• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon quantum dots delivered phthalocyanine for fluorescence guided photodynamic therapy of tumor?

    2017-08-30 08:26:38JiaoJiaoLiu劉嬌嬌QiChang常琪MeiMeiBao鮑美美BingYuan元冰KaiYang楊愷andYuQiangMa馬余強(qiáng)
    Chinese Physics B 2017年9期
    關(guān)鍵詞:美美

    Jiao-Jiao Liu(劉嬌嬌),Qi Chang(常琪),Mei-Mei Bao(鮑美美), Bing Yuan(元冰),?,Kai Yang(楊愷),§,and Yu-Qiang Ma(馬余強(qiáng)),2

    1 Center for Soft Condensed Matter Physics and Interdisciplinary Research,College of Physics, Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University,Nanjing 210093,China

    Silicon quantum dots delivered phthalocyanine for fluorescence guided photodynamic therapy of tumor?

    Jiao-Jiao Liu(劉嬌嬌)1,?,Qi Chang(常琪)1,?,Mei-Mei Bao(鮑美美)1, Bing Yuan(元冰)1,?,Kai Yang(楊愷)1,§,and Yu-Qiang Ma(馬余強(qiáng))1,2

    1 Center for Soft Condensed Matter Physics and Interdisciplinary Research,College of Physics, Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University,Nanjing 210093,China

    Imaging-guided cancer therapy provides a simultaneous tumor imaging and treatment,which helps to eliminate the excessive toxicity to the healthy tissues.For this purpose,multifunctional probes capable of both imaging and curing are needed.In this work,we synthesize water-soluble silicon quantum dots(Si QDs)smaller than 5 nm.Such Si QDs are used for delivering the hydrophobic drug phthalocyanine(Pc).The as-prepared Si/Pc nanocomposite particles show efficient transmembrane delivery into cells and feasible biocompatibility.Moreover,these composite particles emit dualchannel fluorescence signals even after cellular internalization and demonstrate robust photostability in the Si channel. More interestingly,the Si/Pc composite particles show efficient photodynamic therapy effects against tumors both in vitro and in vivo.

    silicon quantum dot,drug delivery,photodynamic therapy

    1.Introduction

    As an advanced therapeutic formula,imaging-guided cancer therapy(IGCT)provides targeted treatment of tumors under the guiding of the labelling probes,in order to eliminate the excessive toxicity to the surrounding normal tissues and to promote the therapeutic efficiency against cancer cells.[1–3]Particularly,the fluorescence imaging-guided cancer therapy (FIGCT)has attracted great interest due to the wide and growing applications of fluorescence in fundamental life sciences, biomedicine and bioengineering fields.[4–6]Multifunctional probes are widely needed for both imaging and therapeutic capabilities.

    A variety of strategies have been developed for multifunctional probes,such as the FITC-labeled SiO2nanospheres,fluorescent protein-doped gold nanoparticle capsules and fluorescent quantum dot-loaded phospholipid micelles.[7–9]However,these materials are facing challenges including the complicated procedures for carrier preparation and drug encapsulation,the large size(mostly 25–100 nm),limited cell uptake efficiency,and/or poor photostability.The semiconductor quantum dots,such as CdSe and CdTe nanoparticles,demonstrate robust fluorescence and improved photostability compared with most commercial fluorescence probes.[10–15]Nevertheless,they show inevitable cytotoxicity.Other types of particles,such as Au and Ag nanoparticles,were also developed for photothermal therapy of tumors or antimicrobial purposes.[16,17]On the other hand,compared with these heavy metal-based particles,the silicon nanostructures,including nanodots,nanowires and nanospheres,have shown feasible biocompatibility.[1,18–22]Moreover,the surface of the Si nanostructures can be easily functionalized for special purpose such as targeted tumor therapy.[18,23–25]Thus,they have been developed for biosensing,bioimaging,and tumor therapy applications.Water-dispersible Si quantum dots(Si QDs)with relatively high quantum field(~25%)have recently been synthesized by the reduction of(3-Aminopropyl)trimethoxysilane in aqueous solution.[12]The as-obtained Si QDs have a small size below 5 nm,which ensures them to be renally cleared in vivo.

    Here,we would like to testify the applications of such Si QDs for FIGCT purpose.Phthalocyanine(Pc)is selected as a representative drug which has shown photodynamic therapy(PDT)effect of tumors.[26–29]As most of the anti-tumor drugs,Pc is water-insoluble and needs to be delivered into tumor cells with water-dispersible carriers.Under the irradiation of light at a certain wavelength,Pc is able to emit reactive oxygen species(ROS)to kill the tumors.Furthermore,the fluorescence emission of Pc in the biological window range with a near-infrared(NIR)wavelength promises its applications in bioimaging.

    In this paper,we will show that the hydrophobic Pc can be stably loaded to the Si QDs via facile preparation such as physical adsorption or chemical binding.The as-obtained Si QD-based composite nanoparticles show robust dual-channel fluorescence signals for imaging and obvious PDT effect of tumors both in vitro and in vivo.This work promises the possibility of the Si QDs as multifunctional probes for hydrophobic drug delivery and fluorescence-guided therapy.

    2.Materials and methods

    2.1.Materials

    The(3-Aminopropyl)trimethoxysilane(97%),Trisodium citrate dehydrate(≥99.0%)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(China).Silicon phthalocyanine dichloride(defined as Pc),Lyso Tracker Green DND-26 and DMSO were purchased from Sigma-Aldrich.All chemicals were used without additional purification.Milli-Q water(Millipore)was used as solvent for solution preparation.For the in vitro and in vivo tests,a stock solution of Pc in DMSO was diluted with cell culture medium or physiological saline to make sure that the cells were never exposed to more than 1%DMSO.Human gastric carcinoma cells(MGC-803)were purchased from the cell bank of the Chinese Academy of Sciences in Shanghai and cultured in Dulbecco’s Modified Eagle Medium(DMEM,Hyclone)with 10%FBS in a 5%CO2atmosphere at 37°C and 100%humidity.

    2.2.Si QD preparation and drug loading

    The pure Si QDs were firstly synthesized following our previous protocol.[12]In brief,100 mL of(3-aminopropyl)trimethoxysilane was added into 400 mL of N2-saturated aqueous solution containing 18.6 g trisodium citrate dehydrate and stirred for 30 min.A 15 mL of the well mixed solution was transferred to a quartz vessel,heated to 160°C by microwave irradiation in a microwave system(at 2450 MHz frequency and 0–500 W power;Preekem of Shanghai,China).The solution was incubated at 160°C for 3 h, and then cooled down to room temperature naturally.The obtained solution was purified by dialysis(500 Da)to remove the excessive chemicals,and concentrated by a rotary evaporator. The obtained Si QD dispersion,at a concentration of around 7.2 mg·mL?1based on the UV–vis absorption measurement, was taken as mother solution for the following use.

    The Si QDs were loaded with Pc by two different methods,i.e.,physical adsorption and chemical binding,and referred to as(Si+Pc)and(Si?Pc)NPs,respectively.1)For the preparation of(Si+Pc)NPs,Pc was pre-dissolved in ethanol at 10 mg·mL?1with the help of sonification.A 5 mL of the Si NP mother solution was added into 1 mL of Pc solution.The mixture was kept in the dark for 3 days with gently shaking. Afterthat,the solution was thoroughly blown with nitrogen for fully evaporating the ethanol in the mixture and the adsorption occurred between Pc and Si via hydrophobic interaction.[19]The obtained solution was filtered through a 0.45μm filter four times to remove the excessive Pc.The final concentration was determined to be around 6.58 mg·mL?1(in respect to Si)and 1.0 mg·mL?1(in respect to Pc),with a Pc-loading capacity of~152 mg·g?1.

    2)On the other hand,for the preparation of(Si?Pc)NPs, Pc was pre-dissolved in DMSO at 10 mg·mL?1by sonification.A 10 mL SiQD mother solution was dropped into 4.6 mL Pc solution slowly.The mixture was sealed,heated to 90°C, and kept for 72 h with magnetic stirring.The amino-group on the Si QD surface is supposed to be substituted for silicon chlorine bond with Pc in this process.[30]The solution was cooled down to room temperature naturally,purified by dialysis(500 Da)to remove the excessive chemicals,and concentrated by a rotary evaporator.The final concentration was determined to be around 9.87 mg·mL?1(in respect to Si)and 1.4 mg·mL?1(in respect to Pc),with a Pc-loading capacity of~142 mg·g?1.

    2.3.Characterizations

    The Si,(Si+Pc),and(Si?Pc)NP dispersions were observed in ambient light and UV irradiation(λex=365 nm) separately.The NPs were characterized with transmission electron microscopy(TEM;CM 200,Philips),dynamic light scattering(DLS;DynaPro,Malvern),x-ray photoelectron spectroscopy(XPS;ESCALAB 250Xi,Thermo), zeta potential(Zetasizer Nano ZS90,Malvern),UV–vis absorption(UV3600,Shimadzu)and photoluminescence(PL; Fluoro Max-4,Horiba Jobin Yvon).A confocal laser scanning fluorescence microscope(LSM 710,Zeiss),equipped with an in situ cell-incubation system and a 63×oil objective,was used for fluorescence imaging.Signals from the Si channel (EX 405 nm,EM BP 445/50 nm,excited by 15%power of a diode laser),Pc channel(EX 633 nm,EM 635–750 nm,excited by 30%power of a He–Ne laser),and transmission channel(illuminated with a halogen lamp),were captured simultaneously.Lyso Tracker Green DND-26 was irradiated and collected in the green channel(EX 488 nm,EM BP 530/50 nm, excited by 20%powerofan argon laser).Allimages were captured under the same instrumental settings and analyzed with image analysis software.

    2.4.In vitro experiments

    For the cellular uptake test,MGC-803 cells were preseeded on the cover glass substrate of a home-made unit (2×104cells per unit).A certain amount of(Si+Pc),(Si?Pc) or pure Si NP dispersion was pre-diluted with cell culture medium to the same volume and added into the unit.The system(with a final volume of 500μL)was further incubated for a certain time duration as described in the main text.Prior to the observation,the cells were washed with phosphate buffer saline(PBS)3 times to remove the free NPs and re-cultured with fresh medium.To determine the intracellular localization of NPs,the cells,after NP co-incubation for 24 h,were further treated with the Lyso Tracker Green DND-26(at 100 nM for 30 min),and washed prior to the confocal observation.

    For the cytotoxicity test of the NPs,MGC-803 cells were pre-seeded in a 96-well plate(3000 cells per well),then coincubated with the(Si+Pc),(Si?Pc),pure Si NPs or free Pc at a certain concentration(from 0 to 260μg·mL?1in respect to Si or from 0 to 40μg·mL?1for free Pc;this ratio was selected based on the loading amount of Pc within the(Si+Pc)NPs) for 24 h or 48 h.The relative number of the viable cells was then evaluated by the standard MTT assay.

    Photostability evaluation of the NPs was carried out in situ under the confocal microscope,on the cells which have been internalized with NPs and labeled with LysoTracker.The (Si+Pc)NP system was taken for example.The cells were exposed to a 488 nm irradiation by the argon laser(at 2%power) for different time intervals.Confocal images,in all the Si, Pc,and LysoTracker channels,were captured after each irradiation interval(e.g.,0,20 min,and 40 min)with identical instrumental settings for comparison.

    For the in vitro PDT test,the cells,which have been coincubated with the pure Si,(Si+Pc)or(Si?Pc)NPs for 24 h, were exposed to an NIR irradiation at 610 nm wavelength and 25 mW·cm?2power for 30 min followed by PBS washing and fresh medium replacing.After that,the morphology of the cells was observed under confocal microscope and cell viability was evaluated with the established MTT assay.

    2.5.In vivo experiments

    MGC-803 tumor bearing mice were intratumorally injected with 150μL of(Si+Pc)NP dispersion(pre-diluted with physiological saline)on the 1st day and 7th day.Physiological saline or free Pc(pre-diluted with physiological saline)with the same volume was taken as a control.The dose of Pc content was fixed at 7.5 mg·kg?1(or might be lower than this value for the free Pc system due to the obvious precipitation of Pc in PBS).Four hours after each injection,the tumor area was irradiated by the 610 nm laser at 25 mW·cm?2for 30 min. The tumor sizes were measured every the other day and the tumor volume V was calculated as V=(tumor length)×(tumor width)2)/2.[31]The relative tumor volumes were normalized based on the initial value on the 1st day.

    3.Results and discussion

    3.1.Characterization of Pc-loaded Si NPs

    The hydrophobic drug Pc was loaded to the Si NPs through physical adsorption(named(Si+Pc)NPs)and chemical binding(named(Si?Pc)NPs)respectively.The asobtained composite NPs in addition to the initial Si NP dispersions,were collected and characterized as shown in Fig.1. All the three types of NP dispersions look transparent in ambient light and keep stable without apparent precipitation at 4°C in the dark for more than three months.The(Si+Pc) and(Si?Pc)NP dispersions present colorless while the initial Si NP dispersion shows light brown(Fig.1(a)).Under UV irradiation,all the three dispersions show obvious photofluorescence(inset in Fig.1(a)).Free Pc in DMSO(due to its poor solubility in water)is also shown for reference.All the three types of NPs show homogeneous size and high crystallinity under TEM and HR-TEM(Figs.1(b)and 1(c).From the DLS test(Fig.1(d)),the(Si+Pc)and(Si?Pc)NPshave a little larger sizes of 5.6±0.3 nm and 6.5±0.4 nm,than the initial Si NPs (3.8±0.2 nm).UV–vis absorption spectra show the characteristic peaks of Si NPs and free Pc at 334 nm and 622 nm, respectively.Both of these absorption peaks are included in the profile of the(Si+Pc)NPs(Fig.1(e)).For the(Si?Pc) NPs,a wide range of absorption is observed.The fluorescence spectra of the(Si+Pc)NPs demonstrate peaks at approximate 460 nm and 679 nm,which are in accordance with the characteristic peaks of Si NPs(at 468 nm)and free Pc(at 669 nm), respectively,although they are somewhat shifted.A similar phenomenon is observed for the(Si?Pc)NPs with emitting peaks at 445 nm and 680 nm(Fig.1(f)).These results confirm the successful decoration of Pc to the Si QDs.We attribute the shift in wavelength to the surficial decoration and/or size effects of these nanoparticles.

    Fig.1.(color online)Characterizations of pure Si,(Si+Pc),and(Si?Pc)NPs.(a)Digital images of Si,(Si+Pc),(Si?Pc)NP dispersions and free Pc(in DMSO)in ambient light or under UV irradiation.(b)and(c)TEM and HR-TEM images of Si and(Si+Pc)NPs.(d)–(f)DLS, UV–vis absorption and fluorescence profiles of Si,(Si+Pc),and(Si?Pc)NP dispersions.The excitation wavelength in panel(f)is 365 nm.

    3.2.Cellular internalization and intracellular localization of Pc-loaded Si NPs

    The Si,(Si+Pc)and(Si?Pc)NPs are co-incubated with MGC-803 cells respectively,for different time durations prior to observation under confocal microscope.The time dependent trans membrane entry of the nanocomposite NPs was observed(Fig.A1 in Appendix A).Figure 2 shows the confocal images,in the Si,Pc,transmission and merged channels,of representative cells after NP treatment for 24 h(at 1.2 mg·mL?1in respect to Si content).For all the Si,(Si+Pc), and(Si?Pc)NP systems,the fluorescence of Si is observed in the interior of the cells,probably remaining in the cytoplasm without entering into the nucleus.The fluorescent signals of Pc from the(Si+Pc)and(Si?Pc)NPs are co-localized well with that of Si,indicating the stable loading of Pc on Si NPs even after cellular internalization.The cells,with internalized NPs,are further treated with LysoTracker Green DND-26 into visualized lysosomes.As shown in Fig.3(a),the colocalization of fluorescence signals from Si NPs(with loaded Pc)and LysoTracker indicates that the internalized NPs are in the lysosomes at the moment.[1,19]Moreover,the fluorescence signals from both the Si and Pc content promise dual-channel fluorescence imaging of the cells for possible applications in fluorescence imaging-guided cancer therapy.

    The fluorescence stability of the internalized NPs is further confirmed by continuous laser exposure in situ.The fluorescence intensities in the Si,Pc and commercial LysoTracker channels are analyzed respectively after irradiation of different time durations,both qualitatively and quantitatively(Figs.3(b) and 3(c)).It is found that the fluorescence of Pc or the Lyso-Tracker begin to dim and quench after around 20 min.However,even after a long irradiation time of 40 min,the fluorescence in the Si channel remains stable.These results indicate the potential applications of the Si NP drug carriers for longtime bioimaging.

    Fig.2.(color online)Confocal images,including Si,Pc,transmission and merged channels,of the intracellular distribution of Si,(Si+Pc), and(Si?Pc)NPs in MGC-803 cells after being co-incubated for 24 h at 1.2 mg·mL?1(in respect to Si content).

    Fig.3.(color online)Intracellular localization and photostability of (Si+Pc)NPs.(a)Representative MGC-803 cells which are treated with (Si+Pc)NPs for 24 h and labelled with LysoTracker(green fluorescence)for 30 min prior to confocal imaging.(b)Fluorescence stabilities of the Si,Pc,and LysoTracker in cells,under continuous laser exposure for 20 min and 40 min in situ.The cells are treated with(Si+Pc)NPs (at 1.2 mg·mL?1 for 24 h)and LysoTracker(for 30 min).(c)Time dependent normalized fluorescence intensity in each channel integrated from panel(b).Error bars are based on the SD of more than 30 cells in three parallel samples.

    The cells with internalized NPs show regular morphology which indicates little cytotoxicy of the particles.Quantitative cellular viability analysis after NP treatment for 24 h or 48 h at various NP concentrations from 0 to 260μg·mL?1in respect to Si content(or from 0 to 40μg·mL?1for free Pc),based on the standard MTT test,is shown in Fig.4.Under all the conditions,a cell viability of above 80%is obtained,which shows a favorable biocompatibility of all the three types of NPs.

    Fig.4.(color online)Cell viability of MGC-803 cells treated with Si,(Si+Pc),and(Si?Pc)NPs at various concentrations(from 0 to 260μg·mL?1 in respect to Si content)for(a)24 h and(b)48 h.Free Pc is also tested as a control(from 0 to 40μg·mL?1).Error bar represents the standard deviation of the mean over three duplicate assay features.

    3.3.In vitro PDT effect test

    The Pc is a representative type of PDT drug which can generate reactive oxygen species(ROS)under laser irradiation at a certain wavelength to kill tumor cells.Here,the MGC-803 cells with internalized Si,(Si+Pc),and(Si?Pc)NPs,are irradiated by a laser(at 610 nm with a power of 25 mW·cm?2)for 30 min and the resulting cells are observed under confocal microscope or analyzed with standard MTT test.The representative images of the cells are shown in Fig.5.It can be seen that for the pure Si NP group,cells maintain their regular morphology.However,for the(Si+Pc)and(Si?Pc)NP groups,prominent changes in cellular morphology,such as the vacuolization of the cytoplasm and the blistering of the cell membrane,occur.MTT test shows that~92%cells treated with(Si+Pc) NPs are destroyed after laser irradiation.Similar results are obtained for the(Si?Pc)NP group(at~85%).Note that even after laser treatment the fluorescence of Pc keeps co-localizing well with Si.These results demonstrate that the Pc loaded on Si NPs,both through physical adsorption or chemical binding, has good PDT effect against tumor cells even without being released from the drug carriers.

    Fig.5.(color online)In vitro PDT effects of MGC-803 cells with Si,(Si+Pc),and(Si?Pc)NPs.The cells are treated with NPs(at 1.2 mg·mL?1 in respect to Si)for 24 h and exposed to a laser(at 610 nm)for 30 min.

    3.4.In vivo anti-tumor experiments

    Fig.6.(color online)Inhibition of tumor growth by(Si+Pc)NPs.(a) Representative photos of MGC-803 tumor bearing mice on different days during PDT treatment.(b)Quantitatively time-dependent distribution of tumor size.The solutions,including PBS,(Si+Pc)NP dispersion and free Pc,are injected on the 1st day and 7th day followed by 30 min NIR exposure each time after injection.Error bars are based on the SD of triplicated samples.

    Mice bearing MGC-803 tumor at their back are used as models to testify the in vivo anti-tumor effect of the Si NP-based nanocomposite drugs.Representative images of the mouse are shown in Fig.6(a)and the time-dependent changes in the normalized tumor size based on triplicated samples are plotted in Fig.6(b).In comparison with the PBS group,the tumor after free Pc treatment decreases in size to around 80% after 15 days.However,for the(Si+Pc)NP group,the size of the tumor decreases obviously and is almost distinguishable after a shorter treatment of 15 days.These results demonstrate the efficient delivery of the water-insoluble Pc on Si NPs for photo dynamic therapy against tumor.

    4.Conclusions and perspectives

    In this work,we produce a type of water-dispersible Si QD,and the hydrophobic drug Pc is efficiently loaded on the Si QDs via facile preparation such as physical adsorption or chemical conjugation.The as-obtained Si/Pc nanocomposite particles are well water-dispersible and have small sizes below 5 nm.They can be effectively up taken by cells while show feasible cytotoxicity,and maintain stable even after cell internalization.The composite particles are imaged by dualchannel fluorescence signals in Si and Pc channels.We find that the fluorescence in the Si channel shows robust stability promising its applications for long-time tracking and bioimaging.More interestingly,the composite nanoparticles demonstrate significant PDT anti-tumor effects both in vitro and in vivo.Based on the Si QDs,these results provide a novel strategy for the efficient delivery of hydrophobic drugs and their use for fluorescence imaging guided photo dynamic therapy against tumors.

    Appendix A:supporting information

    Figure A1 gives the time-dependent transmembrane entry of the nanocomposite NPs.

    Fig.A1.(color online)Confocal images of MGC-803 cells co-incubated with(a)(Si+Pc)or(c)(Si?Pc)NPs for 2 h,5 h,8 h,and 24 h.(b)and(d)The corresponding distribution of mean fluorescence intensity within one cell,in Si or Pc channel,is quantitatively analyzed.Error bars are based on the SD of more than 30 cells in three parallel samples.The increase in fluorescence intensity corresponds to an increase in the number of fluorescence particles internalized within cells.

    Acknowledgment

    The authors sincerely thank Prof.Yao He and Bin Song (Institute of Functional Nano and Soft Materials(FUNSOM), Soochow University)for their kind help in the Si QD synthesis and TEM characterizations and also the in vivo experiments.

    [1]Ji X,Peng F,Zhong Y,Su Y,Jiang X,Song C,Yang L,Chu B,Lee S T and He Y 2015 Adv.Mater.27 1029

    [2]Jiang S,Gnanasammandhan M K and Zhang Y 2010 J.R.Soc.Interface 7 3

    [3]Su H Y,Wu C Q,Li D Y and Ai H 2015 Chin.Phys.B 24 127506

    [4]Gao M,Yu F,Lv C,Choo J and Chen L 2017 Chem.Soc.Rev.46 2237

    [5]Yukawa H and Baba Y 2017 Anal.Chem.89 2671

    [6]Haque A,Faizi M S,Rather J A and Khan M S 2017 Bioorg.Med. Chem.25 2017

    [7]Luo Z,Cai K Y,Hu Y,Zhao L,Liu P,Duan L and Yang W H 2011 Angew.Chem.Int.Ed.Engl.50 640

    [8]Pan L M,He Q J,Liu J N,Chen Y,Ma M,Zhang L L and Shi J L 2012 J.Am.Chem.Soc.134 5722

    [9]Wang W W,Cheng D,Gong F M,Miao X M and Shuai X T 2012 Adv. Mater.24 115

    [10]Senapati L,Schrier J and Whaley K B 2004 Nano Lett.4 2073

    [11]Su Y Y,Peng F,Jiang Z Y,Zhong Y L,Lu Y M,Jiang X X,Huang Q, Fan C H,Lee S T and He Y 2011 Biomaterials 32 5855

    [12]Zhong Y L,Peng F,Bao F,Wang S Y,Ji X Y,Yang L,Su Y Y,Lee S T and He Y 2013 J.Am.Chem.Soc.135 8350

    [13]Zhong Y,Peng F,Wei X,Zhou Y,Wang J,Jiang X,Su Y,Su S,Lee S T and He Y 2012 Angew.Chem.Int.Ed.Engl.51 8485

    [14]Park J H,Gu L,Von Maltzahn G,Ruoslahti E,Bhatia S N and Sailor M J 2009 Nat.Mater.8 331

    [15]Wang Z,Zhang G F,Li B,Chen R Y,Qin C B,Xiao L T and Jia S T 2015 Acta Phys.Sin.64 247803(in Chinese)

    [16]Abbasi S,Servatkhah M and Keshtkar M M 2016 Chin.Phys.B 25 087301

    [17]An D Y,Su J G,Li C H and Li J Y 2015 Chin.Phys.B 24 120504

    [18]Liu J,Wang R,Wu S,Yuan B,Bao M,Li J,Dou Y,He Y and Yang K 2017 Nanotechnology 28 135601

    [19]Peng F,Su Y Y,Ji X Y,Zhong Y L,Wei X P and He Y 2014 Biomaterials 35 5188.

    [20]Peng F,Su Y Y,Zhong Y L,Fan C H,Lee S T and He Y 2014 Acc. Chem.Res.47 612

    [21]Tallury P,Payton K and Santra S 2008 Nanomedicine 3 579

    [22]Li Y,Wang X B,Fan Z Q and Li X J 2014 Chin.Phys.Lett.31 047801

    [23]Kinnari P J,Hyv?nen M L K,M?kil? E M,Kaasalainen M H,Rivinoja A,Salonen J J,Hirvonen J T,Laakkonen P M and Santos H A 2013 Biomaterials 34 9134

    [24]Hochbaum A I,Gargas D,Hwang Y J and Yang P 2009 Nano Lett.9 3550

    [25]Shao M,Cheng L,Zhang X,Ma D D and Lee S T 2009 J.Am.Chem. Soc.131 17738

    [26]Cheng Y,C Samia A,Meyers J D,Panagopoulos I,Fei B and Burda C 2008 J.Am.Chem.Soc.130 10643

    [27]Ince M,Er O,Ocakoglu K,Lambrecht F Y,Colak S G,Soylu H M, Kayabasi C and Gunduz C 2016 Chem.Biol.Drug Des.87 224

    [28]Yu C,Meyers J D,Broome A M,Kenney M E,Basilion J P and Burda C 2011 J.Am.Chem.Soc.133 2583

    [29]Zorlu Y,Dumoulin F,Bouchu D,Ahsen V and Lafont D 2010 Tetrahedron Lett.51 6615

    [30]Li J,Zhang W D,Hu Z J,Jiang X J,Ngai T,Lo P C,Zhang W and Chen G J 2013 Polym.Chem.4 782

    [31]Cheng L,He W W,Gong H,Wang C,Chen Q,Cheng Z P and Liu Z 2013 Adv.Funct.Mater.23 5893

    4 May 2017;revised manuscript

    18 May 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/098102

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.21374074,21422404,and U1532108)and the Undergraduate Training Program for Innovation and Entrepreneurship of Soochow University,China(Grant No.2016xj010).

    ?These authors contribute equally.

    ?Corresponding author.E-mail:yuanbing@suda.edu.cn

    §Corresponding author.E-mail:yangkai@suda.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    美美
    美美
    心聲歌刊(2023年4期)2023-08-18 12:49:32
    美美與共,天下大同
    謝謝你,美美鴨!
    幼兒園(2021年13期)2021-12-02 05:13:52
    我的妹妹叫“美美”
    急匆匆的美美鴨
    幼兒園(2020年15期)2020-11-24 13:00:16
    跳舞美美的
    啟蒙(3-7歲)(2018年5期)2018-05-31 07:37:34
    美美花竹帽
    mothercare:新年將至,快來(lái)搭一套美美的新裝吧!
    娜迪的秀顏美美
    營(yíng)救美美周
    中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 亚洲av熟女| av女优亚洲男人天堂| 亚洲成人久久爱视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美最黄视频在线播放免费| 插逼视频在线观看| 精品国产三级普通话版| 一区二区三区四区激情视频 | 一区二区三区高清视频在线| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 波多野结衣巨乳人妻| 中文亚洲av片在线观看爽| 婷婷色综合大香蕉| 久久久精品94久久精品| 简卡轻食公司| 亚洲第一电影网av| 国产精品99久久久久久久久| 久久欧美精品欧美久久欧美| 嫩草影院精品99| av女优亚洲男人天堂| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 又粗又爽又猛毛片免费看| 91麻豆精品激情在线观看国产| 国产黄片视频在线免费观看| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 校园人妻丝袜中文字幕| 久久精品久久久久久久性| 欧美一级a爱片免费观看看| .国产精品久久| 日本五十路高清| 精品午夜福利在线看| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 亚洲经典国产精华液单| 久久久成人免费电影| 亚洲18禁久久av| 精品午夜福利在线看| 舔av片在线| 免费人成视频x8x8入口观看| 一级毛片我不卡| 午夜爱爱视频在线播放| 成人鲁丝片一二三区免费| 99久久精品一区二区三区| 不卡一级毛片| 国产男人的电影天堂91| 日本一二三区视频观看| 日本一本二区三区精品| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| 欧美一级a爱片免费观看看| 国产一级毛片七仙女欲春2| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 色视频www国产| 亚洲图色成人| 精品国内亚洲2022精品成人| a级一级毛片免费在线观看| 天天一区二区日本电影三级| 你懂的网址亚洲精品在线观看 | 久久这里只有精品中国| 高清日韩中文字幕在线| 99九九线精品视频在线观看视频| 午夜福利视频1000在线观看| 成人无遮挡网站| 好男人视频免费观看在线| 99riav亚洲国产免费| 免费在线观看成人毛片| 国产91av在线免费观看| 亚洲在线自拍视频| 亚洲国产高清在线一区二区三| 在线观看一区二区三区| 69av精品久久久久久| 特大巨黑吊av在线直播| 亚洲在久久综合| 久久国产乱子免费精品| 亚洲av男天堂| 亚洲一级一片aⅴ在线观看| 国产黄a三级三级三级人| 久久久久久久午夜电影| 亚洲七黄色美女视频| 欧美色视频一区免费| 精品日产1卡2卡| 最近最新中文字幕大全电影3| 少妇的逼水好多| 国产精品.久久久| 身体一侧抽搐| 精品人妻视频免费看| 日韩欧美三级三区| 狂野欧美激情性xxxx在线观看| 欧美zozozo另类| 亚洲一区二区三区色噜噜| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 亚洲欧美日韩东京热| 成人三级黄色视频| 一区二区三区四区激情视频 | 精华霜和精华液先用哪个| 综合色av麻豆| 久久九九热精品免费| 乱系列少妇在线播放| 一进一出抽搐动态| 蜜桃久久精品国产亚洲av| 中文字幕久久专区| 麻豆成人av视频| 全区人妻精品视频| 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 国产精品三级大全| 亚洲欧美日韩卡通动漫| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 久久久久久久久久久丰满| 国产成人freesex在线| 欧美日韩在线观看h| 青青草视频在线视频观看| 美女高潮的动态| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 亚洲五月天丁香| 丝袜喷水一区| 国产亚洲5aaaaa淫片| 久久综合国产亚洲精品| 中国美女看黄片| 男女那种视频在线观看| 国产乱人视频| 中文字幕熟女人妻在线| 极品教师在线视频| 天堂中文最新版在线下载 | 国产精品蜜桃在线观看 | 欧美性感艳星| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| av天堂中文字幕网| 久久精品国产自在天天线| 欧美zozozo另类| 国产精品一二三区在线看| 久久草成人影院| 欧美潮喷喷水| 伦理电影大哥的女人| 热99在线观看视频| 成人av在线播放网站| 中国美白少妇内射xxxbb| 国产不卡一卡二| 最后的刺客免费高清国语| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 精品免费久久久久久久清纯| 十八禁国产超污无遮挡网站| 男人舔奶头视频| 日韩成人av中文字幕在线观看| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 亚洲av中文av极速乱| 亚洲美女视频黄频| 一边亲一边摸免费视频| 精品久久久久久久末码| 美女高潮的动态| 日韩欧美在线乱码| 色哟哟哟哟哟哟| 亚洲av男天堂| 少妇猛男粗大的猛烈进出视频 | 久久这里有精品视频免费| 亚洲中文字幕日韩| 色综合亚洲欧美另类图片| 一个人免费在线观看电影| 中文字幕精品亚洲无线码一区| 色尼玛亚洲综合影院| 伦精品一区二区三区| 免费观看在线日韩| 国产一区二区在线观看日韩| 青春草亚洲视频在线观看| 亚洲欧美日韩高清专用| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区免费观看| 黄片无遮挡物在线观看| 91久久精品国产一区二区三区| 日本欧美国产在线视频| 天堂影院成人在线观看| 99久久九九国产精品国产免费| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 午夜激情欧美在线| 免费一级毛片在线播放高清视频| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄 | 精品一区二区免费观看| 久久精品国产亚洲网站| 全区人妻精品视频| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 成人三级黄色视频| 久久综合国产亚洲精品| 中出人妻视频一区二区| 欧美一区二区精品小视频在线| 天美传媒精品一区二区| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄 | 欧美潮喷喷水| 男人舔女人下体高潮全视频| 一级黄片播放器| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 91狼人影院| 国产精品福利在线免费观看| 91久久精品国产一区二区三区| 久久精品夜色国产| 中文字幕免费在线视频6| 波多野结衣巨乳人妻| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费| 少妇的逼水好多| 婷婷六月久久综合丁香| 欧美3d第一页| 国产免费一级a男人的天堂| 国产黄片视频在线免费观看| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 秋霞在线观看毛片| 婷婷精品国产亚洲av| 丰满乱子伦码专区| 直男gayav资源| 亚洲av中文av极速乱| 搡老妇女老女人老熟妇| 国产精品久久久久久精品电影小说 | 日本成人三级电影网站| 日韩中字成人| 亚洲av一区综合| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 欧美又色又爽又黄视频| 一级毛片电影观看 | 天堂网av新在线| 18禁黄网站禁片免费观看直播| 97热精品久久久久久| 日韩欧美在线乱码| 天堂√8在线中文| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 夜夜爽天天搞| 熟妇人妻久久中文字幕3abv| 国国产精品蜜臀av免费| 又爽又黄无遮挡网站| 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 国产成年人精品一区二区| 亚洲国产精品成人久久小说 | 日韩三级伦理在线观看| 性色avwww在线观看| 国产又黄又爽又无遮挡在线| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区 | 国产久久久一区二区三区| 日日啪夜夜撸| 久99久视频精品免费| 国语自产精品视频在线第100页| 九九热线精品视视频播放| 亚洲第一电影网av| eeuss影院久久| 可以在线观看的亚洲视频| av天堂中文字幕网| 日韩av在线大香蕉| 久久久久久久久中文| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 午夜爱爱视频在线播放| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频 | 日本色播在线视频| 99热6这里只有精品| 你懂的网址亚洲精品在线观看 | 亚洲不卡免费看| av天堂在线播放| 午夜精品在线福利| 国产黄片美女视频| 岛国在线免费视频观看| 欧美+日韩+精品| 国国产精品蜜臀av免费| 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 国产一级毛片在线| 只有这里有精品99| 简卡轻食公司| 日本熟妇午夜| 色吧在线观看| 午夜激情福利司机影院| 白带黄色成豆腐渣| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 九色成人免费人妻av| 久久久久久久久久久丰满| 精品人妻视频免费看| 在线免费观看不下载黄p国产| 国产精品1区2区在线观看.| АⅤ资源中文在线天堂| 成年免费大片在线观看| 99视频精品全部免费 在线| 亚洲七黄色美女视频| av专区在线播放| 26uuu在线亚洲综合色| 一本久久精品| 在线播放无遮挡| 草草在线视频免费看| 久久九九热精品免费| 亚洲成av人片在线播放无| 草草在线视频免费看| 能在线免费观看的黄片| 插逼视频在线观看| 一级毛片我不卡| av福利片在线观看| 69人妻影院| 亚洲五月天丁香| 中文字幕av在线有码专区| 国产一区亚洲一区在线观看| 成人美女网站在线观看视频| 久久中文看片网| 日本在线视频免费播放| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片| 老熟妇乱子伦视频在线观看| 欧美zozozo另类| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 久久精品国产亚洲av天美| 免费观看在线日韩| 黄色视频,在线免费观看| 直男gayav资源| ponron亚洲| 日日摸夜夜添夜夜爱| 国产日韩欧美在线精品| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 最近视频中文字幕2019在线8| 国产欧美日韩精品一区二区| 少妇的逼好多水| 天堂网av新在线| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 久久精品影院6| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 国产亚洲av片在线观看秒播厂 | 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 亚洲国产色片| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 日本黄色视频三级网站网址| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区 | 欧美+亚洲+日韩+国产| 人妻少妇偷人精品九色| 日本黄大片高清| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 在线免费十八禁| 欧美三级亚洲精品| а√天堂www在线а√下载| 日韩大尺度精品在线看网址| 免费看a级黄色片| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 久久久久久久午夜电影| 精品久久久噜噜| 国产成人91sexporn| 高清毛片免费看| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 国产精品乱码一区二三区的特点| 亚洲av一区综合| 久久久久久久久久成人| 搡老妇女老女人老熟妇| 中文资源天堂在线| www.色视频.com| 在线免费观看不下载黄p国产| 一级黄色大片毛片| 深夜精品福利| 久久草成人影院| 小说图片视频综合网站| 我要搜黄色片| 国产午夜精品一二区理论片| av在线天堂中文字幕| 日韩在线高清观看一区二区三区| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 欧美人与善性xxx| 偷拍熟女少妇极品色| 亚洲成av人片在线播放无| 久久精品综合一区二区三区| 日韩成人伦理影院| 国产男人的电影天堂91| 国产色婷婷99| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| kizo精华| 丰满的人妻完整版| 老司机影院成人| 身体一侧抽搐| 最近的中文字幕免费完整| 国产女主播在线喷水免费视频网站 | av.在线天堂| 校园人妻丝袜中文字幕| 欧美日本视频| 嫩草影院新地址| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| 伦理电影大哥的女人| 久久午夜福利片| 国产探花极品一区二区| 99国产精品一区二区蜜桃av| 日韩成人伦理影院| 免费人成视频x8x8入口观看| 成年女人看的毛片在线观看| 一本久久精品| ponron亚洲| 人妻系列 视频| 午夜福利高清视频| 国产中年淑女户外野战色| 99国产极品粉嫩在线观看| 久久精品夜色国产| 欧美日韩在线观看h| 国产91av在线免费观看| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 青春草视频在线免费观看| 欧美性猛交╳xxx乱大交人| 日韩大尺度精品在线看网址| 日韩中字成人| 女人被狂操c到高潮| 九九在线视频观看精品| 久久久久久大精品| 赤兔流量卡办理| 亚洲无线在线观看| 午夜久久久久精精品| 精品国产三级普通话版| 简卡轻食公司| 国产老妇女一区| 亚洲国产精品成人久久小说 | 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 亚洲欧美精品自产自拍| 免费观看的影片在线观看| 亚洲无线观看免费| 变态另类丝袜制服| 色视频www国产| 变态另类成人亚洲欧美熟女| 久久久精品94久久精品| а√天堂www在线а√下载| 赤兔流量卡办理| 波多野结衣高清作品| 中文字幕制服av| av天堂在线播放| 久久人人爽人人片av| 欧美日本亚洲视频在线播放| 欧美3d第一页| 亚洲av.av天堂| 亚洲人成网站在线观看播放| 日韩强制内射视频| av福利片在线观看| 99在线视频只有这里精品首页| 国产午夜福利久久久久久| 国产成人aa在线观看| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 深夜a级毛片| 免费看av在线观看网站| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 亚洲精品日韩在线中文字幕 | 精品久久久久久久久久久久久| 91麻豆精品激情在线观看国产| 亚洲丝袜综合中文字幕| 一级二级三级毛片免费看| 麻豆成人av视频| 午夜福利在线观看吧| 成人亚洲欧美一区二区av| 简卡轻食公司| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 爱豆传媒免费全集在线观看| 中文字幕av在线有码专区| 听说在线观看完整版免费高清| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 午夜福利高清视频| 欧洲精品卡2卡3卡4卡5卡区| 国产高清激情床上av| 尤物成人国产欧美一区二区三区| 亚州av有码| 啦啦啦观看免费观看视频高清| 国产一区二区亚洲精品在线观看| 婷婷亚洲欧美| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 久久久精品大字幕| 观看美女的网站| 亚洲欧美日韩东京热| 国产精华一区二区三区| 人人妻人人澡欧美一区二区| 女的被弄到高潮叫床怎么办| 中文精品一卡2卡3卡4更新| 伦精品一区二区三区| 免费看光身美女| 春色校园在线视频观看| 久久99蜜桃精品久久| 老师上课跳d突然被开到最大视频| 亚洲av成人av| 少妇熟女aⅴ在线视频| 97热精品久久久久久| 午夜福利在线观看免费完整高清在 | 91精品一卡2卡3卡4卡| 久久午夜福利片| 亚洲精品乱码久久久久久按摩| 99热这里只有是精品在线观看| 亚洲综合色惰| 国产在线男女| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 亚洲一级一片aⅴ在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| 国产色婷婷99| 国产一区二区激情短视频| 亚洲图色成人| 亚洲av男天堂| 午夜福利成人在线免费观看| 又粗又硬又长又爽又黄的视频 | 亚洲欧美成人综合另类久久久 | 国产精品一区二区在线观看99 | 日韩精品有码人妻一区| 真实男女啪啪啪动态图| 国产黄色小视频在线观看| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 欧美变态另类bdsm刘玥| 69人妻影院| 悠悠久久av| 欧美另类亚洲清纯唯美| 99热只有精品国产| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 国内久久婷婷六月综合欲色啪| 久久久精品欧美日韩精品| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 少妇人妻一区二区三区视频| 亚洲国产精品国产精品| 狂野欧美激情性xxxx在线观看| 国产老妇女一区| 国产成人影院久久av| 永久网站在线| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 国产精品伦人一区二区| 久久99蜜桃精品久久| 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 夫妻性生交免费视频一级片| 欧美色欧美亚洲另类二区| 国产成年人精品一区二区| 免费看光身美女| 成人av在线播放网站| 99久久精品热视频| 亚洲无线观看免费| 成人av在线播放网站| 国产伦精品一区二区三区视频9| 看片在线看免费视频| 国产精品久久久久久av不卡| 成人毛片a级毛片在线播放| 国产精品伦人一区二区| 少妇的逼好多水| 婷婷精品国产亚洲av| 麻豆av噜噜一区二区三区| 国产黄a三级三级三级人|