• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometry and thermodynamics of smeared Reissner–Nordstr?m black holes in d-dimensional AdS spacetime

    2017-08-30 08:24:56BoBingYe葉伯兵JuHuaChen陳菊華andYongJiuWang王永久
    Chinese Physics B 2017年9期

    Bo-Bing Ye(葉伯兵),Ju-Hua Chen(陳菊華),and Yong-Jiu Wang(王永久)

    College of Physics and Information Science,Hunan Normal University,Changsha 410081,China

    Geometry and thermodynamics of smeared Reissner–Nordstr?m black holes in d-dimensional AdS spacetime

    Bo-Bing Ye(葉伯兵),Ju-Hua Chen(陳菊華)?,and Yong-Jiu Wang(王永久)

    College of Physics and Information Science,Hunan Normal University,Changsha 410081,China

    We construct a family of d-dimensional Reissner–Nordstr?m-AdS black holes inspired by noncommutative geometry.The density distribution of the gravitational source is determined by the dimension of space,the minimum length of spacetimel,and other parameters(e.g.,n relating to the central matter density).The curvature of the center and some thermodynamic properties of these black holes are investigated.We find that the center of the source is nonsingular for n≥0(under certain conditions it is also nonsingular for?2≤n<0),and the properties at the event horizon,including the Hawking temperature,entropy,and heat capacity,are regular for n>?2.Due to the presence of l,there is an exponentially small correction to the usual entropy.

    noncommutative geometry,physics of black holes,thermodynamics

    1.Introduction

    The noncommutativity of spacetime was originally studied by Snyder.[1]It is currently encoded in the commutator [xμ,xν]=i?μν,where ?μνis an anti-symmetric matrix which determines the fundamental cell discretization of spacetime much in the same way as the Planck constant discretizes the phase space.In recent years,the noncommutative geometry inspired black hole,based on the coordinate coherent state formalism,[2,3]has been studied intensively.In such a framework,Nicolini et al.[4]pointed out that it is not necessary to change the Einstein tensor part of the field equations,and the noncommutative effects can be implemented acting only on the matter source.[4]Furthermore,the noncommutativity eliminates point-like structures in favor of smeared objects in flat spacetime.The effect of smearing is obtained by replacing the point-like gravitational source with a Gaussian distribution of minimal widthFor instance,the density of mass M becomes

    In this framework,Nicolini et al.first found a noncommutative-inspired Schwarzschild black hole in four dimensions.[4]Then the black hole was extended to the cases including electric charge,[5]cosmological constant,[6]and extra-spatial dimensions.[7,8]More generally,the charged rotating noncommutative black holes were also derived.[9]Furthermore,many authors have studied the effects of noncom-mutativity on some properties of a black hole(see Ref.[10]), such as thermodynamics,[11–13]Hawking radiation,[14]and geodesic structure.[15]In the study of the noncommutative Schwarzschild black hole,Nicolini et al.[4]pointed out that the usual problems of the terminal phase of black hole evaporation no longer exist due to the noncommutativity.Nozari and Mehdipour investigated the Hawking radiation from a non-commutative Schwarzschild black hole.[14]Larra?aga investigated the geodesic structure and the precession of the perihelion in noncommutative Schwarzschild-AdS spacetime.[15]For the noncommutative Reissner–Nordstr?m(RN)black hole,Mehdipour and Nozari et al.investigated the tunneling process of charged massive particles;[16,17]Mehdipour and Keshavarz investigated the entropic force;[18]Bhar et al.investigated geodesics,the motion of the test particle,and the scattering of scalar waves.[19]In addition,some authors have also studied the 3-dimensional noncommutative AdS spacetime with charge,angular momentum or not.[20–23]

    Park pointed out that the Gaussianity is not always required,and showed that three-dimensional analog of de Sitter black holes does exist when non-Gaussian(ring-type)smearings of point matter hairs are considered.[24]He gave the matter density as

    where L is a characteristic length scale of the matter distribution and n=0,1,2 correspond to the Gaussian distribution,Rayleigh distribution,and Maxwell–Boltzmann distribution,respectively.The Rayleigh distribution was first introduced by Myung et al.[25]In addition,Liang et al.investigated thermodynamics of noncommutative 3-dimensional black holes based on the Maxwell–Boltzmann smeared mass distribution.[26]Miao and Xu investigated thermodynamics of noncommutative high-dimensional Schwarzschild–Tangherlini-AdS black holes with this kind of general distribution.[27]

    The organization of this paper is as follows.In the next section,the wave packet distribution(2)will be extended and a metric solution of the gravitational source with this more general distribution will be given.In Section 3,we study the properties of this metric solution,including the formation of event horizons,curvature of the center,Hawking temperature, entropy,and heat capacity.Finally,a brief conclusion is given.

    2.Generalized wave packet distribution and its gravitational field

    In this paper,we consider a more general distribution which is an extension of the wave packet distribution(2).Note that for Re(k)>0,Re(d+n)>0,and Re(1/alk)>0 in d space,

    with

    where ωd?1=2πd/2/Γ(d/2)is the area of a unit sphere in (d?1)space.Based on Eq.(3),the densities of total mass M and charge Q can be written as

    where n,k,a,andlare all positive,andlis related to the standard deviation or the width of the distribution.For n>0,the density at the center is zero,so the object is hollow.For n=0, the object is solid and regular,and there is an infinite center density for n<0.

    The density distribution(5)can be understood from two aspects.One is the noncommutative geometry.If we take d=3,k=2,a=1,andequation(5)will reduce to Eq.(1);and similarly if we take d=2,k=2,a=1,and l=L,equation(5)will reduce to Eq.(2).The other is from quantum mechanics.If there is an object described by wave function ψ(r)with|ψ(r)|2=ρ(r),e.g.,a bound particle or a Gaussian wave packet,then ρ(r)can be considered as the probability density of the object to be found.An observer will see or think that the mass distribution of the object has a form described by Eq.(5).More specifically,giving M(r)a measured value at point(r,θ,?),M(r)is then proportional to the probability of finding the object in the region of radius r,i.e.,

    Since M(∞)=M,equation(7)becomes

    Mρ(r)is therefore equal to ρM(r),which is just Eq.(5).In quantum mechanics,l is related to the standard deviation of position,and l0 determined by the uncertainty principle.

    The line element describing the spacetime of a static, spherically symmetric distribution of a gravitational field source in(d+1)dimensions has the following form:

    with

    where Fμνand Jνare the electromagnetic tensor and the current density,respectively,and the Greek indicesμ,ν,...vary over 0,1,2,...,d.

    We take the distribution of the source to be anisotropic and therefore choose the energy–momentum tensorin the form

    where ρ,pr,p⊥,and Tμν|elrepresent the energy density(apart from the electromagnetic field),the radial pressure,the tangential pressure,and the electromagnetic energy–momentum tensor,respectively.uμis the velocity of the fluid,and χμ=is an unit vector along the radial direction.Thus,we have

    We do not know the contribution of the charge Q to the energy density ρ,so we take the following form:

    where W is to be determined.

    With the charge density(6),one can solve Eq.(11)to yield

    where γ(s,x)is the lower incomplete gamma function

    To preserve the property of RN-AdS metric aswe take pr=?ρ.Using the conservation conditionwe can obtain the tangential pressure as

    where the prime represents the derivative with respect to r.For an asymptotic observer,

    so this requires

    Then the Einstein–Maxwell field equations lead to the following solution(d>2):

    with

    and H=?H(∞),e.g.,

    When l→0,m(r)→1,and q(r)→1 for n≤0,equation(21)reduces to the usual RN-(A)dS metric.[29]For n>0, in order to be reduced to the RN-(A)dS metric,the limit must be taken as l→ε with small ε.If we take l→0 for n>0,both ρM(r)and ρQ(r)in Eqs.(5)and(6)will be zero,i.e.,there will be no gravitational source.

    Far away from the center,we can see that the(anti-)de Sitter spacetime is shown in Eq.(21).At the neighborhood of the center,we have

    By substituting Eq.(26)into Eq.(21)and retaining only the leading order terms,f(r)becomes

    with

    which shows the(anti-)de Sitter type or just flat for n≥0,depending on the relative values of the parameters Λ,M,Q,l,n, d,a,and k.

    3.Properties of the smeared RN-(A)dS black holes

    3.1.Formation of event horizons

    The horizon radius rhcan be found from the equation g00(rh)=0.In our case we cannot solve analytically rh,so we solve M in terms of rh,Q,and Λ as

    By expanding Eq.(29)near infinity and the center,we can see that

    with

    where c1is finite and larger than zero.

    Fig.1.(color online)Plots of M versus r h:(a)Q=0,Λ=?0.5,and k=a=l=1;d=3 for n≥?2 and d=5 for n<?2;(b)Λ=?0.5 and a=l=1;d=3,k=1 for n≥?2 and d=5,k=2 for n<?2.

    The behavior of M(rh)is shown in Fig.1.We can see that when n>?2,there are the inner and outer horizons and M(rh) has a minimum M0at r0where the two horizons are merged. For example,M02.57land r0?3.38lfor Q=Λ=n=0, k=a=1,and d=3.That means there is an extremal black hole,and no black hole exists with mass less than M0.In the case of n≤?2,there is no extremal black hole.From Fig.1, we can also find that both M0and r0increase with the increase of Q and n.More generally,the effects of different parameters on M0and r0are summarized in Table 1.Table 1 shows that the parameters Q2,d,n,a,andlhave similar effects on M0and r0,while the k parameter is the opposite.

    Table 1.The effects of different parameters on M0 and r0,e.g.,M0 decreases and r0 increases with the increase of Λ.

    3.2.Curvature of the center

    For the Schwarzschild black hole or RN black hole,we know that there is a gravitational singularity at the center, where the gravitational field becomes infinite in a way that does not depend on the coordinate system.Due to the presence of l,it should be expected that the situation will be different.Curvature invariants of spacetime,e.g.,the Kretschmann scalar K(K≡RμνστRμνστ),can be used to measure the gravitational field strength and verify the existence of the singularity.Such quantities become infinite within the singularity but finite outside the location,e.g.,for the RN black hole,K is infinite for r=0 and finite for r>0.

    The curvature scalar R for the smeared RN-(A)dS metric is found as

    In addition,the Kretschmann scalar K is given by

    where

    At the neighborhood of the center,we obtain

    For n>0,with R(0)≡limr→0R and K(0)≡limr→0K, one can obtain from Eqs.(31),(33),and(35)that

    Furthermore,

    Equations(36)and(37)show that there is a simple relationship between K and R at r=0 for the smeared RN-(A)dS black hole,but not for the usual black hole.For n<0,we will see that R and K are still limited under conditions of Eqs.(38)and (39),even though the central matter density is divergent.For instance,in the case of?1≤n<0,in order to avoid the divergent term r2n(or the term A5)in K,the coefficient of r2nmust be zero,i.e.,Ψn(k)=0.More generally,we have

    and

    It is interesting to note that in the case of n=?2 and k=1, the massive object only in(3+1)dimensions is nonsingular. From the above equations,we can see that in the case of n<0, the conditions are required to make the curvature limited,but it is not for the case of n≥0,which shows that the wave packet with n≥0 is always regular.

    For a special class of objects with Ψn(k)=0(or ρ=0, M=?W),e.g., the energy–momentum tensor is equivalent to purely electrical that can be written as

    with ?=?rE E′/(d?1),and for n≥?1 the center is nonsingular.Moreover,K(0)=8(d+1)Λ2/d(d?1)2for n>?1, which shows that the center is the(anti-)de Sitter type or just flat.

    3.3.Hawking temperature and entropy

    The Hawking temperature can be calculated as follows:

    By simplifying the above equation for the metric(21),we obtain

    Near infinity or the center,one can find from Eq.(43)that

    where c2is finite and c2≥0.

    The Hawking temperature variation is plotted against the black hole radius r+in Fig.2.(i)When n<?2,figure 2(a) shows that TH(0)is divergent,just like the Schwarzschild black hole or RN black hole.(ii)When n=?2,THis positive and finite as r+tends to zero.(iii)When n>?2,we can see that the temperature is negative where r+<r0(see also Fig.5),which is not physical;for r+=r0(corresponding to the radius of the extremal black hole),TH=0 which means a frozen extremal black hole;for r+>r0,there is a(local)maximum Tmax(where we call rmax)to replace the divergence,e.g.,Tmax0.01/l and rmax6.54lfor Q=Λ=n=0, k=a=1,and d=3.Moreover,forΛ=0,THapproaches zero as r+→∞.We can also see from Fig.2(b)that there is a local minimum Tmin(where we call rmin)when Λ is larger than a critical value and less than zero.

    On the other hand,we can find from Fig.2(a)that,both rmaxand r0(see also Fig.1 or Table 1)increase but Tmaxdecreases with the increase of n.More generally,the effects of different parameters on Tmax,rmax,Tmin,and rminare shown in Table 2.From Table 2 we can see that the parameters Q2,n,a, andlhave similar effects on Tmax,rmax,Tmin,and rmin,and the k parameter is the opposite.Furthermore,for each parameter,Tmaxand Tminare affected in the same direction,and from Fig.2(b)we know that there will be no local maximum and minimum temperature if Λ is too small.

    Fig.2.(color online)Plots of T H versus r+:(a)Λ=0,Q=1,and a=l=1; d=3,k=1 for n≥?2 and d=5,k=2 for n<?2;(b)Q=1,d=3, n=0,and k=a=l=1.

    Table 2.The effects of different parameters on T max,r max,T min,and r min,e.g.,T max decreases and r max increases with the increase of Q2. There is a local minimum T min only when Λ is larger than a critical value and less than zero.

    For the case of charged black hole,the first law of thermodynamics is described by

    where κ,S,and Φ are the surface gravity,entropy,and electric potential on the exterior horizon,respectively.Substituting Eq.(42)into Eq.(47)for fixed electric charge Q,one can derive

    Using Eq.(21),we can obtain

    It is worth noting that the lower limit r0of the integral is not equal to zero,and for different parameter values(such as the charge Q),the value of r0is different.The behavior of the entropy S with respect to r+is shown in Fig.3.We can see that d,n,and k affect not only the size of r0,but also the ratio of S to r+.

    Fig.3.(color online)Plots of the entropy S versus r+for Λ=?0.5 and Q=a=l=1.

    By expanding Eq.(49),we can obtain

    where Γ(s,x)is the upper incomplete gamma function

    From Eq.(50),we can see that the first term is the usual semi-classical Bekenstein–Hawking area law,and the other is the correction to the area law.Expanding S(r)for smalllor large r to the leading order,we have

    Hence,one can find that it is an exponentially small correction to the usual entropy due to the fundamental minimum length l.

    The heat capacity at a constant charge is given by

    which determines the thermodynamic stability of the black holes.We can see from Fig.1 and Eq.(30)that?M/?r+is generally positive(?M/?r+=0 at r+=r0)for Λ≤0,so the sign of C is the same as that of?TH/?r+.Therefore,the black hole is unstable when?TH/?r+<0.

    Using Eqs.(43)and(49),we obtain

    The behavior of C is shown in Fig.4.Figure 4(a)shows the case of Λ=0.(i)When n<?2,C<0(for all r+),so this black hole is unstable,just like the usual Schwarzschild black hole or RN black hole.(ii)When n=?2,the middle black hole is stable and the two sides are unstable.(iii)When n>?2,the black hole is stable if r0≤r+<rmax.When n>?2, we see from Fig.4(b)that Λ has a significant influence on C.Λ=Λcritis a critical case where Tmax=Tmin.(i)When Λcrit<Λ<0,the black hole is stable for r0≤r+<rmaxor r+>rmin(see Fig.5).C is divergent at rmaxor rminfor Λcrit≤Λ<0,where a phase transition occurs.(ii)When Λ≤Λcrit,the black hole is stable for all r+.

    Fig.4.(color online)Plots of C versus r+:(a)Λ=0,Q=1,and a=l=1; d=3,k=1 for n≥?2 and d=5,k=2 for n<?2;(b)Q=1,d=3,n=0, and k=a=l=1.

    Figure 5 shows the behavior of M,TH,S,and C for a smeared and regular RN-AdS black hole as a whole. We can see that for a black hole with suitable parameters Q,Λ,d,n,k,a,and l,there is an extremal black hole with r+=r?=r0.The extremal black hole has the minimum total mass,and both its temperature and entropy are equal to zero. In addition,the extremal black hole is also stable.From Table 1 and Table 2,we can find that the parameters Q2,n,a,andlhave similar effects on M(and TH),while the k parameter is the opposite to the previous parameters.We can also find that for a higher dimension d,both M and THwill increase forfixed r+,and the radius of the extremal black hole r0will also be greater.

    Fig.5.(color online)Plots of M,T H,S,and C as a whole in the case of Q=1,Λ=?0.003,d=3,n=0,and k=a=l=1.

    4.Conclusion

    We have constructed a general Reissner–Nordstr?m-(A)dS black hole inspired by noncommutative geometry for which the gravitational source is described by the density distribution(5)and(6),and the characteristics of the spacetime are affected by the following parameters:the total mass M, electric charge Q,cosmological constant Λ,and several parameters affecting the density distribution,including d(the dimension of space),n(relating to the central matter density),l (the minimum length),and so on.This black hole spacetime is asymptotically flat or(A)dS at large distance,and it is flat or the(A)dS type near the center of the gravitational source for n≥0,which depends on the relative values of the above parameters.

    By analyzing the central curvature K,the formation of event horizons rh,Hawking temperature TH,entropy S,and heat capacity C,we found that the center of the source is nonsingular for n≥0,and under certain conditions(describing by Eqs.(38)and(39))it is also nonsingular for?2≤n<0.We also found that the Hawking temperature THhas no usual divergence problem for n>?2.These results show that about nonsingularity,the critical point of n for the central curvature and thermodynamic properties is different.We have also found that the parameters Q2,n,a,and l have similar effects on both M and TH,while the k parameter is the opposite to the previous parameters.If Λ is too small,there will be no local maximum and minimum temperature.Λ also has an important effect on C.Due to the fundamental minimum length l, there is a correction to the usual semi-classical area law and the correction of entropy decreases exponentially.

    [1]Snyder H S 1947 Phys.Rev.71 38

    [2]Smailagic A and Spallucci E 2003 J.Phys.A 36 L467

    [3]Smailagic A and Spallucci E 2003 J.Phys.A 36 L517

    [4]Nicolini P,Smailagic A and Spallucci E 2006 Phys.Lett.B 632 547

    [5]Ansoldi S,Nicolini P,Smailagic A and Spallucci E 2007 Phys.Lett.B 645 261

    [6]Nicolini P and Torrieri G 2011 J.High Energy Phys.08 097

    [7]Spallucci E,Smailagic A and Nicolini P 2009 Phys.Lett.B 670 449

    [8]Nozari K and Mehdipour S H 2010 Commun.Theor.Phys.53 503

    [9]Modesto L and Nicolini P 2010 Phys.Rev.D 82 104035

    [10]Nicolini P 2009 Int.J.Mod.Phys.A 24 1229

    [11]Myung Y S,Kim Y W and Park Y J 2007 J.High Energy Phys.02 012

    [12]Banerjee R,Majhi B R and Samanta S 2008 Phys.Rev.D 77 124035

    [13]Kim W,Son E J and Yoon M 2008 J.High Energy Phys.04 042

    [14]Nozari K and Mehdipour S H 2008 Classical and Quantum Gravity 25 175015

    [15]Larra?aga A 2013 Rom.J.Phys.58 50

    [16]Mehdipour S H 2010 Int.J.Mod.Phys.A 25 5543

    [17]Nozari K and Islamzadeh S 2013 Astrophys.Space Sci.347 299

    [18]Mehdipour S H and Keshavarz A 2012 Europhys.Lett.98 10002

    [19]Bhar P,Rahaman F,Biswas R and Mondal U 2015 Commun.Theor. Phys.64 1

    [20]Tejeiro J M and Larra?aga A 2011 The Abraham Zelmanov Journal 4 28

    [21]Rahaman F,Bhar P,Sharma R and Tiwari R K 2015 Eur.Phys.J.C 75 107

    [22]Tejeiro J M and Larra?aga A 2012 Pramana J.Phys.78 155

    [23]Rahaman F,Kuhfittig P K F,Bhui B C,Rahaman M,Ray S and Mondal U F 2013 Phys.Rev.D 87 084014

    [24]Park M I 2009 Phys.Rev.D 80 084026

    [25]Myung Y S and Yoon M 2009 Eur.Phys.J.C 62 405

    [26]Liang J,Liu Y C and Zhu Q 2014 Chin.Phys.C 38 025101

    [27]Miao Y G and Xu Z M 2016 Eur.Phys.J.C 76 217

    [28]Tangherlini F R 1963 Nuovo Cimento 27 636

    [29]Daghigh R G,Kunstatter G,Ostapchuk D and Bagnulo V 2006 Classical and Quantum Gravity 23 5101

    14 March 2017;revised manuscript

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090202

    ?Corresponding author.E-mail:jhchen@hunnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    国产日韩欧美在线精品| 国产精品人妻久久久影院| 久久青草综合色| 国产精品一区www在线观看| tube8黄色片| www.av在线官网国产| 亚洲精品,欧美精品| 精品久久久久久久久av| 色婷婷久久久亚洲欧美| 青春草视频在线免费观看| 熟女电影av网| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 水蜜桃什么品种好| 久久精品熟女亚洲av麻豆精品| 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 欧美激情极品国产一区二区三区 | 国产午夜精品一二区理论片| 伊人亚洲综合成人网| av又黄又爽大尺度在线免费看| 丰满少妇做爰视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲成色77777| 欧美bdsm另类| 国产免费一区二区三区四区乱码| 又爽又黄a免费视频| 成人亚洲精品一区在线观看| 99久久精品热视频| 99久久综合免费| 在线亚洲精品国产二区图片欧美 | 少妇人妻一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 久久人人爽人人片av| 99久久精品一区二区三区| 在线看a的网站| 国产精品国产三级国产av玫瑰| 99九九在线精品视频 | 国产国拍精品亚洲av在线观看| 夜夜骑夜夜射夜夜干| 精品亚洲成a人片在线观看| 亚洲av二区三区四区| 国产极品粉嫩免费观看在线 | 国产精品嫩草影院av在线观看| 丁香六月天网| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 日本黄色日本黄色录像| 国产一区二区三区av在线| 一级毛片久久久久久久久女| 国产精品久久久久久久久免| 国产高清不卡午夜福利| 成人国产av品久久久| 啦啦啦啦在线视频资源| 女人久久www免费人成看片| 日韩伦理黄色片| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| 人体艺术视频欧美日本| 国产国拍精品亚洲av在线观看| 国产片特级美女逼逼视频| 日韩视频在线欧美| av在线观看视频网站免费| 成人漫画全彩无遮挡| 国产精品一二三区在线看| a级片在线免费高清观看视频| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 又爽又黄a免费视频| 在线天堂最新版资源| 十分钟在线观看高清视频www | 九草在线视频观看| 欧美bdsm另类| 国内精品宾馆在线| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| 日日爽夜夜爽网站| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 午夜福利,免费看| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 日日啪夜夜爽| 中文天堂在线官网| 亚洲精品国产色婷婷电影| 人妻系列 视频| 国产精品不卡视频一区二区| 国产一区二区在线观看日韩| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 丝袜喷水一区| 国产亚洲5aaaaa淫片| 一级毛片久久久久久久久女| 香蕉精品网在线| 九草在线视频观看| 亚洲av福利一区| 国产精品一区www在线观看| 免费看不卡的av| 在线观看免费日韩欧美大片 | 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 久久久久国产精品人妻一区二区| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 99久国产av精品国产电影| 午夜免费观看性视频| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| 亚洲人成网站在线播| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 久久精品夜色国产| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频 | 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 欧美成人午夜免费资源| 22中文网久久字幕| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 国产伦理片在线播放av一区| 久久久久久伊人网av| 曰老女人黄片| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 美女cb高潮喷水在线观看| av视频免费观看在线观看| 欧美日韩在线观看h| 亚洲成人手机| 国产av一区二区精品久久| av播播在线观看一区| 毛片一级片免费看久久久久| 精品亚洲成国产av| 国产精品一区二区性色av| av天堂久久9| 中文字幕制服av| 日本免费在线观看一区| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 亚洲精品久久午夜乱码| 大又大粗又爽又黄少妇毛片口| 亚洲真实伦在线观看| av卡一久久| 在线观看一区二区三区激情| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 美女福利国产在线| 亚州av有码| 2021少妇久久久久久久久久久| 人妻 亚洲 视频| 深夜a级毛片| 国产免费一区二区三区四区乱码| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 国产白丝娇喘喷水9色精品| 亚洲自偷自拍三级| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 午夜福利影视在线免费观看| 免费看光身美女| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久婷婷青草| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 久久精品国产自在天天线| 老司机影院成人| 国产伦理片在线播放av一区| 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| 久久久久久久精品精品| 秋霞伦理黄片| 日日撸夜夜添| 亚洲国产成人一精品久久久| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 国产色婷婷99| 3wmmmm亚洲av在线观看| 亚洲精品第二区| av天堂中文字幕网| 久久久久人妻精品一区果冻| 午夜影院在线不卡| 美女主播在线视频| 一级黄片播放器| h日本视频在线播放| 精品久久久久久久久av| 日本91视频免费播放| 国产极品天堂在线| 午夜老司机福利剧场| 赤兔流量卡办理| 人人妻人人澡人人看| 人妻少妇偷人精品九色| 插逼视频在线观看| 亚洲色图综合在线观看| kizo精华| 午夜久久久在线观看| 亚洲内射少妇av| 亚洲人成网站在线播| 22中文网久久字幕| 亚洲四区av| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 午夜老司机福利剧场| 亚洲无线观看免费| √禁漫天堂资源中文www| 内地一区二区视频在线| 成年美女黄网站色视频大全免费 | 亚洲国产欧美日韩在线播放 | 一级av片app| 男女免费视频国产| 亚洲国产最新在线播放| av视频免费观看在线观看| 亚洲美女视频黄频| 国产日韩欧美视频二区| 欧美xxⅹ黑人| 亚洲国产最新在线播放| av有码第一页| 日韩强制内射视频| 日韩电影二区| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 久久99热这里只频精品6学生| 久久狼人影院| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 日产精品乱码卡一卡2卡三| 美女cb高潮喷水在线观看| 亚洲欧美日韩东京热| 97在线视频观看| 在线观看人妻少妇| 人人妻人人澡人人看| 日韩一区二区三区影片| 三级国产精品欧美在线观看| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 人人澡人人妻人| 国产色婷婷99| 99热网站在线观看| 久久精品国产亚洲网站| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 日日摸夜夜添夜夜添av毛片| 国产精品免费大片| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 下体分泌物呈黄色| 国产成人精品无人区| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 一级二级三级毛片免费看| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 91精品国产九色| 男女边摸边吃奶| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 国产黄片视频在线免费观看| 国产成人一区二区在线| 97在线视频观看| 亚洲av成人精品一区久久| 26uuu在线亚洲综合色| 三级国产精品片| 制服丝袜香蕉在线| av不卡在线播放| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 久久婷婷青草| 国产精品免费大片| 成年女人在线观看亚洲视频| 欧美精品国产亚洲| 日日啪夜夜爽| 美女国产视频在线观看| 久久精品国产亚洲av天美| 久久国产乱子免费精品| 性色av一级| 伊人亚洲综合成人网| 最近手机中文字幕大全| 插逼视频在线观看| 插阴视频在线观看视频| 精品国产一区二区三区久久久樱花| 久久97久久精品| 色5月婷婷丁香| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 国产一级毛片在线| 亚洲精品日韩av片在线观看| 国产一级毛片在线| 国产熟女午夜一区二区三区 | 亚洲,欧美,日韩| 成人特级av手机在线观看| 日韩视频在线欧美| 高清av免费在线| 免费黄频网站在线观看国产| 久久久久视频综合| 久久精品国产a三级三级三级| av免费观看日本| 欧美3d第一页| 少妇人妻一区二区三区视频| 国产一级毛片在线| 如日韩欧美国产精品一区二区三区 | 一区二区三区乱码不卡18| 国产精品.久久久| 久久97久久精品| 精品少妇黑人巨大在线播放| 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区 | 国产视频首页在线观看| 国产精品人妻久久久久久| 亚洲欧洲日产国产| 美女中出高潮动态图| 日本wwww免费看| 特大巨黑吊av在线直播| 久久久久精品久久久久真实原创| 内地一区二区视频在线| 亚洲伊人久久精品综合| 乱人伦中国视频| 免费播放大片免费观看视频在线观看| 成年av动漫网址| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 如日韩欧美国产精品一区二区三区 | 国产精品嫩草影院av在线观看| 中文字幕人妻丝袜制服| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 国产淫片久久久久久久久| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 婷婷色麻豆天堂久久| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 日本与韩国留学比较| 日韩一区二区三区影片| 亚洲天堂av无毛| 热re99久久精品国产66热6| 街头女战士在线观看网站| a级毛色黄片| 在线观看免费日韩欧美大片 | 不卡视频在线观看欧美| 免费观看无遮挡的男女| 日韩熟女老妇一区二区性免费视频| 高清不卡的av网站| 亚洲av二区三区四区| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 男女边摸边吃奶| 少妇熟女欧美另类| 国产一区二区三区av在线| 国产一级毛片在线| 一区二区av电影网| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 欧美97在线视频| 少妇的逼好多水| 日韩精品免费视频一区二区三区 | 日韩成人伦理影院| av免费在线看不卡| 久久av网站| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 国产精品.久久久| 欧美国产精品一级二级三级 | 精品一区二区免费观看| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 亚洲av男天堂| 色视频www国产| 久久国产精品大桥未久av | 久久这里有精品视频免费| 日本vs欧美在线观看视频 | 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 免费看光身美女| 美女福利国产在线| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 搡女人真爽免费视频火全软件| 97在线人人人人妻| 午夜激情久久久久久久| 国产精品不卡视频一区二区| 一区二区三区四区激情视频| 精品国产露脸久久av麻豆| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看| 狂野欧美激情性bbbbbb| 深夜a级毛片| 久久久久久人妻| 一级毛片 在线播放| 男人添女人高潮全过程视频| 亚洲av电影在线观看一区二区三区| 国产毛片在线视频| 亚洲成人手机| 高清黄色对白视频在线免费看 | 又大又黄又爽视频免费| 一个人免费看片子| 97在线视频观看| 国产成人一区二区在线| 大片免费播放器 马上看| 免费观看在线日韩| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| 亚洲不卡免费看| 丰满人妻一区二区三区视频av| 精品视频人人做人人爽| 99九九线精品视频在线观看视频| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 男的添女的下面高潮视频| 99热这里只有是精品在线观看| av福利片在线| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡 | 寂寞人妻少妇视频99o| 久久精品夜色国产| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 国产成人精品婷婷| a级片在线免费高清观看视频| 久久精品国产自在天天线| 99久久人妻综合| 亚洲自偷自拍三级| 日韩成人伦理影院| 精品卡一卡二卡四卡免费| 亚洲欧美精品自产自拍| 色视频www国产| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲 | 在线观看三级黄色| 中国美白少妇内射xxxbb| 中文字幕av电影在线播放| 欧美日韩一区二区视频在线观看视频在线| 日韩 亚洲 欧美在线| 如日韩欧美国产精品一区二区三区 | 99热这里只有是精品在线观看| 少妇丰满av| 欧美精品高潮呻吟av久久| 亚洲欧洲日产国产| 黄色配什么色好看| 在线 av 中文字幕| 成人黄色视频免费在线看| av黄色大香蕉| 日韩强制内射视频| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 深夜a级毛片| 极品少妇高潮喷水抽搐| a级毛片免费高清观看在线播放| 免费看光身美女| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看 | 欧美最新免费一区二区三区| 简卡轻食公司| 3wmmmm亚洲av在线观看| 黄色欧美视频在线观看| 久久久久久久精品精品| 成年美女黄网站色视频大全免费 | 久久久久久久久久成人| 夜夜骑夜夜射夜夜干| 2022亚洲国产成人精品| 久久精品国产a三级三级三级| 亚洲内射少妇av| 不卡视频在线观看欧美| 我要看黄色一级片免费的| 蜜臀久久99精品久久宅男| 九九爱精品视频在线观看| 少妇的逼好多水| 国产在线视频一区二区| 亚洲精品日本国产第一区| 午夜av观看不卡| 乱码一卡2卡4卡精品| 成人特级av手机在线观看| 少妇高潮的动态图| 乱系列少妇在线播放| 看非洲黑人一级黄片| 男人添女人高潮全过程视频| av在线播放精品| 在线看a的网站| 亚洲精品456在线播放app| 18禁裸乳无遮挡动漫免费视频| 日韩成人伦理影院| 最近手机中文字幕大全| 黄片无遮挡物在线观看| 一级爰片在线观看| 天堂8中文在线网| 欧美三级亚洲精品| 男人狂女人下面高潮的视频| av又黄又爽大尺度在线免费看| 亚洲性久久影院| 春色校园在线视频观看| 如日韩欧美国产精品一区二区三区 | 如何舔出高潮| 又粗又硬又长又爽又黄的视频| 国产探花极品一区二区| 男人爽女人下面视频在线观看| 欧美日韩视频精品一区| 欧美97在线视频| 国产av国产精品国产| 久久99一区二区三区| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 人妻制服诱惑在线中文字幕| 在现免费观看毛片| 最黄视频免费看| 亚洲丝袜综合中文字幕| 美女福利国产在线| 婷婷色麻豆天堂久久| av在线app专区| 在线观看国产h片| 高清午夜精品一区二区三区| 亚洲成人一二三区av| 亚洲自偷自拍三级| 九草在线视频观看| 国产美女午夜福利| 菩萨蛮人人尽说江南好唐韦庄| 18+在线观看网站| 一区二区三区乱码不卡18| 国产精品福利在线免费观看| 在线观看一区二区三区激情| 最近中文字幕高清免费大全6| 日韩欧美 国产精品| 欧美成人午夜免费资源| 国产精品一区二区在线不卡| 日本免费在线观看一区| 香蕉精品网在线| 精品久久国产蜜桃| .国产精品久久| 麻豆精品久久久久久蜜桃| 18禁裸乳无遮挡动漫免费视频| 99re6热这里在线精品视频| 精品一区二区三区视频在线| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线观看播放| 精品久久久精品久久久| 国产精品无大码| 男女无遮挡免费网站观看| 男男h啪啪无遮挡| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 视频中文字幕在线观看| 两个人的视频大全免费| 久久精品国产亚洲av天美| 国产日韩一区二区三区精品不卡 | 亚洲美女黄色视频免费看| 中文字幕久久专区| 午夜福利视频精品| 最新的欧美精品一区二区| 国产一区有黄有色的免费视频| 天美传媒精品一区二区| 成人毛片a级毛片在线播放| 自线自在国产av| 成人漫画全彩无遮挡| 高清黄色对白视频在线免费看 | 精品久久久久久久久av| 夫妻性生交免费视频一级片| 妹子高潮喷水视频| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久人人人人人人| 麻豆精品久久久久久蜜桃| 精品午夜福利在线看| 色94色欧美一区二区| 久久99热6这里只有精品| 久久人人爽人人爽人人片va| av福利片在线观看| 成人综合一区亚洲| 18禁在线无遮挡免费观看视频| 国产精品偷伦视频观看了| 日韩电影二区| 亚洲国产最新在线播放| av免费观看日本| 久久久欧美国产精品| 欧美 亚洲 国产 日韩一| 又大又黄又爽视频免费| 亚洲国产精品999| 中文乱码字字幕精品一区二区三区| 精品久久久久久电影网| 不卡视频在线观看欧美| 亚洲欧美日韩另类电影网站|