circuit of the link-base region,intrinsic transistor region,and extrinsic base region are determined by solving the transmission-line equation,we obtain the following hybrid-.π small-signal equivalent circuit for SiGe HBTs with a CBE layout under cut-off mode,as shown in Fig.12.The parasitic emitter resistances and collector resistances are treated as lumped elements that depend on the device geometry.The series-collector resistance contains two parts:a constant external part RCXand an intrinsic bias dependent part RC1C2.In addition to a simple substrate network,we adopted a parasitic substrate resistance RSUin series with the substrate-collector junction capacitance CSUand CTSto model the substrate characteristics.[16]

    Compared to the conventional MEXTRAM and HICUM, the high-frequency small-signal equivalent circuit presented in this work introduces an additional circuit node B2,which separates the intrinsic base resistance RBIand the link-base resistance,RBL.Furthermore,the intrinsic base resistance RBIis shifted into the internal node B2and separately contributes to the emitter resistance and collector resistance with various proportions.As marked within the dashed-line box,the admittance Y1can be approximately rewritten as

    which means that the marked network can be considered open and removed from the small-signal equivalent-circuit at low frequency.Hence the component of RBI(CTE+CTC)/3CTCis directly added to the intrinsic bias-dependent collector resistance RC1C2,and it is regarded as a total equivalent resistanceIt is the added component of RBI(CTE+CTC)/3CTCthat can fundamentally explain why the collector epitaxial collector resistance decreases as VBCincreases.As VBCincreases,the BC junction depletion width decreases,and then the width of the neutral base region increases owing to a decreased reverse bias voltage.The base current flows parallel with the BC junction and is perpendicular to the direction of the base width.Therefore,the increased neutral base width leads to a reduction of the intrinsic base resistance RBI.Considering the large ratio of(CTE+CTC)/CTC, the decreased RBIcauses the collector resistance R′C1C2to decrease as VBCincreases.

    Fig.12.Improved small-signal equivalent circuit for SiGe HBT with CBE layout in cutoff mode.

    4.2.Equivalent circuit in forward-active mode

    Generally,in order to achieve the current amplification, SiGe HBTs are usually biased in the forward-active mode with a common-emitter configuration.As shown in Fig.13,the corresponding small-signal equivalent circuit can be easily obtained based on the result of the cut-off mode.Because the BE junction is forward-biased,for simplicity,two elements,the junction diffusion capacitance Cπand the junction diffusion resistance Rπ,are added in parallel with the BE junction depletion capacitance CTE.We used Cπand Rπto characterize the response of the BE junction to an applied low-frequency small-signal sinusoidal voltage,and their values are functions of the BE junction current.Cπreflects the ability of charge storage in the base region as a function of vbe,and Rπreflects the modulation effect of the emitter voltage on the base current.The voltage-dependent current GmVbeis the collector current in the transistor,and it is controlled by the internal voltage Vbe.Gmmodels the modulation effect of the base voltage on the collector current.The output resistance rois primarily due to the Early effect.[7]In the future,we will focus on the model parameter extraction for our proposed model.

    Fig.13.Improved small-signal equivalent-circuit model for SiGe HBT in the forward-active mode.

    Theoretically,the proposed small-signal model is still applicable when the SiGe HBT operates under very high frequency because the proposed model is based on the high frequency distributed effects.The whole transistor is considered as a large distributed network consisting of basic elements,such as a resistance,a capacitance and a diode.In fact,the proposed model should also be verified by performing simulations or experiments.The verification process generally includes two parts:parameter extraction from the measured results,and a comparison between the measured and simulated (in ADS)results.However,the parameter extraction process is relatively complicated and we are in the process of achieving this task.Details about the parameter extraction and the verification process will be included in our following work

    5.Conclusion

    This paper presents a novel high-frequency small-signal equivalent-circuit for SiGe HBTs with a CBE layout,and is based on the distributed effects in an actual device structure. According to the base region position,the whole transistor is divided into three parts:a link-base region,an intrinsic transistor region,and an extrinsic base region.We obtained the Y parameters for each region by solving the transmission line equation.We obtained the small-signal equivalent circuit in the cut-off and forward-active mode using the well known π network characteristics under reasonable approximations.The proposed equivalent circuit model can fundamentally explain the anomalous variations that exist between the bias-dependent collector resistance and the base voltage in conventional compact models.In the future,we aim to focus on the parameter extraction for our proposed model.

    [1]Schmid R L,Song P,Coen C T,Ulusoy A C and Cressler J D 2014 IEEE Trans.Microw.Theory Tech.62 2755

    [2]Avenier G,Ribes G,Montagne A,Canderle E,Celi D and Derrier N 2014 IEEE International Electron Devices Meeting(IEDM)3.9.1

    [3]Pekarik J J,Adkisson J,Gray P,Liu Q,Camillo-Castillo R and Khater M 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)92

    [4]McAndrew C,Seitchik J and Bowers D 1995 IEEE Bipolar/BiCMOS Circuits and Technology Meeting(BCTM)170

    [5]Schr?ter M and Chakravorty A 2010 Compact Hierarchical Modeling of Bipolar Transistors with HICUM(Singapore:World Scientific)

    [6]Van D T R,Paasschens J C J and Kloosterman W J 2012 The Mextram Bipolar Transistor Model level 504.11.0.Delft University of Technolog

    [7]Cressler J D 2008 Measurement and Modeling of Silicon Heterostructure Tayloramp;Francis Group,LLC

    [8]Sun Y B,Fu J,Xu J,Wang Y D,Zhou W and Zhang W 2014 Chin. Phys.B 23 0116104

    [9]Li P,Guo H X,Guo Q,Zhang J X,Xiao Y,Wei Y and Cui J W 2015 Chin.Phys.B 24 088502

    [10]Sun Y B,Fu J,Xu J,Wang Y D,Zhou W and Zhang W 2016 Chin. Phys.B 25 048501

    [11]Sutton A K,Bellini M,Cressler J D,Pellish J A,Reed R A and Marshall P W 2007 IEEE Trans.Nucl.Sci.6 2044

    [12]Krithivasan R,Marshall P W,Nayeem M,Sutton A K,Kuo W and Haugerud B M 2006 IEEE Trans.Nucl.Sci.53 3400

    [13]Reed R A,Marshall P W,Pickel J C,Carts M A,Fodness B and Niu G F 2003 IEEE Trans.Nucl.Sci.50 2184

    [14]Marshall P W,Carts M A,Campbell A,McMorrow D,Buchner S and Stewart R 2000 IEEE Trans.Nucl.Sci.47 2669

    [15]Sun Y B,Fu J,Xu J,Wang Y,Zhou W and Zhang W 2015 Superlattices and Microstructures 80 11

    [16]Chen H,Chen K,Huang G and Chang C 2006 IEEE Trans.Electron Devices 9 2287

    23 March 2017;revised manuscript

    2 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/098502

    ?Project supported by the National Natural Science Funds of China(Grant Nos.61574056 and 61504156),the Natural Science Foundation of Shanghai, China(Grant No.14ZR1412000),Shanghai Sailing Program,China(Grant No.17YF1404700),and the Science and Technology Commission of Shanghai Municipality,China(Grant No.14DZ2260800).

    ?Corresponding author.E-mail:xjli@ee.ecnu.edu.cn

    ?Corresponding author.E-mail:jzzhang@ee.ecnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    偷拍熟女少妇极品色| 波多野结衣高清无吗| 国产美女午夜福利| 久久久精品欧美日韩精品| 国产伦精品一区二区三区视频9 | 中文字幕最新亚洲高清| bbb黄色大片| 麻豆国产97在线/欧美| 国产精品久久久久久亚洲av鲁大| 两个人的视频大全免费| 99视频精品全部免费 在线 | av视频在线观看入口| 桃红色精品国产亚洲av| 国产欧美日韩一区二区精品| 亚洲av免费在线观看| 老汉色∧v一级毛片| 在线十欧美十亚洲十日本专区| 又黄又粗又硬又大视频| 99国产精品99久久久久| 亚洲最大成人中文| 一区福利在线观看| 国产黄色小视频在线观看| 中文字幕熟女人妻在线| 国产成人福利小说| 国产午夜福利久久久久久| 亚洲一区二区三区不卡视频| 黑人操中国人逼视频| 一本精品99久久精品77| 国产在线精品亚洲第一网站| h日本视频在线播放| 美女大奶头视频| 美女午夜性视频免费| 国内揄拍国产精品人妻在线| 久久香蕉精品热| 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 欧美高清成人免费视频www| 亚洲精品乱码久久久v下载方式 | 国产高清三级在线| ponron亚洲| 日韩 欧美 亚洲 中文字幕| www日本黄色视频网| av中文乱码字幕在线| 香蕉久久夜色| 日日摸夜夜添夜夜添小说| www.熟女人妻精品国产| 亚洲精品乱码久久久v下载方式 | 性色avwww在线观看| 女人被狂操c到高潮| 欧美日本视频| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| 校园春色视频在线观看| 久久香蕉精品热| 亚洲美女视频黄频| 精品国产美女av久久久久小说| 在线永久观看黄色视频| 日本成人三级电影网站| 伦理电影免费视频| 欧美极品一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 亚洲av美国av| 国模一区二区三区四区视频 | 窝窝影院91人妻| x7x7x7水蜜桃| 久久久久国内视频| 国产伦人伦偷精品视频| а√天堂www在线а√下载| 成年人黄色毛片网站| 国产精品永久免费网站| 日本黄大片高清| 亚洲欧美日韩无卡精品| 国产免费av片在线观看野外av| 日韩中文字幕欧美一区二区| 脱女人内裤的视频| 国产人伦9x9x在线观看| 欧美最黄视频在线播放免费| 男女那种视频在线观看| 亚洲中文日韩欧美视频| 嫩草影视91久久| 亚洲无线在线观看| 中文字幕精品亚洲无线码一区| 中文字幕高清在线视频| avwww免费| 欧美黑人巨大hd| 最新在线观看一区二区三区| 最近最新中文字幕大全电影3| 欧美丝袜亚洲另类 | 黄片小视频在线播放| 久久精品aⅴ一区二区三区四区| 精品国产乱码久久久久久男人| 亚洲精品456在线播放app | 午夜福利高清视频| 国产精品一区二区免费欧美| 久久久久性生活片| 国内精品久久久久久久电影| 国产亚洲精品久久久com| 国产成人aa在线观看| 午夜精品一区二区三区免费看| 一进一出抽搐gif免费好疼| 男女床上黄色一级片免费看| av在线天堂中文字幕| 亚洲国产精品成人综合色| avwww免费| 午夜免费成人在线视频| 最好的美女福利视频网| 国产精品av视频在线免费观看| 哪里可以看免费的av片| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 成人国产综合亚洲| 日本三级黄在线观看| 性欧美人与动物交配| 日韩欧美在线二视频| 亚洲精品456在线播放app | 麻豆成人av在线观看| 欧美午夜高清在线| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 国产成+人综合+亚洲专区| 99热这里只有是精品50| 日韩欧美国产在线观看| 丁香六月欧美| 一本综合久久免费| 国产亚洲精品av在线| 亚洲一区二区三区不卡视频| 三级男女做爰猛烈吃奶摸视频| 国产高潮美女av| 久久人人精品亚洲av| 国产精品,欧美在线| 色精品久久人妻99蜜桃| xxx96com| 久久人人精品亚洲av| 一个人观看的视频www高清免费观看 | x7x7x7水蜜桃| 老司机在亚洲福利影院| 91麻豆精品激情在线观看国产| 国产精品精品国产色婷婷| 国模一区二区三区四区视频 | 校园春色视频在线观看| 欧美另类亚洲清纯唯美| 日韩欧美在线二视频| 成人欧美大片| 久久久久免费精品人妻一区二区| 三级国产精品欧美在线观看 | 国产精品亚洲美女久久久| 国产一区二区在线观看日韩 | 大型黄色视频在线免费观看| 亚洲自偷自拍图片 自拍| 超碰成人久久| 黄色日韩在线| 亚洲真实伦在线观看| 男人舔女人下体高潮全视频| 国产高潮美女av| 悠悠久久av| 99久久精品热视频| 在线观看免费午夜福利视频| 黄色日韩在线| 亚洲国产欧美人成| 久久久久精品国产欧美久久久| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 真人一进一出gif抽搐免费| 国产精品 欧美亚洲| 在线观看舔阴道视频| 最近最新中文字幕大全电影3| 99热这里只有是精品50| 波多野结衣巨乳人妻| 色老头精品视频在线观看| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| 久久久国产成人精品二区| 黄色成人免费大全| 国内毛片毛片毛片毛片毛片| 高潮久久久久久久久久久不卡| 亚洲 欧美 日韩 在线 免费| 色吧在线观看| 啪啪无遮挡十八禁网站| 免费看十八禁软件| 久久天躁狠狠躁夜夜2o2o| 在线观看免费午夜福利视频| 一本精品99久久精品77| 午夜日韩欧美国产| 女同久久另类99精品国产91| 啦啦啦免费观看视频1| 午夜福利视频1000在线观看| 无限看片的www在线观看| 久久99热这里只有精品18| 久久久久九九精品影院| 黑人欧美特级aaaaaa片| 亚洲成av人片在线播放无| 91麻豆av在线| 一本精品99久久精品77| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 久久精品人妻少妇| 一二三四社区在线视频社区8| 又大又爽又粗| 午夜日韩欧美国产| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 国产精品久久久av美女十八| 亚洲无线在线观看| 母亲3免费完整高清在线观看| 最近最新免费中文字幕在线| 久久这里只有精品19| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 亚洲国产精品sss在线观看| 嫩草影院精品99| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 日韩av在线大香蕉| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 18禁美女被吸乳视频| 熟女人妻精品中文字幕| 免费在线观看亚洲国产| 在线播放国产精品三级| 脱女人内裤的视频| 一个人看的www免费观看视频| 男人舔女人下体高潮全视频| 久久久久久久午夜电影| 最近在线观看免费完整版| 又黄又粗又硬又大视频| 久久久国产精品麻豆| svipshipincom国产片| 91字幕亚洲| 一夜夜www| 亚洲男人的天堂狠狠| 国产毛片a区久久久久| 国产男靠女视频免费网站| 久久精品人妻少妇| 精品国产三级普通话版| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 欧美日韩瑟瑟在线播放| 久久精品aⅴ一区二区三区四区| www.999成人在线观看| 给我免费播放毛片高清在线观看| 99热这里只有是精品50| 日本免费一区二区三区高清不卡| 午夜免费激情av| 无限看片的www在线观看| 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片 | 国产精品美女特级片免费视频播放器 | 国产高清视频在线观看网站| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 亚洲18禁久久av| 久久天躁狠狠躁夜夜2o2o| svipshipincom国产片| 三级男女做爰猛烈吃奶摸视频| 午夜免费观看网址| 好男人在线观看高清免费视频| 久久久久久久久中文| 日韩欧美三级三区| 亚洲avbb在线观看| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 嫩草影院精品99| 成在线人永久免费视频| 男女视频在线观看网站免费| 亚洲欧美激情综合另类| 亚洲国产欧美网| 18禁观看日本| 久久久久久久午夜电影| 久久久久国产一级毛片高清牌| 国产高潮美女av| 又大又爽又粗| 国产精品国产高清国产av| 热99在线观看视频| 美女cb高潮喷水在线观看 | 少妇熟女aⅴ在线视频| 老汉色∧v一级毛片| 久久精品aⅴ一区二区三区四区| 午夜福利在线观看吧| 久久人妻av系列| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| 日本一本二区三区精品| 国产一区二区三区视频了| 99热只有精品国产| 99re在线观看精品视频| 母亲3免费完整高清在线观看| 中文字幕久久专区| 午夜影院日韩av| 午夜亚洲福利在线播放| svipshipincom国产片| 国产99白浆流出| 人人妻人人看人人澡| 亚洲色图av天堂| ponron亚洲| 日韩欧美三级三区| 久久亚洲真实| 成人亚洲精品av一区二区| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 又大又爽又粗| 精品久久久久久久人妻蜜臀av| 欧美又色又爽又黄视频| 国产精品自产拍在线观看55亚洲| 亚洲第一欧美日韩一区二区三区| 色老头精品视频在线观看| 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| 久久中文看片网| 人妻久久中文字幕网| 日本黄大片高清| 性色av乱码一区二区三区2| 美女扒开内裤让男人捅视频| 欧美激情久久久久久爽电影| 中文亚洲av片在线观看爽| 91av网一区二区| 午夜亚洲福利在线播放| 精品日产1卡2卡| 免费看光身美女| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 亚洲av熟女| 99国产极品粉嫩在线观看| 国产精品爽爽va在线观看网站| 成年免费大片在线观看| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 日韩中文字幕欧美一区二区| 亚洲国产精品999在线| 中亚洲国语对白在线视频| 最新美女视频免费是黄的| 三级国产精品欧美在线观看 | 美女 人体艺术 gogo| 久久久久国内视频| 日韩欧美在线二视频| 国产午夜福利久久久久久| 日韩欧美三级三区| 在线看三级毛片| 日本成人三级电影网站| 精品久久久久久久毛片微露脸| 国产三级黄色录像| 久久久成人免费电影| 五月伊人婷婷丁香| 成人av一区二区三区在线看| 伦理电影免费视频| 午夜久久久久精精品| svipshipincom国产片| 99热这里只有精品一区 | 十八禁网站免费在线| 亚洲成人精品中文字幕电影| 熟女电影av网| 国产乱人视频| 少妇人妻一区二区三区视频| 精品久久久久久,| 久久精品夜夜夜夜夜久久蜜豆| 亚洲自拍偷在线| 日韩 欧美 亚洲 中文字幕| 国产蜜桃级精品一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品,欧美在线| 19禁男女啪啪无遮挡网站| 免费观看人在逋| 中文字幕熟女人妻在线| 亚洲欧美一区二区三区黑人| 亚洲五月天丁香| 最近在线观看免费完整版| 久久这里只有精品19| 一卡2卡三卡四卡精品乱码亚洲| 天堂网av新在线| 国产探花在线观看一区二区| 一本综合久久免费| 亚洲专区国产一区二区| 神马国产精品三级电影在线观看| 欧美在线黄色| 免费电影在线观看免费观看| 亚洲狠狠婷婷综合久久图片| 国产成人精品久久二区二区91| 香蕉国产在线看| 欧美另类亚洲清纯唯美| 日本一本二区三区精品| 可以在线观看毛片的网站| 色老头精品视频在线观看| 一区二区三区激情视频| 此物有八面人人有两片| 久久99热这里只有精品18| 叶爱在线成人免费视频播放| 99riav亚洲国产免费| 精品无人区乱码1区二区| 国产高清videossex| 一区二区三区国产精品乱码| 亚洲欧美精品综合一区二区三区| 国产一区二区三区视频了| 午夜影院日韩av| 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 国产淫片久久久久久久久 | a级毛片在线看网站| 亚洲人成电影免费在线| 久久伊人香网站| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产真人三级小视频在线观看| 欧美黄色片欧美黄色片| 日日干狠狠操夜夜爽| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 亚洲精品国产精品久久久不卡| 一个人免费在线观看的高清视频| 久久久久久久精品吃奶| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 欧美乱色亚洲激情| 熟女电影av网| 午夜a级毛片| 成在线人永久免费视频| 久久午夜亚洲精品久久| 亚洲男人的天堂狠狠| 小蜜桃在线观看免费完整版高清| 国产一区二区三区视频了| 国产精品一及| 黄频高清免费视频| 国产亚洲欧美98| 一区二区三区国产精品乱码| 日本黄大片高清| 国产精品久久久人人做人人爽| 亚洲aⅴ乱码一区二区在线播放| xxxwww97欧美| 久久久久久久久免费视频了| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清无吗| 嫩草影院精品99| 日本黄色片子视频| 午夜日韩欧美国产| 国产三级在线视频| 无限看片的www在线观看| 长腿黑丝高跟| 99国产综合亚洲精品| bbb黄色大片| 可以在线观看毛片的网站| 一进一出抽搐gif免费好疼| 日韩欧美三级三区| 精品欧美国产一区二区三| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| www.www免费av| xxx96com| 悠悠久久av| 亚洲av成人av| 成人性生交大片免费视频hd| 精品久久久久久久久久免费视频| 在线a可以看的网站| 啦啦啦免费观看视频1| 搡老妇女老女人老熟妇| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 亚洲成人中文字幕在线播放| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 少妇的逼水好多| 在线视频色国产色| 欧美成人性av电影在线观看| 色综合欧美亚洲国产小说| 亚洲色图av天堂| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 一级黄色大片毛片| 国产免费av片在线观看野外av| 欧美黑人巨大hd| 欧美中文综合在线视频| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 香蕉国产在线看| 午夜两性在线视频| 色精品久久人妻99蜜桃| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 九九久久精品国产亚洲av麻豆 | 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 99久久精品一区二区三区| 长腿黑丝高跟| 夜夜躁狠狠躁天天躁| 国内揄拍国产精品人妻在线| 欧美黄色淫秽网站| 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看 | а√天堂www在线а√下载| 久久久久免费精品人妻一区二区| 嫩草影院精品99| 久久久久久久久中文| 国产三级黄色录像| 免费观看精品视频网站| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 精品国产美女av久久久久小说| 亚洲精品456在线播放app | 午夜免费观看网址| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 夜夜夜夜夜久久久久| 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 国产高清视频在线播放一区| 精品一区二区三区视频在线 | 人妻夜夜爽99麻豆av| 毛片女人毛片| 亚洲精品在线美女| 免费观看的影片在线观看| 麻豆成人av在线观看| 性色avwww在线观看| 国产精品1区2区在线观看.| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 国产精品女同一区二区软件 | 老司机在亚洲福利影院| 99久久无色码亚洲精品果冻| 一个人看的www免费观看视频| 亚洲国产精品成人综合色| 黄色日韩在线| 久久精品91无色码中文字幕| 国产黄片美女视频| 国产精品 国内视频| 黄色日韩在线| 国产精品 国内视频| 国产亚洲av高清不卡| 性色avwww在线观看| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 国产视频一区二区在线看| 美女cb高潮喷水在线观看 | 性色av乱码一区二区三区2| 超碰成人久久| 日韩av在线大香蕉| 婷婷精品国产亚洲av| 亚洲黑人精品在线| 国产精品1区2区在线观看.| 国产精品久久视频播放| 一级黄色大片毛片| www.www免费av| 日韩中文字幕欧美一区二区| 午夜免费激情av| 身体一侧抽搐| 久久午夜亚洲精品久久| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 麻豆成人av在线观看| 亚洲五月婷婷丁香| 人妻夜夜爽99麻豆av| 热99re8久久精品国产| 神马国产精品三级电影在线观看| 国产视频内射| 午夜影院日韩av| 国产69精品久久久久777片 | 国产视频内射| 亚洲国产精品999在线| 色综合欧美亚洲国产小说| 黄色女人牲交| 天堂网av新在线| 国产精品日韩av在线免费观看| 少妇的逼水好多| 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 美女扒开内裤让男人捅视频| 热99在线观看视频| 久久热在线av| 国产三级黄色录像| 成人永久免费在线观看视频| 国产精品久久久久久人妻精品电影| 在线观看免费视频日本深夜| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 老司机午夜十八禁免费视频| 无遮挡黄片免费观看| 校园春色视频在线观看| 国产精品久久久久久精品电影| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清| 超碰成人久久| 国模一区二区三区四区视频 | 桃红色精品国产亚洲av| 老熟妇仑乱视频hdxx| aaaaa片日本免费| 亚洲国产精品999在线| 成人亚洲精品av一区二区| 在线免费观看的www视频| 免费一级毛片在线播放高清视频| 亚洲无线在线观看|