• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ADC border effect and suppression of quantization error in the digital dynamic measurement?

    2017-08-30 08:25:16LiNaBai白麗娜HaiDongLiu劉海東WeiZhou周渭YongZhang張勇HongQiZhai翟鴻啟ZhenJianCui崔震健MingYingZhao趙明英XiaoQianGu谷小倩BeiLingLiu劉蓓玲andLiBeiHuang黃李貝
    Chinese Physics B 2017年9期
    關(guān)鍵詞:城鎮(zhèn)化影響

    Li-Na Bai(白麗娜),Hai-Dong Liu(劉海東),Wei Zhou(周渭), Yong Zhang(張勇),Hong-Qi Zhai(翟鴻啟),Zhen-Jian Cui(崔震健), Ming-Ying Zhao(趙明英),Xiao-Qian Gu(谷小倩),Bei-Ling Liu(劉蓓玲),and Li-Bei Huang(黃李貝)

    1 Department of Measurement and Instrumentation,Xidian University,Xi’an 710071,China

    2 State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China

    ADC border effect and suppression of quantization error in the digital dynamic measurement?

    Li-Na Bai(白麗娜)1,?,Hai-Dong Liu(劉海東)1,Wei Zhou(周渭)1, Yong Zhang(張勇)2,Hong-Qi Zhai(翟鴻啟)1,Zhen-Jian Cui(崔震健)1, Ming-Ying Zhao(趙明英)1,Xiao-Qian Gu(谷小倩)1,Bei-Ling Liu(劉蓓玲)1,and Li-Bei Huang(黃李貝)1

    1 Department of Measurement and Instrumentation,Xidian University,Xi’an 710071,China

    2 State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China

    The digital measurement and processing is an important direction in the measurement and control field.The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology.In this paper,we find that the stability of the digital quantization system is obviously better than the quantization resolution.The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing.Its effective precision has nothing to do with the number of quantization bits,which is only related to the stability of the quantization system.The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field.

    quantization error,border effect,digital converter(ADC)

    1.Introduction

    In the digital age,[1]improving the digital measurement accuracy is the goal that all fields have been pursuing.At present,an important development trend is to reduce the quantization error and improve the measurement accuracy by improving the quantization bits.[2–11]But when the figure of the digital conversion improves,the sampling rate would be reduced.For a 24 bit quantized digital system,the sampling rate is only a million samples per second(MSPS),while an 8 bit quantized digital system has a sampling rate up to a gigabit samples per second(GSPS).The concept,application,and development of the border effect[12,13]can make the low bit quantization system realize the measurement accuracy that is higher than the quantization resolution.Meanwhile,for the less quantization bits,the quantization system could reach a higher sampling rate.[14]Based on this,in this paper we will discuss how to apply the border effect theory to the measurement of the multi-fuzzy zone border in digital measurement.[5,15]The border effect theory is verified by the measurement of the AC voltage.In the actual quantified measurement,we can make the corresponding fitting[16]according to the characteristics of the physical quantity.Compared with the traditional analog to digital converter(ADC), extracting the effective information[17–21]using the border effect in the digital quantization could obtain higher precision. As a breakthrough progress in the measurement field,the border effect is widely applied to some simple physical quantity measurements where we can obtain better measurement results.It has also been fully applied in the precision frequency measurement[21–23]and has some advantages over the conventional methods.If there is no detailed analysis of the border effect principle,it is very difficult to understand and apply in some complicated situations,such as the discrete fuzzy zone,the concentrated fuzzy zone,and the dynamic multifuzzy zone of the digital quantization process.

    The essence of the border effect is that in the numeral mode conversion process,the border value of the measurement fuzzy zone between two adjacent quantizations is more stable[24–30]and then we can obtain higher precision than traditional quantization through selecting these values of the jump edge.The viewpoint of this technology aims to be widely applied for various fields using digital quantization, such as digital sensing measuring instruments,communication,navigation,positioning,and so on,[23]that is,high precision measurement could be obtained by using the stability of dynamic edge information in the multi-fuzzy zones.The same approach that improves the measurement resolution and accuracy using the border effect could also be applied for the linear varying voltage,[31–35]such as the linear degree measurement of triangular wave and saw tooth wave voltages and the precision measurement of the linear phase comparator.[35]It can also be used for the detection and calibration of the input–output characteristics of the sensor.At the same time,this method is more suitable for the measurement of the dynamic characteristics of the fast changing signals,such as the rising edge of the pulse signal,the rate of change of the slope,the linearity of the signal change,and so on.In the processing of these problems,the conventional sampling number and sampling rate are contradictory,while the approach could make the low-bit ADC[36]with high conversion rate obtain high precision measurement.This will provide a better measurement method for measuring the dynamic multi-fuzzy zone formed by the limited resolution of the measure object,[11]improving the accuracy in the measurement and control.This will also open up a new way for the development of high precision digital measurement,and promote the development of variousfields to a higher level.

    2.Method

    2.1.Dynamic fuzzy zone and quantization stability in the digital quantization

    The multi-fuzzy zone is a unique property of the digital quantization system,and the border of the fuzzy zone has a very high stability too.Systematic analysis and experiment validation of the quantitative edge show that higher resolution than the device’s measuring precision can be obtained by processing data at the dynamic fuzzy zone border.On the analysis of the fuzzy zone,through the periodic signal frequency stability in the measurement,[37–40]precision is improved significantly.On this basis,higher accuracy than the quantitative value can be obtained by correcting and fitting values at the dynamic multi-fuzzy zones.A digital quantitative dynamic fuzzy zone diagram is shown in Fig.1.It shows the quantitative process of the actual signal,which forms a continuous signal to a continuous ladder-like fuzzy zone.When the input signal comes to the quantitative edge,the digital result changes and has the minimum difference with the input signal in this location.

    Fig.1.Dynamic fuzzy zone of ADC.

    For a practical digital quantitative system,the quantitative resolution(dynamic fuzzy zone size)is

    where V?is the maximum error of measurement,N is the quantitative bit,and VREFis the reference voltage.

    In Fig.1,half of the fuzzy zone is1/2 LSB of quantitation, and in the process of digital quantitation,the improvement of the actual measurement precision A?is

    The stability of resolution on the border is δr,and δr is related to temperature T,noise S,and the conversion principle C.So when the environmental temperature change is very small,and the noise of the circuit itself is very weak at the same time,[41]the stability at the border will be very high

    The actual measurement error is

    According to Eq.(5),when the physical entity of a digital quantitative system has been confirmed,the highest measurement resolution can be reached under the border effect only related to δr.The conversion principle C of the converter will be different,but once the device is determined,it is only related to temperature T and noise S,the quantization error determined by the measurement error can be eliminated.So the actual accuracy measured is significantly superior to one of the system itself.When processing data,the fuzzy zone can be formed at quantitative borders.Cause data at borders have stable and high precision characteristics,and the stable characteristics will remain,correcting and processing the data effectively can result in a higher precision.

    2.2.Application of the border effect in data sampling and waveform restoration

    The data processing applying the border effect is shown in Fig.2,which is of strong representation and can be involved in any digital quantization system.

    According to the sample rate and quantitative value,we can obtain the two-dimensional information of the input signal at quantitative edge.Then,we can fit the correction of the input signal using these values and rebuild the input signal to the greatest extent.Meanwhile,the process automatically fits the optimization point,and further reduces the random noise caused by the edge jitter.On this basis,accordingto the demand,the waveform parameters will be measured, which will be more convenient and quick.Finally,we can obtain a more accurate result than traditional direct measurement with compensation and correction.If the measured signal is a nonsinusoidal signal or a signal with distorted waveform, the measurement for the valid value will no longer apply to the principle“the corresponding relationship between the effective value and amplitude of the standard sine signal”described in this paper.Fitting the measured signal according to the sampling point and calculating the valid value by integral operation on the basis of the definition of valid value, the higher precision measurement results can still be obtained compared with the traditional measurement scheme.This is a more advanced processing method.The measurement method in this paper is only used as an example to explain the principle of the program.In Fig.3,according to the digital value of ADC,the sampling results will include more error at the top and bottom points of the input signal,which will cause the loss of the amplitude information,because the quantitative value is an integer.Based on the border effect to fit the cure,we can restore the true amplitude information of the signal.At this time, the real quantitative value is equal to the practical quantitative value plus a small value which is less than one quantitative. That is to say,the eliminating top of the waveform has been compensation.

    表6的結(jié)果顯示,只有東北地區(qū)的常數(shù)項不顯著,全國4個地區(qū)除了東北地區(qū)外,均呈現(xiàn)絕對值 β3i>β2i>β1i的特點, 說明大部分地區(qū)的產(chǎn)業(yè)城鎮(zhèn)化對水資源消耗的影響最大,其次是經(jīng)濟城鎮(zhèn)化,人口城鎮(zhèn)化的影響最小。東北、東部、中部3個地區(qū)的人口城鎮(zhèn)化對于水資源消耗都有負向影響,即人口城鎮(zhèn)化進程會減少我國大部分地區(qū)的水資源消耗[10]。3個地區(qū)中,東北地區(qū)人口城鎮(zhèn)化對水資源消耗的影響最大,其人口城鎮(zhèn)化每提高1%,水資源消耗則減少0.323%。西部地區(qū)的人口城鎮(zhèn)化對水資源消耗的影響不顯著,可能是由于該地區(qū)大部分省份的水資源較為充足,城鎮(zhèn)人口的增長暫時不會對水資源消耗產(chǎn)生明顯的影響。

    Fig.2.Data acquisition and processing of border effect.

    Fig.3.The dynamic fitting curve.

    In order to improve the measurement accuracy,the traditional digital method makes use of the average of many different collecting results.Because of different sampling points with different measuring accuracy,the method has a great disadvantage.Only some minority points at the quantitative edge are of high accuracy.However,most sampling points deviate from the edge with huge error.The data processing on the basis of these points is limited to their accuracy,so it is very difficult to improve the measuring accuracy significantly. The sampling value of points at the quantitative edge can be achieved effectively,namely,the border effect,and the border can be obtained by use of the AC voltage signal quantization.Taking advantage of the border effect,a higher accuracy may be realized,owing to the high accuracy of the edge points.In the actual experiments,a standard sine signal source is used as the measured signal which is sampled and processed by applying the border effect.The phenomenon of quantitative edge would be more obviously,especially at the peaks and troughs.The obtained border quantization value is used to fit a sine wave,meanwhile,part of points deviating from the fitting curve can be automatically removed by the system device.Therefore,the measurement error could be reduced greatly and it also means the higher measurement accuracy.

    3.Results

    3.1.Amplitude characteristic

    The measurement accuracy can be improved greatly by applying the border effect.Whether it is a centralized fuzzy zone,a discrete fuzzy zone,or a dynamic progressive multifuzzy zone,the quantitative fuzzy zone exists when it has the quantization.And its essence is that the edge of the fuzzy zone produced in the adjacent digital conversion is more stable than that in the whole fuzzy zone,and the edge position of the fuzzy zone reflects the stability[12,13]of the fuzzy zone.Therefore,the edge value could be obtained effectively based on the principle of the border effect.Because the edge value has a higher precision than the quantization value and its accuracy is only related to the border stability of the fuzzy zone,the collected points are high precision points.Based on the process of data processing,this method has higher measurement accuracy than the conventional method.In order to verify the measurement results applying the principle of the border effect of the dynamic multi-fuzzy zone,we adopt the signal source(Fluke5520)whose measurement error is up to 1/10000 to 1/100000 as the output signal of the system device. The experiment results are compared among three measurement methods,they are the 8 bit ADC using the border effect, the direct measurement devices,and the high-precision Agilent 3458A.The result of relative error of the three methods is shown in Fig.4.Using the basis of the principle of the dynamic fuzzy zone of the multiple border effect has a significant advantage over the ADC in a traditional direct way in measurement.Compared with the advanced high precision measuring equipment(Agilent 3458A),they have similar error.

    Fig.4.Amplitude characteristic relative error curve.

    3.2.Frequency characteristics

    The measurement results based on the border effect have better amplitude and frequency characteristics.The measurement of the effective value of the AC voltage is used to verify the border effect of the dynamic multi-fuzzy zone.In the actual measurement,most signals are varied,for example,the AC signal.Yet the constant DC signal is only a special case. Therefore,the measurement of the AC voltage can widely represent the applications of many digital quantization measurements at the present stage[42,43]and reveal that the quantization resolution of the system devices is fixed,the measurement accuracy is greatly improved when the multi-fuzzy zone border information is obtained using the quantization stability of the system.[12,13]Comparing thedigital multimeter GDM8261A(equal to 21bits)with 8 bit ADC direct measurement,the results are shown in Fig.5.We can see that themultimeter has very high measurement accuracy below the range 100 kHz.But when the frequency is up to several hundred kHz,the measurement error would increase rapidly owing to the limit of the measurement principle.While for the 8 bit ADC measurements based on the border effect,we can find that the frequency range is obviously higher than that that of themultimeter.

    Fig.5.The frequency characteristic curve.

    The experimental results of the two groups are consistent using the 8 bit ADC.Although the results of direct measurement have good high frequency characteristics,the amplitude characteristics have large errors.

    The experiment indicates that the digital measurement applying the border effect principle could make the measurement accuracy immune from the quantization bits,and verifies that the border effect principle can be used to realize more higher measurement resolution when measured in a dynamic state. From the frequency characteristics,the method is equal to the conventional ADC sampling.The measurement upper limit of the AC voltage effective value is obviously higher than that of the traditional rectifier filter mode,[42–46]and its frequency measurement upper limit depends on the highest sampling rate of ADC.[46–49]From the precision characteristics, the maximum measurement error of the 8 bit ADC adopting the conventional measurement scheme depends on the maximum quantization error.The measurement accuracy of the single point can be greatly improved when it adopts the idea of transforming edge value fitting.According to the existing experimental results,the measurement accuracy can be increased by nearly 100 times under a certain noise background.For multiple point measurement,because the fitting point has a high precision,the fitting result also has a high precision.

    3.3.Measurement of transient parameter about fast changing signal

    Figure 6 shows the applications of the pulse response time,fast changing signal slope,and its transient response. The input signal is a rising step,and its slope can be said to have angle K.The picture shows the process of the digital quantitative.

    Fig.6.Fast rising signal parameter measurement.

    In order to obtain the change of the rise time or slope,we measure the change ΔV of the signal amplitude during a period of time ΔT,and calculate its slope K as follows:

    Measured by the digital device,the method could be reduced in proportion,until the voltage we are concerned with transforms the minimum voltage resolution of the converter, that is quantization error LSB,while the time interval transforms the sampling interval Δt of the converter.Next we derive the maximum range of signal slope variation measured by the ADC.

    The large time interval and the voltage variation are reduced to the minimum quantization level and the sampling rate of the converter,the slope K can be expressed as

    While the relationship between the sampling rate S and the minimum sampling time Δt of the ADC is

    So the slope is

    and

    It can be seen from the above equations that the measurable slope range is related to the number of quantization bits N,the reference voltage VREF,and the sampling rate S.The realization of the maximum measurement slope variation requires increasing the sampling rate,small quantization bits, and improving the reference voltage level.Only low-bit ADC meets the top two items.The low-bit converters applying the border effect principle can improve greatly the measurement accuracy,meanwhile,its conversion speed would not reduce. Therefore,it is the only choice to measure the rapid change of the signal,as well as the pulse measurement.

    3.4.Actual measurement accuracy

    The highest accuracy which the digital system can realize depends on its stability.In our original work,the verified experiments were mainly aimed at periodic signals.[43]The structure of the fuzzy zone was relatively simple,meanwhile, the possible range of its application was not also very wide. The experiment of dynamic multi-fuzzy zones can illustrate that the measurement accuracy of the measuring device depends on its stability index under complicated circumstances. Therefore,it is the optimal selection for the dynamic digital measurement to choose the high speed and low-bit ADC instead of the low speed and high-bit ADC.This will provide a very important reference for the future development and application of ADC devices.

    The actual measurement accuracy of the digital quantization system depends on the sampling rate.The border effect is used to improve the measurement resolution in dynamic digit measurement.Its theoretical basis is that the conversion edge value of the quantization system has significantly higher stability and accuracy than the other locations.So if we would use the principle in practical applications,we must find the exact location of the conversion edge value.The accuracy of its value determines the accuracy that the system can reach.

    According to Fig.7,ADC has a minimal error of 1/2 LSB in traditional function.We increase the sample rate in the time line that every quantitative fuzzy zone can include more sample points(the point in the time line of the picture),and the precise location of the quantitative edge is depending on the interval of sample points.For a practical digital system,the finite sampling rate results in that the sample point cannot be infinitely close to the quantitative edge,and the quantitative edge randomly changes with the input signal,both result in the quantitative edge inaccuracy.

    Fig.7.(color online)The relationship between actual resolution and sampling rate.

    When improving the sampling rate,the quantization error LSB of a quantization system causes that there are M sampling values between the adjacent quantitative fuzzy zones.At this moment,the maximum error of the true position of the conversion edge Δt is the same as the maximum error ΔV on the vertical axis and also the same as M subdivision on the fuzzy zone.Therefore,the measurement error applying the border effect is

    Here M is equivalent to the subdivision factor,and M is inversely proportional to Δt according to Eq.(8),so

    That is,the formula can obtain the resolution ΔV by the border effect.The measurement accuracy can be improved through increasing the sampling rate when the quantization system is fixed.The application of the border effect is a new implementation method for the high-precision digitized measurement.

    It can also be seen from the chart that improving the accuracy using the border effect depends on the stability at the conversion edge;it is shown as the subdivision of the time axis.It means that the subdivision of the voltage on the vertical axis would be converted to the temporal subdivision.The biggest characteristic of the low-bit ADC is that they have a very high sampling rate,which means that the low-bit ADC as usual could achieve a high precision result by the border effect.

    4.Summary and discussion

    By using this method based on the border effect,the border information of a dynamic fuzzy zone can be captured. Therefore,we abandon the traditional data processing method, which needs times of sampling and averaging to reduce the quantization error.We collect data selectively,and find the border location and convert data.For the quantitative system, the quantization edge value has higher sensitivity compared to the quantization resolution,and small changes of input will cause the change of the quantitative results,and the difference between real values is minimal.[12,13,44–47]So the precision of the points on the borders is significantly higher than that in other zones.Better results can be obtained by processing the higher precision points.Due to the use of low converters,the actual sampling rate can be very high.Based on the idea of the border effect,high-precision measurement can be realized and higher frequency range can be obtained at the same time.

    In digital quantitation,research and application on borders of the dynamic fuzzy zone are based on single side stability.In a broad sense,it is a quantitative system of physical properties for the quantitative of extreme stability,and it is also a unique property which is often ignored in digital quantitative systems.Therefore,a further study of its characteristics is the key technology of the border effect.In the digital quantitative system,the linearity of quantitative borders also needs to be focused on.Because ADC has the biggest nonlinear error related to the effective quantitative bit,[44–47]and its value is at the minimum quantitative level,which leads to a non-uniformity between multiple quantitative borders in the whole quantitative range.The points at border locations will change due to the non-uniformity.The deviation value is significantly bigger than the stability of the quantitative border. Actually,ADC products will make the error below 1/2 LSB. In applications,the error of measuring results in the biggest impact,therefore,we need to calibrate all quantitative borders in ADC to make sure of the high precision of the measurement results.[50]In experiments,inevitably noise of the circuit itself and additive noise[51]will be added to the measured results, which leads to a small jitter in the actual conversion border and it has higher instability than the actual stability.So the quantitative random deviation of the border value should be taken into account in data processing and by selecting subsequent values at the borders,we can get rid of the interference of random noise[47–49]to make it closer to the border of its true position.According to our experiments,under certain outside noise background,compared to the direct measurement by ADC,the accuracy of the measurement results applying the border effect principle could be improved nearly 100 times.This effect exists universally.

    [1]Diddams S A,Bergquist J C,Jefferts S R and Oates C W 2004 Science. 306 1318

    [2]Barber Z W,Babbitt W R,Kaylor B,Reibel R R and Roos P A 2010 Appl.Opt.49 213

    [3]Eramo R,Cavalieri S,Corsi C,Liontos I and Bellini M 2011 Phys.Rev. Lett.106 213003

    [4]Sturm S,Kohler F,Zatorski J,Wagner A and Harman Z 2014 Nature 506 467

    [5]Resch K J,Pregnell K L,Prevedel R,Gilchrist A,Pryde G J,O’Brien J L and White A G 2007 Phys.Rev.Lett.98 223601

    [6]David J,Starling P,Ben D,Andrew N J and John C H 2010 Phys.Rev. A 82 063822

    [7]Budovsky I and Hammond G 2005 IEEE Trans.Instrum.Meas.54 483

    [8]Wang B,Gao C,Chen W L,Miao J and Zhu X 2012 Sci.Rep.2 556

    [9]Archanaa M,Balamurugan K and Jayakumar M 2014 International Conference on Embedded Systems(ICES),July 3–5,2014,Coimbatore,India,p.39

    [10]Li Z Q,Zhou W,Zhou H,Zhang X P and Zhao J 2013 Rev.Sci.Inst.84 025106

    [11]Giorgetta F R,Coddington I B E,Swann W C and Newbury N R 2010 Nat.Photon.4 853

    [12]Zhou W,Li Z Q and Bai L N 2014 Chin.Phys.Lett.31 100602

    [13]Bai L N,Su X,Zhou W and Ou X J 2015 Rev.Sci.Inst.86 015106

    [14]Rapp P E,Cellucci C J,Korslund K E,Watanabe T A A and Jiménez-Monta?o M A 2001 Phys.Rev.E 64 016209

    [15]Shan H T,Chen X K,Kong X J,Zhang Y,Liu Z,Li H B and Li T F 2009 IEEE 6th International Power Electronics and Motion Control Conference,May 17–20,2009,Wuhan,China,p.1554

    [16]Pumplin J,Stump D R and Tung W K 2001 Phys.Rev.D 65 014011

    [17]Kurten-Ihlenfeld W G and Landim R P 2014 29th Conference on Precision Electromagnetic Measurements(CPEM),August 24–29,2014, Rio de Janeiro,Brazil,p.766

    [18]Lin H B,and Lv X L 2010 International Conference on Electrical and Control Engineering,June 25–27,2010,Wuhan,China,p.2315

    [19]An G C,and Sha Z Y 2007 8th International Conference on Electronic Measurement and Instruments,August 16–18,2007,Xi’an,China, p.1-453

    [20]Roulleau P,Portier F,Roche P,Cavanna A,Faini G,Gennser U and Mailly D 2008 Phys.Rev.Lett.100 126802

    [21]Udem T,Holzwarth R and Hansch T W 2002 Nature 416 233

    [22]Vanier J 2002 Phys.Today.93 522

    [23]Schr?der G F,Levitt M and Brunger A T 2010 Nature 464 1218

    [24]Jaseja T S,Javan A and Townes C H 1963 Phys.Rev.Lett.10 165

    [25]Zheng H X,Dougal R A and Ali M H 2013 Electric Ship Technologies Symposium(ESTS),April 22-24,2013,Arlington,VA,USA,p.292

    [26]Antonio D,Zanette D H and López D 2012 Nat.Commun.3 806

    [27]Ning B,Zhang S Y,Hou D,Wu J T and Li Z B 2014 Sci.Rep.4 5109

    [28]Affolderbach C and Mileti G A 2005 Rev.Sci.Inst.76 073108

    [29]Ali M H,Murata T And Tamura J A 2005 International Conference on Power Electronics and Drives Systems,November 28–December 1, 2005,Kuala Lumpur,Malaysia,p.1566

    [30]Lee H,Suh M G,Chen T,Li J and Diddams S A 2013 Nat.Commun.4 2468

    [31]Le N P T,Low K T and Yao L 2009 IEEE 8th International Conference on ASIC,October 20–23,2009,IChangsha,Hunan,China,p.363

    [32]Michaelsen J and Wisland D A 2010 17th IEEE International Conference on Electronics,Circuits and Systems,December 12–15,2010, Athens,Greece,p.1132

    [33]Shuai D X and Zhang X P 2010 International Conference on Electrical Machines and Systems,October 10–13,2010,Incheon,South Korea, p.329

    [34]Frank S and Dominik J 2005 Phys.Rev.A 72 042324

    [35]Chumak A V,Tiberkevich V S,Karenowska A D,Serga A A and Gregg J F 2010 Nat.Commun.1 749

    [36]Okuni H,Ito R,Yoshida H and Itakura T A 2007 IEEE 18th International Symposium on Personal,Indoor and Mobile Radio Communications,September 3–7,2007,Athens,Greece,p.1

    [37]Kenji N,Amy K and Jordan C 2004 Phys.Rev.Lett.93 250602

    [38]Traverso P A,Florian C,Borgarino M and Filicori F 2006 IEEE Trans. Microw.Theory Tech.54 4341

    [39]Dai C X,Yin Z D,Hong Q and Kong S H 2010 5th IEEE Conference on Industrial Electronics and Applications,June 15–17,2010,Taichung, Taiwan,p.989

    [40]Ye Y X,Xuan Z Q,Gu J S and Xuan Y 2014 Chin.Phys.B 23 120601

    [41]Neumann A,Anders W,Kugeler O and Knobloch J 2010 Mod.Phys. 13 3280

    [42]Lei S H,Han Y H and Li X W 2007 16th Asian Test Symposium(ATS), October 8-11 2007,Beijing,China,p.323

    [43]Lanin A A,Fedotov I V,Fedotov A B,Sidorov-Biryukov D A and Zheltikov A M 2013 Sci.Rep.3 1842

    [44]Liang S,Li D H and Gao X Y 2007 8th International Conference on Electronic Measurement and Instruments,August 16–18,2007,Xi’an, China,p.1563

    [45]Williams S R and Wozny C 2011 Nat.Commun.2 242

    [46]Li J Y,Luo L F,Xu J Z and Zeng J H 2010 International Conference on Intelligent System Design and Engineering Application,October 13–14,2010,Changsha,China,p.174

    [47]Acharya B A and John V 2010 Joint International Conference on Power Electronics,Drives and Energy Systems,December 20-23, 2010,New Delhi,India,p.1

    [48]Li S H and Liaw C M 2003 IEE Proceedings-Electric Power Applications,April 08,2003,IET,p.21

    [49]Huang Y Y,Hamhee J,Yoon Y,Woo W,Lee C,Kenney J S,Chang-Ho L and Kenney J S 2012 IEEE Trans.Microw.Theory Tech.60 301

    [50]Seung-Hoon L and Bang-Sup S 1992 IEEE J.Solid-State Circuits 27 1679

    [51]Ruocco G and Fratalocchi A 2014 Sci.Rep.4 7088

    20 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090601

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.10978017 and 61201288),Shaanxi Natural Science Foundation Research Plan Projects,China(Grant No.2014JM2-6128),and Shaanxi Major Technological Achievements Transformation and Guidance Special Projects,China(Grant No.2015KTCG01-01).

    ?Corresponding author.E-mail:lnbai@mail.xidian.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    城鎮(zhèn)化影響
    是什么影響了滑動摩擦力的大小
    哪些顧慮影響擔當?
    當代陜西(2021年2期)2021-03-29 07:41:24
    沒錯,痛經(jīng)有時也會影響懷孕
    媽媽寶寶(2017年3期)2017-02-21 01:22:28
    擴鏈劑聯(lián)用對PETG擴鏈反應與流變性能的影響
    中國塑料(2016年3期)2016-06-15 20:30:00
    基于Simulink的跟蹤干擾對跳頻通信的影響
    讓老年農(nóng)民挑起城鎮(zhèn)化的重擔?
    堅持“三為主” 推進城鎮(zhèn)化
    學習月刊(2015年14期)2015-07-09 03:37:50
    城鎮(zhèn)化面臨的突出問題和應對之道
    全球化(2015年2期)2015-02-28 12:38:55
    城鎮(zhèn)化
    江蘇年鑒(2014年0期)2014-03-11 17:09:40
    加快推進以人為本的新型城鎮(zhèn)化
    免费看a级黄色片| 日本三级黄在线观看| 日韩高清综合在线| 亚洲五月天丁香| 高清毛片免费观看视频网站| 免费在线观看亚洲国产| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 黑人操中国人逼视频| 欧美日韩黄片免| 丰满的人妻完整版| 色综合站精品国产| 欧美人与性动交α欧美精品济南到| 免费在线观看黄色视频的| 免费在线观看亚洲国产| 国产亚洲欧美精品永久| 国产又黄又爽又无遮挡在线| 两人在一起打扑克的视频| 特大巨黑吊av在线直播 | 精品少妇一区二区三区视频日本电影| 久久香蕉精品热| 久久久久久人人人人人| 人人妻,人人澡人人爽秒播| 美女大奶头视频| 黄色女人牲交| 变态另类丝袜制服| 国产精品av久久久久免费| 男女视频在线观看网站免费 | 国产99久久九九免费精品| 国产一级毛片七仙女欲春2 | 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 国产av不卡久久| 国产欧美日韩一区二区精品| 国产99久久九九免费精品| 欧美日韩黄片免| 久久久久久久久久黄片| 亚洲五月婷婷丁香| 一级毛片女人18水好多| 国产爱豆传媒在线观看 | 亚洲成人久久爱视频| 黄色a级毛片大全视频| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜一区二区| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 久久亚洲真实| 男女那种视频在线观看| 国产精品综合久久久久久久免费| 在线天堂中文资源库| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 日韩精品青青久久久久久| 淫秽高清视频在线观看| 桃色一区二区三区在线观看| 欧美日韩精品网址| 99久久综合精品五月天人人| 一二三四在线观看免费中文在| 久久亚洲精品不卡| a在线观看视频网站| 亚洲第一电影网av| 色哟哟哟哟哟哟| 亚洲成av片中文字幕在线观看| 两性夫妻黄色片| 最新美女视频免费是黄的| 日本成人三级电影网站| 岛国视频午夜一区免费看| 一本久久中文字幕| 日日爽夜夜爽网站| 人人妻人人澡欧美一区二区| 国产精品自产拍在线观看55亚洲| 午夜福利成人在线免费观看| 午夜两性在线视频| 黄片小视频在线播放| av视频在线观看入口| 亚洲黑人精品在线| av在线播放免费不卡| 国产午夜精品久久久久久| 日韩视频一区二区在线观看| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 美女扒开内裤让男人捅视频| 老司机深夜福利视频在线观看| 日本免费一区二区三区高清不卡| 美女高潮喷水抽搐中文字幕| 成人午夜高清在线视频 | 日韩欧美国产在线观看| 最近最新中文字幕大全电影3 | 亚洲精品在线观看二区| 免费在线观看完整版高清| 国内毛片毛片毛片毛片毛片| 国产精品久久视频播放| 99热6这里只有精品| 国产高清videossex| 热re99久久国产66热| 国产精品一区二区精品视频观看| 欧美+亚洲+日韩+国产| 免费电影在线观看免费观看| 男女之事视频高清在线观看| 欧美色视频一区免费| 午夜久久久在线观看| 在线观看66精品国产| 亚洲,欧美精品.| 国产色视频综合| 啦啦啦观看免费观看视频高清| 午夜视频精品福利| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲无线在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区mp4| 深夜精品福利| 夜夜夜夜夜久久久久| 又黄又粗又硬又大视频| 欧美+亚洲+日韩+国产| 日本五十路高清| 9191精品国产免费久久| 欧美 亚洲 国产 日韩一| 日韩中文字幕欧美一区二区| 国产精品久久久av美女十八| 国产一区二区激情短视频| 精品久久久久久久末码| 精品久久蜜臀av无| 免费一级毛片在线播放高清视频| 精品不卡国产一区二区三区| 18禁黄网站禁片免费观看直播| 美女高潮到喷水免费观看| 丝袜人妻中文字幕| 中出人妻视频一区二区| 久久精品国产综合久久久| 成人av一区二区三区在线看| 久久中文看片网| 国产黄色小视频在线观看| 性欧美人与动物交配| 麻豆一二三区av精品| 少妇 在线观看| 一级a爱片免费观看的视频| 国产欧美日韩精品亚洲av| 搡老妇女老女人老熟妇| 别揉我奶头~嗯~啊~动态视频| 午夜久久久在线观看| 国产伦在线观看视频一区| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 可以在线观看毛片的网站| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 黑人欧美特级aaaaaa片| 国产精品免费视频内射| 日韩 欧美 亚洲 中文字幕| а√天堂www在线а√下载| 亚洲一区高清亚洲精品| 久久国产精品影院| 欧美激情高清一区二区三区| 我的亚洲天堂| avwww免费| 一区二区三区精品91| 色播在线永久视频| 精品乱码久久久久久99久播| 麻豆av在线久日| 丰满人妻熟妇乱又伦精品不卡| 欧美乱码精品一区二区三区| 91字幕亚洲| 久久精品影院6| 成年人黄色毛片网站| 午夜久久久久精精品| 亚洲色图av天堂| 美女午夜性视频免费| 日韩欧美免费精品| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 亚洲av美国av| 欧美日韩中文字幕国产精品一区二区三区| 欧美在线一区亚洲| 老司机福利观看| 免费无遮挡裸体视频| 免费高清视频大片| 国产精品永久免费网站| 在线视频色国产色| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 90打野战视频偷拍视频| 国产成人av激情在线播放| 国产三级在线视频| 欧美人与性动交α欧美精品济南到| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 婷婷丁香在线五月| 韩国精品一区二区三区| 国产精品 国内视频| 黄色a级毛片大全视频| 久久久久久九九精品二区国产 | 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 欧美成狂野欧美在线观看| 中文在线观看免费www的网站 | 日本黄色视频三级网站网址| 91麻豆精品激情在线观看国产| 欧美成人一区二区免费高清观看 | 日韩欧美免费精品| 成年免费大片在线观看| 91在线观看av| 亚洲第一av免费看| 啪啪无遮挡十八禁网站| 亚洲国产中文字幕在线视频| 老司机靠b影院| 免费观看人在逋| 精品一区二区三区av网在线观看| 两个人免费观看高清视频| 国产麻豆成人av免费视频| 婷婷亚洲欧美| 露出奶头的视频| 欧美中文综合在线视频| 此物有八面人人有两片| 久9热在线精品视频| 国产精品乱码一区二三区的特点| a级毛片a级免费在线| 天堂影院成人在线观看| 国产不卡一卡二| 在线观看日韩欧美| 精品不卡国产一区二区三区| 亚洲av熟女| 中文字幕久久专区| 国产91精品成人一区二区三区| 国产成人一区二区三区免费视频网站| 国产一级毛片七仙女欲春2 | 嫩草影视91久久| 一边摸一边抽搐一进一小说| 欧美 亚洲 国产 日韩一| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产区一区二| www.www免费av| 美国免费a级毛片| 一二三四社区在线视频社区8| 校园春色视频在线观看| 成人三级黄色视频| 99久久精品国产亚洲精品| 精品国产亚洲在线| a级毛片在线看网站| 国产亚洲精品av在线| 国产精品二区激情视频| 日本在线视频免费播放| 午夜免费成人在线视频| av福利片在线| 国产一区二区三区视频了| 18禁美女被吸乳视频| 亚洲av中文字字幕乱码综合 | 国产亚洲精品综合一区在线观看 | 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 正在播放国产对白刺激| 2021天堂中文幕一二区在线观 | 亚洲国产精品999在线| 麻豆国产av国片精品| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 99国产精品一区二区三区| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 午夜免费成人在线视频| 一级作爱视频免费观看| 久久精品91蜜桃| 满18在线观看网站| 日韩国内少妇激情av| 亚洲av日韩精品久久久久久密| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 高清在线国产一区| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 91字幕亚洲| 欧美成狂野欧美在线观看| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 亚洲 欧美一区二区三区| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 男人舔女人的私密视频| 亚洲人成电影免费在线| 少妇粗大呻吟视频| 一本一本综合久久| 一区二区三区激情视频| 国产成人影院久久av| 亚洲最大成人中文| 国产伦人伦偷精品视频| av电影中文网址| 黄片小视频在线播放| 日韩欧美在线二视频| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 亚洲 国产 在线| 成年人黄色毛片网站| 亚洲色图av天堂| 欧美日韩乱码在线| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 日韩大码丰满熟妇| 久久香蕉精品热| 亚洲av第一区精品v没综合| 9191精品国产免费久久| 听说在线观看完整版免费高清| 怎么达到女性高潮| 哪里可以看免费的av片| 免费在线观看日本一区| 国产精品一区二区三区四区久久 | 美女午夜性视频免费| 亚洲免费av在线视频| 久久婷婷成人综合色麻豆| 男人的好看免费观看在线视频 | 少妇被粗大的猛进出69影院| 国产av一区在线观看免费| www日本黄色视频网| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 免费在线观看成人毛片| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲一级av第二区| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 香蕉国产在线看| 中文亚洲av片在线观看爽| a级毛片在线看网站| 曰老女人黄片| 麻豆av在线久日| 黄色成人免费大全| 久久精品91无色码中文字幕| 国产高清有码在线观看视频 | 在线观看免费视频日本深夜| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 精品少妇一区二区三区视频日本电影| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 欧美乱妇无乱码| 久久精品91蜜桃| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 婷婷亚洲欧美| 视频在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 99在线视频只有这里精品首页| 麻豆久久精品国产亚洲av| 在线观看免费日韩欧美大片| 免费在线观看影片大全网站| 国产真实乱freesex| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 妹子高潮喷水视频| 久99久视频精品免费| 精品电影一区二区在线| 国产成人一区二区三区免费视频网站| 免费看a级黄色片| 亚洲免费av在线视频| 久久人人精品亚洲av| 在线看三级毛片| 国产野战对白在线观看| 成人国语在线视频| 日韩精品免费视频一区二区三区| 亚洲第一电影网av| 99精品欧美一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 香蕉av资源在线| 最新美女视频免费是黄的| 99热只有精品国产| 免费在线观看日本一区| 国产精品爽爽va在线观看网站 | 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 露出奶头的视频| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 成人国产综合亚洲| 国产成人影院久久av| 久久精品91蜜桃| 好男人在线观看高清免费视频 | 欧美丝袜亚洲另类 | 一二三四在线观看免费中文在| 亚洲无线在线观看| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 天天添夜夜摸| 欧美绝顶高潮抽搐喷水| 欧美在线一区亚洲| 黄网站色视频无遮挡免费观看| 久久午夜亚洲精品久久| 韩国精品一区二区三区| 中出人妻视频一区二区| 少妇被粗大的猛进出69影院| 91老司机精品| 欧美性猛交黑人性爽| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 白带黄色成豆腐渣| 青草久久国产| 男人舔奶头视频| 在线av久久热| 日韩精品免费视频一区二区三区| 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 男男h啪啪无遮挡| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲精品国产色婷小说| 一个人观看的视频www高清免费观看 | 搡老妇女老女人老熟妇| 少妇 在线观看| 久久九九热精品免费| ponron亚洲| 两人在一起打扑克的视频| 国产真人三级小视频在线观看| svipshipincom国产片| 国产一卡二卡三卡精品| 国产精品野战在线观看| 免费看美女性在线毛片视频| 婷婷精品国产亚洲av| 日韩高清综合在线| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 亚洲成人国产一区在线观看| 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 美女国产高潮福利片在线看| 悠悠久久av| 在线观看日韩欧美| 亚洲欧美日韩无卡精品| 亚洲欧洲精品一区二区精品久久久| 日韩欧美三级三区| 色播在线永久视频| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 99热6这里只有精品| 国产成人系列免费观看| 在线播放国产精品三级| 亚洲精品国产精品久久久不卡| 欧美乱码精品一区二区三区| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 两人在一起打扑克的视频| av欧美777| 久久久久久久久免费视频了| 亚洲人成77777在线视频| 国产成+人综合+亚洲专区| 亚洲国产精品成人综合色| 成人特级黄色片久久久久久久| 女警被强在线播放| 欧美在线黄色| 精品一区二区三区av网在线观看| 欧美性猛交╳xxx乱大交人| 欧美不卡视频在线免费观看 | 中文在线观看免费www的网站 | 中文字幕精品亚洲无线码一区 | 97超级碰碰碰精品色视频在线观看| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 听说在线观看完整版免费高清| 激情在线观看视频在线高清| 大香蕉久久成人网| 国产av在哪里看| 人妻久久中文字幕网| 免费在线观看完整版高清| 看黄色毛片网站| 狠狠狠狠99中文字幕| 成人特级黄色片久久久久久久| 热99re8久久精品国产| www日本黄色视频网| 日本一本二区三区精品| 亚洲人成77777在线视频| 成年版毛片免费区| 在线观看日韩欧美| 国产又色又爽无遮挡免费看| 91老司机精品| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 午夜老司机福利片| 欧美黑人精品巨大| 啦啦啦观看免费观看视频高清| 国内毛片毛片毛片毛片毛片| 午夜两性在线视频| 99久久精品国产亚洲精品| 久久精品国产亚洲av香蕉五月| 窝窝影院91人妻| а√天堂www在线а√下载| 国产亚洲av高清不卡| 久久久精品国产亚洲av高清涩受| 久久狼人影院| 中文字幕久久专区| 51午夜福利影视在线观看| 一区二区三区激情视频| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产| 看黄色毛片网站| 欧美黑人巨大hd| 国内少妇人妻偷人精品xxx网站 | 日本撒尿小便嘘嘘汇集6| 婷婷六月久久综合丁香| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 国产av不卡久久| 欧美国产精品va在线观看不卡| 大香蕉久久成人网| 精品久久久久久,| 九色国产91popny在线| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 成人国语在线视频| 99精品欧美一区二区三区四区| 国产亚洲精品一区二区www| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区| 久久国产精品人妻蜜桃| 丝袜美腿诱惑在线| 国产99白浆流出| 免费看日本二区| 久久久久久久久久黄片| 又黄又粗又硬又大视频| 真人一进一出gif抽搐免费| 搞女人的毛片| 亚洲五月天丁香| 国产精品久久久久久亚洲av鲁大| www.熟女人妻精品国产| 成人亚洲精品一区在线观看| 精品少妇一区二区三区视频日本电影| 日韩一卡2卡3卡4卡2021年| 国产免费av片在线观看野外av| 人人妻人人看人人澡| 久久精品成人免费网站| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 丝袜美腿诱惑在线| 亚洲精品在线美女| 精品欧美一区二区三区在线| 久久久水蜜桃国产精品网| 亚洲av五月六月丁香网| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品电影 | 中国美女看黄片| 男女午夜视频在线观看| 91老司机精品| 久久久久久久精品吃奶| 97碰自拍视频| 国产av一区在线观看免费| 俄罗斯特黄特色一大片| 亚洲精品国产区一区二| 欧美日韩亚洲国产一区二区在线观看| 琪琪午夜伦伦电影理论片6080| 久热爱精品视频在线9| 日韩一卡2卡3卡4卡2021年| 91麻豆精品激情在线观看国产| 国产伦在线观看视频一区| 制服诱惑二区| 精品国产一区二区三区四区第35| 久久 成人 亚洲| 又大又爽又粗| 成人三级黄色视频| 黄色毛片三级朝国网站| 午夜福利在线观看吧| 2021天堂中文幕一二区在线观 | 国产亚洲精品久久久久5区| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看| 亚洲无线在线观看| 亚洲国产高清在线一区二区三 | 午夜免费成人在线视频| 国产精品一区二区免费欧美| 国产成人精品无人区| 日韩欧美国产一区二区入口| 欧美久久黑人一区二区| 亚洲av第一区精品v没综合| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全电影3 | 亚洲国产日韩欧美精品在线观看 | 无遮挡黄片免费观看| 啦啦啦韩国在线观看视频| 国产精品久久视频播放| 在线视频色国产色| 黄色毛片三级朝国网站| 俺也久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕av电影在线播放| 日韩大码丰满熟妇| 啦啦啦免费观看视频1| 午夜日韩欧美国产| 香蕉国产在线看| 久热这里只有精品99| 成人永久免费在线观看视频| 最近在线观看免费完整版| 男女做爰动态图高潮gif福利片| 一本综合久久免费| 日韩有码中文字幕| 亚洲激情在线av| 亚洲国产精品合色在线| 亚洲欧美激情综合另类|