• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs?

    2017-08-30 08:26:48JianfeiLi李建飛YuanjieLv呂元杰ChangfuLi李長富ZiwuJi冀子武ZhiyongPang龐智勇XiangangXu徐現(xiàn)剛andMingshengXu徐明升
    Chinese Physics B 2017年9期
    關(guān)鍵詞:智勇

    Jianfei Li(李建飛),Yuanjie Lv(呂元杰),Changfu Li(李長富),Ziwu Ji(冀子武),?, Zhiyong Pang(龐智勇),Xiangang Xu(徐現(xiàn)剛),and Mingsheng Xu(徐明升)

    1 School of Microelectronics,Shandong University,Jinan 250100,China

    2 National Key Laboratory of Application Specific Integrated Circuit(ASIC),Hebei Semiconductor Research Institute,Shijiazhuang 050051,China

    3 Key Laboratory of Functional Crystal Materials and Device(Ministry of Education),Shandong University,Jinan 250100,China

    4 School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs?

    Jianfei Li(李建飛)1,2,Yuanjie Lv(呂元杰)2,Changfu Li(李長富)1,Ziwu Ji(冀子武)1,?, Zhiyong Pang(龐智勇)1,Xiangang Xu(徐現(xiàn)剛)3,and Mingsheng Xu(徐明升)4

    1 School of Microelectronics,Shandong University,Jinan 250100,China

    2 National Key Laboratory of Application Specific Integrated Circuit(ASIC),Hebei Semiconductor Research Institute,Shijiazhuang 050051,China

    3 Key Laboratory of Functional Crystal Materials and Device(Ministry of Education),Shandong University,Jinan 250100,China

    4 School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    The photoluminescence(PL)and electrical properties of AlGaN/GaNhigh electron mobility transistors(HEMTs)with different Fe doping concentrations in the GaN buffer layers were studied.It was found that,at low Fe doping concentrations, the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer,since the Fe atoms substitute Ga and introduce anacceptor level.This results in a decrease in the yellow luminescence(YL)emission intensity accompanied by the appearance of an infrared(IR)emission,and a decrease in the off-state buffer leakage current (BLC).However,a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of Odonors under the large flow rate of the Fe source.This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity,and an increase in the BLC.The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.

    AlGaN/GaN HEMT,Fe-doping,photoluminescence,leakage current

    1.Introduction

    High electron mobility transistors(HEMTs)based on AlGaN/GaN heterostructures,which contain a polarization induced high-mobility two-dimensional electron gas(2DEG) at the AlGaN/GaN interfaces,even in the absence of any doping,have been widely studied for their potential application in high-frequency and high-power amplifiers.[1–3]However,Al-GaN/GaN heterostructures often show a high buffer leakage current(BLC)due to the high background carrier density in the GaN buffer layer,which may originate from crystalline defects such as vacancies,threading dislocations,and unintentionally incorporated donor impurities such as Si and O.[4,5]Reduction of BLC is extremely important to improve the device performance,and some approaches,such as using C-,Fe-, Cr-,and Mg-doping,have been demonstrated to obtain semiinsulating(SI)-GaN wafers.[6–8]The impurities,as deep acceptors in the form of substitution atoms,can trap electrons, compensating for the donor impurity states in the n-type GaN. Therefore,Fe doping(GaN:Fe)is considered to be one of several promising methods due to its reproducibility and controllability:SI-GaN:Fe substrates and SI-GaN:Fe based transistors have demonstrated high resistivity and high electron mobility,respectively.[9,10]Some articles have discussed the optical or electrical properties of the SI-GaN:Fe bulk films and the SI-GaN:Fe-based HEMTs.[10–14]However,to the best of our knowledge,the investigation of the intrinsic relationship between optical and electrical characteristics in the same SIGaN:Fe-based HEMT is scarce.Nevertheless,investigating different Fe doping concentrations by optical measurements may be beneficial to understand the variation of the electrical characteristics of the HEMTs due to its simplicity and effectiveness,without the need for full device fabrication.

    In this study,three AlGaN/GaN HEMTs with different Fe doping concentrations were grown,and characterised by photoluminescence(PL), Hall-effect,and I–V measurements. The measurement results showed that the PL and electrical properties of AlGaN/GaN HEMTs depended markedly on the concentration of Fe doping into the GaN buffer layer,and an appropriate Fe doping concentration was necessary to obtain high-performance AlGaN/GaN HEMTs.

    2.Experiment

    Three types of AlGaN/GaN heterostructures with different Fe doping concentrations were grown on(0001)sapphire substrates using metal–organic chemical vapor deposition(MOCVD).Each AlGaN/GaN heterostructure consistedof a 40-nm-thick low-temperature AlN nucleation layer,followed by a 1.5-μm-thick GaN buffer layer with different Fe doping concentration,a 0.8-μm-thick unintentionally doped GaN buffer layer,a 1-nm-thick AlN interlayer,and a 20-nmthick AlGaN barrier layer.The Fe doping concentration in the GaN buffer layer was 0 for sample A(i.e.,as grown),1×1019for sample B(slightly-doped),and 2×1020cm?3for sample C(heavily-doped).Figure 1 shows the schematic diagram and optical microscopy image of the AlGaN/GaN HEMT.The HEMT devices with a source–drain spacing of 100μm and a gate length of 40μm were fabricated from these AlGaN/GaN heterostructures.

    Fig.1.(a)Schematic diagram and(b)optical microscopy image of Al-GaN/GaN HEMT.

    The PL spectra were excited using the 325 nm line of a He–Cd laser.The PL signals were analyzed by using a Jobin-Yvon iHR320 monochromator equipped with a thermoelectrically cooled Synapse CCD detector.Hall effect measurements were performed in the van der Pauw geometry on 15 mm square samples,using indium dots as Ohmic contacts.Moreover,I–V measurements were performed by using an Agilent B1500A semiconductor parameter analyzer.

    3.Results and discussion

    Figure 2(a)shows the PL spectra of the three samples (samples A–C)measured at 300 K and 0.02 mW.As can be seen in Fig.2(a),the PL spectrum of the as-grown sample A consists of a near-band edge(NBE)emission at 3.428 eV and a broad band peak at around 2.3 eV.The former originates from the flat-band region of the GaN layer,[15]and the latter is assigned to the transition between the conduction band or shallow donors and the acceptor-type defect complexes composed of Ga vacancies(VGa)and/or VGa–O,[10,12,16]this is the so-called yellow luminescence(YL)band.The intensity oscillations of the YL emission are due to Fabry–Perot type interferences.For the doped samples B and C,besides the NBE and YL emissions,a characteristic infrared(IR)emission at 1.287 eV is also observed.In order to establish the origin of the IR emission,we show in Fig.2(b)the typical temperature dependent PL spectra in the vicinity of the IR emission peak for sample B as a representative of the doped samples measured in the range 6–300 K.As shown in Fig.2(b),at 6 K,the PL spectrum is dominated by the zero-phonon line(ZPL)of the internal 3d–3d transition ofpeaking at 1.300 eV with FWHM of 0.825 meV.A set of partially resolved lines in the range 1.21–1.29 eV is identified as the vibrational replica of the ZPL.The additional lines,the so-called“hot lines,”in the higher energy side of the ZPL,are attributed to the splitting of the excited4T1(G)state of.

    With increasing temperature below about 230 K,the ZPL intensity gradually decreases,while the intensity of all vibrational replicas increases accompanied by their gradual merging.This behavior can be explained as the gradual increase of the electron–phonon interaction with rising temperature.[13]Above about 230 K,the ZPL component vanishes and the PL spectrum transforms into the 1.287 PL band.Based on this,we conclude that at room temperature,the 1.287 eV IR emission is attributed only to all vibrational replicas of the ZPL.This shows that,in the present study,two nominal Fe-doped structures(i.e.,samples B and C)have been successfully grown, and the Fe atoms incorporated in the GaN matrix are substitutional on the Ga site and introduce the charge transfer levelin the midgap.

    Moreover,it is found from Fig.2(a)that,among the three samples,the intensity of the YL band is the strongest for sample A and the weakest for sample B.[17]Meanwhile,the intensity of the IR emission of sample C is weaker than that of sample B.Here,it should be noted that all the PL spectra shown in Fig.2(a)are normalized to the NBE emission. The aforementioned dependence of the PL spectra on the Fe doping concentration shown in Fig.2(a)can be explained as follows.For sample B,the Fe atoms incorporated in the GaN matrix can substitute Ga and introduce charge transfer levelin the mid-gap.[10,12]The presence ofacceptor level-related point defects induces the IR emission,and results in the Fermi level being shifted from the conduction band minimum(CBM)to the mid-gap.[10]Furthermore,the downward shift of the Fermi level in the GaN buffer layer in turn results in the decrease of the VGaconcentration due to the increase of the VGaformation energy.[10,16]Therefore,compared with sample A,sample B shows a new IR emission peak and a decreased response at the YL emission intensity.

    Fig.2.(a)PL spectra of three AlGaN/GaN HEMTs at P=0.02 mW and T=300 K.All PL spectra are normalized to the near-band edge emission.(b)Temperature-dependent PL spectra in the vicinity of the IR emission peak for sample B.

    However,with a further increase in the Fe doping concentration,corresponding to sample C,the density of O donors incorporated into the GaN buffer layer will also increase,since the O contamination is known to originate from the large flow rate of the Fe source(Cp2Fe).[10,12,18]This results in the increase of the VGaconcentration due to the movement of the Fermi level from the mid-gap to CBM,and the increase of the amount of VGa–O complexes due to the incorporation of O donors.[10,12]Both lead to the increase of the YL band intensity for sample C compared with that of sample B.Meanwhile, the upward shift of the Fermi level by the O donor incorporation also causes the charge state of thelevel to be transferred fromtoby capturing an electron.[10]This process gives rise to the decrease of therelated IR emission intensity for sample C compared with that of sample B.

    To investigate the influence of the Fe doping concentration on the behavior of 2DEG at the AlGaN/GaN interface,the sheet carrier density and Hall mobility of the three samples as a function of temperature from 10 K to 300 K were measured. As shown in Fig.3,within the chosen range of measurement, the sheet electron densities of all three samples are practically temperature-independent,and exceed 1.0×1013cm?2.The results indicate an absence of any significant parallel conduction paths and the formation of a 2DEG at the AlGaN/GaN interface in all three samples.[19]In addition,with increasing Fe doping concentration,the sheet electron density first shows only a very slight decrease due to the introduction of theacceptor level,and then only a very slight increase perhaps due to the significant incorporation of the O donors(Fig.3).This indicates that the sheet electron density is barely affected by the Fe doping concentration,and the 2DEG is mainly caused by spontaneous and piezoelectric polarization fields in the AlGaN/GaN heterostructure.

    On the other hand,the electron mobility of all the samples first shows a slight decrease below approximately 70 K, and then a significant decrease with further increase in the test temperature(Fig.3):this is due to the dominance of optical phonon scattering at higher temperatures.[20,21]The measured electron mobilities of the three samples(A,B,and C) are 11690 cm2/V,12217 cm2/V,and 9770 cm2/V at 10 K, and 1893 cm2/V,2031 cm2/V,and 1532 cm2/V at room temperature,respectively.The high electron mobilities of the three samples are consistent with the formation of the 2DEG. In addition,it is found from Fig.3 that,compared with sample A,samples B and C show a slight increase and an obvious decrease in the electron mobility,respectively,over the whole temperature range tested,particularly in the low temperature range(T<200 K).The former may be due to the decreased electron density in the GaN layer of sample B as mentioned above,the latter may be attributed to the deterioration of the AlGaN/GaN interface quality due to the diffusion of Fe atoms from the Fe-doped GaN buffer layer into the unintentionally doped GaN layer,and even into the AlGaN/GaN interface region of sample C with a larger Fe doping concentration.

    Fig.3.Temperature dependencies of the sheet carrier density and Hall mobility of the three AlGaN/GaN HEMTs.

    To examine the influence of the Fe doping on BLC in Al-GaN/GaN HEMTs,the output drain–source currents(IDS)as a function of drain–source voltage(VDS)for the three samples were measured at different gate–source voltages(VGS), and they demonstrated similar trends in their variations.Figure 4(a)shows a typical IDS–VDScharacteristic for sample B measured at VGSvarying from 0 to?7 V in?0.5 V steps. It is found from Fig.4(a)that,at VGS=0 V,upon increasing VDSfrom 0 to 100 V,IDSrapidly increases and reaches a maximum of 2.84 mA at about 5 V,and then decreases upon further increasing VDSdue to the negative differential resistance characteristic of self-heating perhaps originating from the poor thermal conductivity of the sapphire substrates.[22–24]Furthermore,when VGSis varied from 0 V,the IDS–VDScurve shifts to a lower value overall,and reaches a minimum at VGS=?2.5 V,and then remains almostunchanged up to?7 V. At the same time,in the VGSrange from?2.5 V to?7 V,the VDSdependence of IDSalso evolves such that,upon increasing VDSfrom 0 V,IDSfirst increases slightly(VDS<10 V), and then becomes quasi-saturated upon further increasing VDSto 100 V.The results show that the pinch-off voltage(Vp)of sample B is approximately?2.5 V.In contrast,the Vpfor samples A and C are approximately to?3 V.

    Figure 4(b)shows the off-state IDSof the three samples as a function of VDSat VGS=?7 V.As seen from Fig.4(b), the off-state IDSmeasured at VGS=?7 V and VDS=100 V is 2.16×10?5for sample A,1.31×10?6for sample B,and 6.69×10?6A for sample C.The results show that sample B has the lowest off-state IDScompared with samples A and C. The higher off-state IDSfor samples A and C means that there is still a non-ignorable conductive channel in the deeper regions of the structure,which is generated by the crystalline defects and donor impurities acting as donor centers.[4,5,22,23]

    Based on all the experimental results described above,it may be concluded that,compared with the non-doped sample(such as sample A),a lower Fe doping concentration (1×1019cm?3,such as sample B)can result in a downward shift of the Fermi level in the GaN buffer layer due to the introduction of anacceptor level.This leads to a decrease in the YL emission intensity accompanied by the appearance of an IR emission,and a decrease in the BLC.Nevertheless,a higher Fe doping concentration(2×1020cm?3,such as sample C)will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source.This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity,and an increase in the BLC,compared with the case of the lower Fe doping concentration.To more intuitively display the relationship between the PL and electrical characteristics,we show the quantitative results of the three samples with different Fe doping concentrations in Table 1.

    Fig.4.(a)I DS–V DS curves measured at V GS varying from 0 to?7 V in?0.5 V steps for sample B.(b)Off-state I DS as a function of V DS for the three samples(A,B,and C)at V GS=?7 V and T=300 K.

    Table 1.Quantitative results of the three samples with different Fe doping concentrations.a

    Taking into account the above mentioned intrinsic relationship between the PL(YL or/and IR)and BLC characteristics,we find that the study of PL characteristic in AlGaN/GaN HEMTs with different Fe doping GaN buffer layer could be a route to understand the variation of BLC characteristic without the need for full device fabrication.Although more careful experimental investigations are required in future research,the experimental results and the intrinsic relationship between the PL and electrical characteristics obtained in the present work are expected to provide a useful guidance to scientists involved in the fabrication of high-performance AlGaN/GaN HEMTs.

    4.Conclusion

    The influence of Fe doping concentration on optical and electrical properties in AlGaN/GaN HEMTs was investigated by PL,Hall-effect,and I–V measurements.The measurement results showed that,compared with the as-grown sample,the slightly doped sample showed a downward shift of the Fermi level in the GaN buffer layer due to the introduction of anacceptor level.This resulted in a decrease in the YL emission intensity accompanied by the appearance of an IR emission,and a decrease in the BLC.In contrast,the heavily doped sample showed an upward shift of the Fermi level compared with the slightly doped sample due to the increase of O donors incorporated into the GaN buffer layer under the large flow rate of the Fe source.This resulted in an increased YL emission intensity accompanied by a decrease in the IR emission intensity,and an increase in the BLC,compared with the slightly doped sample.The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the HEMT structure by optical measurements.

    [1]Marti D,Tirelli S,Alt A R,Roberts J and Bolognesi C R 2012 IEEE Electron Device Lett.33 1372

    [2]He Y L,Wang C,Mi M H,Zheng X F,Zhang M,Zhao M D,Zhang H S,Chen L X,Zhang J C,Ma X H and Hao Y 2016 Chin.Phys.B 25 117305

    [3]Wang L,Zhang J Q,Li L,Maeda Y and Ao J P 2017 Chin.Phys.B 26 037201

    [4]Moore W J,Freitas Jr J A,Braga G C B,Molnar R J,Lee S K,Lee K Y and Song I J 2001 Appl.Phys.Lett.79 2570

    [5]Ravikiran L,Radhakrishnan K,Munawar Basha S,Dharmarasu N, Agrawal M,Manoj kumar C M,Arulkumaran S and Ng G I 2015 J. Appl.Phys.117 245305

    [6]Hwang C Y,Schurman M J,Mayo W E,Lu Y C,Stall R A and Salagaj T 1997 J.Electron.Mater.26 243

    [7]Monemar B and Lagerstedt O 1979 J.Appl.Phys.50 6480

    [8]Li M,Wang Y,Wong K M and Lau K M 2014 Chin.Phys.B 23 038403

    [9]Wu Y F,Saxler A,Moore M,Smith R P,Sheppard S,Chavarkar P M, Wisleder T,Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117

    [10]Kubota M,Onuma T,Ishihara Y,Usui A,Uedono A and Chichibu S F 2009 J.Appl.Phys.105 083542

    [11]Desmaris V,Rudzi?ski M,Rorsman N,Hageman P R,Larsen P K,Zirath H,R?dle T C and Jos H F F 2006 IEEE Tran.Eelectron Dev.53 2413

    [12]Dumcenco D O,Levcenco S,Huang Y S,Reynolds Jr C L,Reynolds J G,Tiong K K,Paskova T and Evans K R 2011 J.Appl.Phys.109 123508

    [13]Gladkov P,Hulicius E,Paskova T,Preble E and Evans K R 2012 Appl. Phys.Lett.100 031908

    [14]Axelsson O,Gustafsson S,Hjelmgren H,Rorsman N,Blanck H, Splettstoesser J,Thorpe J,Roedle T and Thorsell M 2016 IEEE Tran. Eelectron Dev.63 326

    [15]Bergman J P,Lundstr?m T,Monemar B,Amano H and Akasaki I 1996 Appl.Phys.Lett.69 3456

    [16]Reshchikov M A and Morkoc?H 2005 J.Appl.Phys.97 061301

    [17]Wegscheider M,Simbrunner C,Przybylińska H,Kiecana M,Sawicki M,Navarro-Quezada A,Sitter H,Jantsch W,Dietl T and Bonanni A 2007 Phys.Status Solidi A 204 86

    [18]Bonanni A,Kiecana M,Simbrunner C,Li T,Sawicki M,Wegscheider M,Quast M,Przybylińska H,Navarro-Quezada A,Jakie?a R,Wolos A, Jantsch W and Dietl T 2007 Phys.Rev.B 75 125210

    [19]Smorchkova I P,Chen L,Mates T,Shen L,Heikman S,Moran B,Keller S,DenBaars S P,Speck JS and Mishra UK 2001 J.Appl.Phys.90 5196

    [20]Cao Y and Jena D 2007 Appl.Phys.Lett.90 182112

    [21]Deen D A,Storm D F,Meyer D J,Bass R,Binari S C,Gougousi T and Evans K R 2014 Appl.Phys.Lett.105 093503

    [22]Cordier Y,Azize M,Baron N,Chenot S,Tottereau O and Massies J 2007 J.Cryst.Growth 309 1

    [23]Cordier Y,Azize M,Baron N,Bougrioua Z,Chenot S,Tottereau O, Massies J and Gibart P 2008 J.Cryst.Growth 310 948

    [24]Lee J,Liu D,Kim H,Schuette M,Flynn J S,Brandes G R and Lu W 2004 Electron.Lett.40 1227

    2 December 2016;revised manuscript

    6 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/098504

    ?Project supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112),the National Natural Science Foundation of China(Grant No.51672163),and the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education), China(Grant No.JG1401).

    ?Corresponding author.E-mail:jiziwu@sdu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    智勇
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    回憶類文創(chuàng)設(shè)計(jì)系列
    《禾木之晨》
    High-performance and fabrication friendly polarization demultiplexer
    兔子哪里跑
    Existence of Periodic Solutions for a Class of Damped Vibration Problems
    楊智勇藝術(shù)作品欣賞
    身家50億的智勇堅(jiān)守
    中考題中的整式
    Preparation and characterization of TiO2-SiO2-Fe3O4 core-shell powders in nano scale
    人人妻人人看人人澡| 99视频精品全部免费 在线| 国产淫语在线视频| 日日摸夜夜添夜夜添av毛片| 亚洲性久久影院| 国内少妇人妻偷人精品xxx网站| 亚洲一级一片aⅴ在线观看| 久久韩国三级中文字幕| 女性被躁到高潮视频| 亚洲精品一区蜜桃| 国产精品.久久久| 亚洲精品,欧美精品| 久久国产乱子免费精品| 啦啦啦中文免费视频观看日本| 99热6这里只有精品| 三上悠亚av全集在线观看 | 最新中文字幕久久久久| 久久韩国三级中文字幕| 精品人妻一区二区三区麻豆| 一级毛片黄色毛片免费观看视频| 久久热精品热| 天天操日日干夜夜撸| 成年av动漫网址| 免费在线观看成人毛片| 一级爰片在线观看| 我的老师免费观看完整版| 搡女人真爽免费视频火全软件| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 秋霞伦理黄片| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| 有码 亚洲区| 精品国产乱码久久久久久小说| av福利片在线观看| 午夜激情福利司机影院| 春色校园在线视频观看| 卡戴珊不雅视频在线播放| 曰老女人黄片| 狂野欧美白嫩少妇大欣赏| 夜夜爽夜夜爽视频| 插逼视频在线观看| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 丝瓜视频免费看黄片| 18+在线观看网站| 天天操日日干夜夜撸| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| av线在线观看网站| 高清午夜精品一区二区三区| 五月伊人婷婷丁香| 精品久久久精品久久久| 中文在线观看免费www的网站| 日韩熟女老妇一区二区性免费视频| 免费人妻精品一区二区三区视频| 亚洲av电影在线观看一区二区三区| 国产美女午夜福利| 久久久久久久久久成人| 精华霜和精华液先用哪个| 久久综合国产亚洲精品| 晚上一个人看的免费电影| 麻豆成人av视频| 日韩av不卡免费在线播放| 高清av免费在线| av卡一久久| 欧美成人精品欧美一级黄| 精品人妻熟女毛片av久久网站| 2022亚洲国产成人精品| 久久久精品94久久精品| 超碰97精品在线观看| 亚洲在久久综合| 午夜av观看不卡| 中文字幕av电影在线播放| 在线亚洲精品国产二区图片欧美 | 一级爰片在线观看| 亚洲情色 制服丝袜| 夫妻午夜视频| 久久久久久久精品精品| 亚洲av免费高清在线观看| 曰老女人黄片| 国产精品一二三区在线看| 三上悠亚av全集在线观看 | 精品国产乱码久久久久久小说| 国产极品粉嫩免费观看在线 | 天天躁夜夜躁狠狠久久av| 亚洲精品日韩av片在线观看| av福利片在线| 最近最新中文字幕免费大全7| 91久久精品国产一区二区三区| 久久99热这里只频精品6学生| 国产美女午夜福利| 中文在线观看免费www的网站| 永久网站在线| 我要看日韩黄色一级片| 久久久久久人妻| h日本视频在线播放| 日韩精品有码人妻一区| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看 | 99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频 | 狂野欧美激情性bbbbbb| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 成年av动漫网址| 九九在线视频观看精品| 91久久精品国产一区二区三区| 精品国产超薄肉色丝袜足j| 久久久久精品人妻al黑| 桃花免费在线播放| 丝袜脚勾引网站| 久久精品国产亚洲av香蕉五月 | 午夜福利在线免费观看网站| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 午夜福利视频在线观看免费| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 老司机影院成人| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 91国产中文字幕| 国产成人av教育| 精品一区在线观看国产| 国产成人av激情在线播放| 亚洲av成人一区二区三| 老司机深夜福利视频在线观看 | 嫩草影视91久久| 国产深夜福利视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产日韩一区二区| 天堂中文最新版在线下载| 国产色视频综合| 日本一区二区免费在线视频| 脱女人内裤的视频| 色老头精品视频在线观看| 久久久久久免费高清国产稀缺| 精品亚洲成国产av| 人人妻人人爽人人添夜夜欢视频| 国产有黄有色有爽视频| 一区二区三区精品91| 国产麻豆69| 搡老乐熟女国产| netflix在线观看网站| 韩国高清视频一区二区三区| tube8黄色片| avwww免费| 19禁男女啪啪无遮挡网站| cao死你这个sao货| 两性夫妻黄色片| av网站在线播放免费| 日日爽夜夜爽网站| 亚洲熟女毛片儿| 午夜视频精品福利| 国产男人的电影天堂91| 久久国产亚洲av麻豆专区| 亚洲精品第二区| 国产精品麻豆人妻色哟哟久久| 1024香蕉在线观看| 免费女性裸体啪啪无遮挡网站| 69精品国产乱码久久久| 午夜激情久久久久久久| 中文字幕av电影在线播放| 午夜激情av网站| 狠狠精品人妻久久久久久综合| 亚洲视频免费观看视频| 天天添夜夜摸| 亚洲熟女精品中文字幕| www.精华液| 在线观看免费午夜福利视频| 丝袜美足系列| 精品人妻在线不人妻| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 免费少妇av软件| 国产成人影院久久av| av在线播放精品| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区精品| 中文字幕精品免费在线观看视频| 久久av网站| 超色免费av| 亚洲av男天堂| 99国产综合亚洲精品| 麻豆av在线久日| 久久久精品国产亚洲av高清涩受| 夫妻午夜视频| 亚洲av成人一区二区三| 婷婷成人精品国产| 久久精品熟女亚洲av麻豆精品| 天天添夜夜摸| 欧美日韩一级在线毛片| 国产激情久久老熟女| 我要看黄色一级片免费的| 亚洲 国产 在线| 精品人妻熟女毛片av久久网站| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 久久久欧美国产精品| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 最近中文字幕2019免费版| 中文字幕最新亚洲高清| 男女无遮挡免费网站观看| 最黄视频免费看| 在线十欧美十亚洲十日本专区| 99国产精品免费福利视频| 亚洲第一欧美日韩一区二区三区 | 亚洲精品国产av成人精品| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女 | 成人免费观看视频高清| 欧美大码av| 波多野结衣av一区二区av| 这个男人来自地球电影免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产一区二区三区久久久樱花| svipshipincom国产片| 欧美日韩亚洲高清精品| 免费人妻精品一区二区三区视频| 免费在线观看日本一区| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲 | 免费看十八禁软件| 欧美国产精品va在线观看不卡| 在线精品无人区一区二区三| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 一级毛片精品| 久久天堂一区二区三区四区| 国产精品免费大片| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 久热爱精品视频在线9| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 两性夫妻黄色片| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 一级毛片电影观看| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 人人妻,人人澡人人爽秒播| 久久精品亚洲av国产电影网| 久热爱精品视频在线9| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区 | 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 99九九在线精品视频| 久久天堂一区二区三区四区| 免费观看a级毛片全部| 人人澡人人妻人| 亚洲三区欧美一区| 精品乱码久久久久久99久播| 亚洲国产精品一区二区三区在线| 欧美一级毛片孕妇| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 又大又爽又粗| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 日韩电影二区| 亚洲国产av新网站| 飞空精品影院首页| 欧美成狂野欧美在线观看| 老司机影院成人| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av蜜桃| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 日韩视频一区二区在线观看| 啦啦啦在线免费观看视频4| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 超碰成人久久| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 黄色 视频免费看| 交换朋友夫妻互换小说| 我要看黄色一级片免费的| 国产精品.久久久| 亚洲情色 制服丝袜| 亚洲欧美色中文字幕在线| 热99re8久久精品国产| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 动漫黄色视频在线观看| 欧美日韩成人在线一区二区| 亚洲国产精品成人久久小说| 麻豆国产av国片精品| 精品福利观看| 国产免费福利视频在线观看| 在线十欧美十亚洲十日本专区| 国产一区二区三区在线臀色熟女 | 国产精品九九99| 高清在线国产一区| 蜜桃在线观看..| 免费av中文字幕在线| 久久久国产欧美日韩av| 国产97色在线日韩免费| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| av天堂久久9| 久久人人爽人人片av| 国产伦理片在线播放av一区| 国产男女内射视频| 在线观看一区二区三区激情| 性少妇av在线| 成人国产一区最新在线观看| 中文字幕人妻熟女乱码| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 一级a爱视频在线免费观看| 免费观看人在逋| 丰满迷人的少妇在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲精品成人av观看孕妇| 国产不卡av网站在线观看| 日韩有码中文字幕| 热99国产精品久久久久久7| 国产又爽黄色视频| 免费看十八禁软件| 脱女人内裤的视频| 免费黄频网站在线观看国产| 51午夜福利影视在线观看| 人妻久久中文字幕网| 嫩草影视91久久| 大香蕉久久成人网| 久久久久久免费高清国产稀缺| 一级片免费观看大全| a级毛片黄视频| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 捣出白浆h1v1| 欧美另类亚洲清纯唯美| 久久久久久人人人人人| 女人久久www免费人成看片| 日本wwww免费看| 亚洲午夜精品一区,二区,三区| 午夜福利乱码中文字幕| 亚洲欧洲日产国产| 国产精品国产av在线观看| 国产成人啪精品午夜网站| 午夜免费观看性视频| 亚洲精品国产一区二区精华液| 国产野战对白在线观看| 爱豆传媒免费全集在线观看| 欧美在线黄色| av网站在线播放免费| 精品视频人人做人人爽| 欧美日韩亚洲国产一区二区在线观看 | 国产欧美日韩一区二区精品| 国产高清视频在线播放一区 | 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码| 嫩草影视91久久| 精品久久久久久电影网| 久久久久久久国产电影| 色婷婷av一区二区三区视频| av线在线观看网站| 免费不卡黄色视频| 国产在线观看jvid| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 制服人妻中文乱码| 亚洲第一青青草原| 久久青草综合色| www.999成人在线观看| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 在线精品无人区一区二区三| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 欧美人与性动交α欧美软件| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影小说| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久 | 国产在视频线精品| 欧美xxⅹ黑人| 精品少妇一区二区三区视频日本电影| 久久天躁狠狠躁夜夜2o2o| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 12—13女人毛片做爰片一| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久小说| 91字幕亚洲| 99久久国产精品久久久| 久久久国产欧美日韩av| 欧美国产精品一级二级三级| 国产免费av片在线观看野外av| 9色porny在线观看| 久久av网站| 淫妇啪啪啪对白视频 | 久久久久精品国产欧美久久久 | 一级片'在线观看视频| 午夜影院在线不卡| 一级片'在线观看视频| 另类亚洲欧美激情| 精品第一国产精品| av有码第一页| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区 | 中文字幕精品免费在线观看视频| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av高清一级| 中文字幕高清在线视频| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| av线在线观看网站| 欧美成狂野欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 天天躁夜夜躁狠狠躁躁| 女人精品久久久久毛片| 日韩视频在线欧美| av网站在线播放免费| 少妇被粗大的猛进出69影院| 男女国产视频网站| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 香蕉丝袜av| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 亚洲avbb在线观看| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 色94色欧美一区二区| svipshipincom国产片| 99久久人妻综合| 亚洲激情五月婷婷啪啪| 一本综合久久免费| 国产精品自产拍在线观看55亚洲 | 精品少妇一区二区三区视频日本电影| 久9热在线精品视频| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 久久久久国产一级毛片高清牌| 久久久精品免费免费高清| 国产人伦9x9x在线观看| 高清视频免费观看一区二区| 久久国产亚洲av麻豆专区| 国产一区二区三区在线臀色熟女 | 精品亚洲成a人片在线观看| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 日韩一区二区三区影片| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 免费在线观看日本一区| 90打野战视频偷拍视频| 午夜福利影视在线免费观看| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 一区二区av电影网| 日本91视频免费播放| 国产精品 欧美亚洲| 一本一本久久a久久精品综合妖精| 日日爽夜夜爽网站| 成在线人永久免费视频| 国产精品一区二区精品视频观看| 男女边摸边吃奶| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| 国产亚洲精品第一综合不卡| av一本久久久久| 久久中文看片网| 久久久久久久精品精品| 国产亚洲精品久久久久5区| 男人爽女人下面视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产深夜福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 成在线人永久免费视频| 亚洲中文日韩欧美视频| www.av在线官网国产| 精品一区在线观看国产| av在线老鸭窝| 精品国产一区二区久久| 激情视频va一区二区三区| 久久人妻福利社区极品人妻图片| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 欧美 日韩 精品 国产| 久久久久国内视频| a级毛片黄视频| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 久久久精品区二区三区| 操美女的视频在线观看| 80岁老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 99国产精品一区二区蜜桃av | 国产男女超爽视频在线观看| 丁香六月欧美| 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| 亚洲国产av新网站| 婷婷色av中文字幕| 亚洲人成电影观看| 久久国产精品影院| 久久久久国内视频| 中文字幕制服av| 一本—道久久a久久精品蜜桃钙片| kizo精华| 大片免费播放器 马上看| 91成年电影在线观看| 日韩 亚洲 欧美在线| 美女主播在线视频| 青春草视频在线免费观看| 黄色a级毛片大全视频| 色94色欧美一区二区| 精品少妇一区二区三区视频日本电影| 18禁黄网站禁片午夜丰满| 少妇精品久久久久久久| 脱女人内裤的视频| 日韩欧美免费精品| 老汉色∧v一级毛片| 免费不卡黄色视频| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 日韩人妻精品一区2区三区| 91字幕亚洲| 成人国产av品久久久| 亚洲国产日韩一区二区| 不卡av一区二区三区| 中国美女看黄片| 丁香六月天网| 人人澡人人妻人| 最近最新中文字幕大全免费视频| 精品国产超薄肉色丝袜足j| 老司机午夜福利在线观看视频 | 啦啦啦 在线观看视频| 久久精品亚洲熟妇少妇任你| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区日韩欧美中文字幕| 99久久综合免费| 久久性视频一级片| 搡老岳熟女国产| 精品国内亚洲2022精品成人 | 黄色 视频免费看| 伊人亚洲综合成人网| 欧美日韩视频精品一区| 动漫黄色视频在线观看| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 国产高清视频在线播放一区 | 亚洲精品国产av蜜桃| 国产一区二区在线观看av| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 涩涩av久久男人的天堂| 精品久久久久久电影网| 亚洲精品一区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 亚洲成国产人片在线观看| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| √禁漫天堂资源中文www| 久久亚洲精品不卡| 一级片'在线观看视频| 精品一区二区三卡| 国产男人的电影天堂91| 亚洲国产成人一精品久久久| 99热网站在线观看| 亚洲欧美色中文字幕在线| 国产成人欧美在线观看 | 免费久久久久久久精品成人欧美视频| 国产精品二区激情视频| 免费日韩欧美在线观看| 一进一出抽搐动态|