• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Invariants-based shortcuts for fast generating Greenberger-Horne-Zeilinger state among three superconducting qubits?

    2017-08-30 08:25:02JingXu徐晶LinYu于琳JinLeiWu吳金雷andXinJi計(jì)新
    Chinese Physics B 2017年9期

    Jing Xu(徐晶),Lin Yu(于琳),Jin-Lei Wu(吳金雷),and Xin Ji(計(jì)新)

    Department of Physics,College of Science,Yanbian University,Yanji 133002,China

    Invariants-based shortcuts for fast generating Greenberger-Horne-Zeilinger state among three superconducting qubits?

    Jing Xu(徐晶),Lin Yu(于琳),Jin-Lei Wu(吳金雷),and Xin Ji(計(jì)新)?

    Department of Physics,College of Science,Yanbian University,Yanji 133002,China

    As one of the most promising candidates for implementing quantum computers,superconducting qubits(SQs)are adopted for fast generating the Greenberger–Horne–Zeilinger(GHZ)state by using invariants-based shortcuts.Three SQs are separated and connected by two coplanar waveguide resonators(CPWRs)capacitively.The complicated system is skillfully simplified to a three-state system,and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses.Numerical simulations indicate the scheme is insensitive to parameter deviations.Besides,the robustness of the scheme against decoherence is discussed in detail.

    Greenberger–Horne–Zeilinger state,superconducting qubits,shortcuts to adiabaticity

    1.Introduction

    With the rapid development of quantum information processing,the concept of quantum entanglement is increasingly considered to be essential.Generations of entangled states are heavily relied on in many important applications, such as quantum teleportation,[1]quantum communication,[2]quantum secret sharing,[3]fault-tolerant computing,[4,5]and so on.[6]Greenberger–Horne–Zeilinger(GHZ)states are a group of well-known entangled states because they provide a possibility for testing quantum mechanics against local hidden theory without using Bell’s inequality.[7,8]Therefore,various schemes for generating GHZ states have been proposed during the past ten years or more in various physical systems,such as trapped ions systems,[9]photons systems,[1,10]atoms systems,[11]and solid systems.[12]In addition,many schemes for generating GHZ states have been implemented by using superconducting qubits(SQs)in superconducting circuits.[13–17]Compared with other systems,SQ systems possess a natural superiority of scalability for implementing quantum computers.[18–21]Devices of SQs used in quantum computers can be created more easily for large-scale integration and scale with the mature microelectronic technique.Besides, coupling strengths among SQs can be controlled well up to desired values through modulating electromagnetic signals and designing level configurations.In this paper,as one of the most promising candidates for implementing quantum computers,SQs are adopted for fast generating GHZ state.

    Stimulated Raman adiabatic passage(STIRAP)is one technique related to adiabatic evolution and has been widely used for robust quantum state transfer.[22–24]STIRAP has also been used to generate GHZ states in cavity quantum electrodynamics.[25–28]In an SQ system,Wu et al.generated n-qubit GHZ states based on STIRAP in 2016.[29]As is well known,however,STIRAP usually requiresa relatively long interaction time for restraining non-adiabatic transitions,which may accumulate decoherence and errors leading to useless dynamics.Therefore,a set of techniques of shortcuts to adia-baticity(STA),which aim to accelerate an adiabatic evolution process,arose at the historic moment.[30–44]Take some of the most recent works as examples;Kang et al.proposed two schemes to speed up adiabatic evolutions by reverse engineering of a Hamiltonian,[42,43]and Chen et al.presented arbitrary quantum state engineering in three-state systems.[44]By using STA,lots of remarkable achievements have been made in quantum information processing.[45–55]Also,many schemes have been proposed for speeding up the generations of GHZ states.[56–61]

    Recently,some schemes have been proposed by combining the technique of STA and the SQ system to generate entangled states.For example,Zhang et al.proposed a scheme for fast reparation of the three-qubit GHZ state in 2016;[59]Kang et al.proposed two schemes to fast generate W states in 2016;[62,63]Yu et al.fast generated a W state recently.[64]There are generally two kinds of techniques of STA widely used.One is to construct a Hamiltonian by means of instantaneous eigenstates given,and the other is to chase down the desired instantaneous eigenstates based on the given Hamiltonian.Invariants-based shortcuts we will employ in this paper belong to the second kind.Different from Refs.[56]–[59]using the first kind of technique,the scheme needs to neither interpolate the system Hamiltonian nor add counter-diabatic driving pulses,but find a pair of suitable Rabi frequencies by constructing a Hermitian invariant of the system.Compared with Refs.[60]and[61]also using the invariants-based short-cuts,apart from advantages of the SQ system,the scheme we proposed has simpler energy level configurations of qubit carriers and fewer driving pulses.

    2.Physical model and effective dynamics

    The physical model for generating the GHZ state among three SQs is shown in Fig.1.There are three SQs separated by two single-mode coplanar waveguide resonators(CPWRs) capacitively.The three SQs have identical Λ-type level configuration with one upper level|e〉and two lower levels|gL〉and|gR〉.Transitions|e〉1?|gL〉1of SQ 1 and|e〉2?|gL〉2of SQ 2 are resonantly coupled to CPWR-L with corresponding coupling strengths λ1,Land λ2,L,respectively.|e〉2?|gR〉2of SQ 2 and|e〉3?|gR〉3of SQ 3 are resonantly coupled to CPWR-R with corresponding coupling strengths λ2,Rand λ3,R,respectively.In addition,|e〉1?|gR〉1of SQ 1 and |e〉3?|gL〉3of SQ 3 are resonantly driven by two time dependent classical laser fields with corresponding Rabi frequencies ?R(t)and ?L(t),respectively.Then,the interaction Hamiltonian of the whole system is(ˉh=1):

    where aL(R)is the annihilation operator of CPWR-L(R).

    Fig.1.(color online)The diagrammatic sketch of the SQ system,level configurations,and related transitions of three SQs.

    The system initial state is|φ1〉=|gR〉1|gL〉2|gR〉3|0〉L|0〉R, denoting the three SQs in states|gR〉,|gL〉,and|gR〉,respectively,and the two CPWRs both in the vacuum state.The SQ system will evolve in the subspace spanned by

    with|1〉L(R)denoting a single photon in CPWR-L(R).Then Hamiltonian(1)can be rewritten as H(t)=Ha?l(t)+Ha?cwith

    If we set λ1,L=λ2,L=λ2,R=λ3,R=λ with λ being real,and choose the eigenstates of Ha?c,

    with the corresponding eigenvalues 0,±λ,andas a set of transformations,then Hamiltonian(3)will become

    Through performing the unitary transformation U= exp(?i H0t)and disregarding high oscillating terms with the limit condition ?L(R)(t)?2λ,Hamiltonian(5)is simplified to an effective Hamiltonian

    in the subspace{|φ1〉,|ΨD〉,|φ7〉}.The effective Hamiltonian(6)can be viewed as the Hamiltonian of a three-state system,and it will approximatively govern the evolution of the SQ system as long as the limit condition ?L(R)(t)?2λ is satisfied very well.

    3.Invariants-based shortcuts for fast generating the three-qubit GHZ state

    In this section,we show the invariants-based shortcuts for fast generating the three-qubit GHZ state based on the effective Hamiltonian(6).First of all,we give a brief review concerning Lewis–Riesenfeld invariants theory.[65]A time dependent Hermitian invariant I(t)of a quantum system governed by a time-dependent Hamiltonian H(t)satisfies

    The solution of the time-dependent Schr?dinger equation i?t|Ψ(t)〉=H(t)|Ψ(t)〉can be expressed as a superposition of the instantaneous eigenvectors of I(t)

    where Cn=〈Φn(0)|φ1〉is the time-independent amplitude,αnis the Lewis–Riesenfeld phase,and|Φn(t)〉is one of the orthogonal eigenvectors of I(t).The Lewis–Riesenfeld phase is expressed by

    For the effective three-state system with Hamiltonian(6), one of its Hermitian invariants can be chosen as

    where ζ is an arbitrary constant with frequency unit making I(t)have the dimension of energy.γ and β are two parameters determined later.The eigenvectors of I(t)with the eigenvalues η0=0 and η±=±1 are respectively

    In order to insure that I(t)is one of the Hermitian invariants of the effective system,based on Eq.(7),the two Rabi frequencies have to be written as

    where the dot represents the time derivative.

    In order to generate the GHZ state in a relatively easy way,we desire that Hamiltonian(6)could drive the initial state |φ1〉to the target statealong the invariant eigenvector|Φ0(t)〉,which demands

    where we have assumed that the scheme starts at t=0 andfinishes at t=tf.In this way,Heff(t)must have the same eigenvectors as I(t)at the two boundary time,which requests [Heff(0),I(0)]=0 and[Heff(tf),I(tf)]=0,i.e.,

    Equations(12)–(14)imply the additional boundary conditions

    Thus equations(13)–(15)give all the boundary conditions. However,it is worth noticing that the conditions γ(0)=γ(tf)= π/2 cause infinite Rabi frequencies ?R(t)and ?L(t),which implies that the evolution|φ1〉→|ΨGHZ〉along|Φ0(t)〉we desired is infeasible.Therefore,we slightly cut down the requirement and replace γ(0)=γ(tf)=π/2 by

    with ε being a time-independent small value.Now the system evolution is not along|Φ0(t)〉any more but along the superpositions of|Φ0(t)〉and|Φ±(t)〉,and the finishing of the desired evolution|φ1〉→|ΨGHZ〉strongly depends on the selection of ε.

    Now in order to meet all the boundary conditions,we choose the parameters as

    Then we can obtain the Rabi frequencies based on Eq.(12)as

    with the Lewis–Riesenfeld phases

    Considering a pair of appropriate Rabi frequencies and thefinal fidelity F(tf)=1,we choose

    By the way shown above,we have constructed an invariant based shortcut for fast generating the GHZ state among three SQs.

    4.Numerical simulations and discussion

    In this section,we perform numerical simulations to show the availability and robustness of the scheme for generating the GHZ state.First of all,for testing that the value ε=0.1253 is right and picking a suitable final time tf,we show a contour plot of the final fidelity versus ε and tfin Fig.2.Obviously,figure 2 shows that the value ε=0.1253 may guarantee a very high final fidelity.Besides,tfalso heavily affects the final fidelity and a larger tfwill give a higher final fidelity.Because ?0is inversely proportional to tf,a larger tfcan satisfy the limit condition ?L(R)(t)?2λ better.

    Fig.2.(color online)Contour plot of the final fidelity versus ε and t f.

    In order to prove that the scheme we proposed is fast,in Fig.3,we give a comparison between the STA scheme and the STIRAP scheme for the same GHZ state.For the STIRAP scheme,we choose the Rabi frequencies as[26–28]

    with two related Gaussian parameters t0=0.14tfand tc= 0.19tf.As we know,the adiabatic criterion in the STIRAP scheme requires either a very long operation time or very large differences among the system eigen energies,[66]and thus the only way to shorten the operation time is enhancing the amplitudewhich requires more physical resources.Besides, as shown by the dotted green line of Fig.3,cannot be too much largerbecause of the limit condition.Numerically speaking,when the operation time is tf=100/λ, the final fidelity of the STA scheme is over 0.94 and the corresponding ?0≈0.1λ.For the STIRAP scheme,however,when=0.1λ and the final fidelity is up to 0.94,the corresponding operation time is near tf=450/λ,which is 4.5 times of that for the STA scheme.Therefore,the STA scheme we proposed for generating the GHZ state among three SQs is fast. For a relatively high final fidelity and a relatively short operation time,we choose tf=100/λ for following discussions.

    Fig.3.(color online)Comparison between the STA scheme and the STIRAP scheme.

    Fig.4.(color online)(a)Time dependence of the fidelity.(b)Time evolution of the populations of|φ1〉,|φ7〉,and excited states.

    For exhibiting the availability of the STA scheme,in Fig.4,we plot the time dependence of the fidelity for generating the GHZ state and time evolution of the populations of the states(P1for|φ1〉,P7for|φ7〉,andfor all excited states including SQs excited states|φ2,4,6〉and CPWRs excited states|φ3,5〉).From Fig.4(a),we see that the fidelity gradually increases with the increase of time and reaches near unity at the final time tf=100/λ.Furthermore,figure 4(b) clearly shows that the GHZ state is near perfectly obtained at the final time and other states not involved in the GHZ state are hardly populated during the whole evolution.In a word,the STA scheme we proposed for fast generating the GHZ state among three SQs is quite valid.

    Since most control parameters are impossible to be adjusted perfectly in experiment,we consider effects of variations in the control parameters on the final fidelity for the GHZ state generation in the STAscheme.Here we defineδx=x′?x as the deviation of x,where x denotes the ideal value and x′denotes the actual value.In Fig.5,we show the effects of the variations in two primary parameters tfand ?0on the final fidelity for generating the GHZ state among three SQs.As shown in Fig.5,the STA scheme we proposed is robust against the variations in tfand ?0,because the final fidelity is beyond 0.985 even when|δtf/tf|=|δ?0/?0|=0.1.

    Fig.5.(color online)Effects of variations in control parameters on the final fidelity.

    Finally,by taking decoherence caused by SQs energy relaxations,CPWRs photon leakages,and SQs dephasing into account,the evolution of the whole system will be dominated by the master equation

    Fig.6.(color online)(a)Final fidelity versus κ/λ and Γ/λ with Γφ=0.(b)Final fidelity versus Γφ/λ and Γ/λ with κ=0.(c)Finalfidelity versus Γφ/λ and κ/λ with Γ=0.(d)Time dependence of the fidelity in the presence of three decoherence factors.

    Based on the master equation above,in Figs.6(a)–6(c), we plot the final fidelity versus every two decoherence factors of SQs energy relaxations,CPWRs photon leakages,and SQs dephasing.Set the effects of SQs energy relaxations,CPWRs photon leakages,and SQs dephasing on the final fidelity as EΓ,Eκ,and EΓφ,respectively.From Figs.6(a)–6(c),we can clearly deduce Eκ?EΓ?EΓφ,and we can say that compared with EΓφ,EΓand Eκare negligible.Moreover,we also plot the time dependence of the fidelity in the presence of three decoherence factors in Fig.6(d).Through comparing the four curves and the corresponding parameters,we can also deduce that the STA scheme is sensitive to the decoherence caused by SQs dephasing.However,the scheme we proposed is still very robust against decoherence.As shown in Fig.6(b), the final fidelity is beyond 0.85 even when Γ=0.01λ and Γφ=0.001λ.Combined with recent experimental parameters {TΓφ~100μs,λ>2π×300 MHz,λ/κ>102,λ/Γ>102} and TΓφ=1/Γφ,[67]i.e.,{κ/λ<10?2,Γ/λ<10?2,Γφ/λ<10?5},the GHZ state among three SQs can be generated with a relatively high final fidelity over 97.16%.

    5.Conclusion

    We have implemented the fast generation of the GHZ state among three SQs by using invariants-based shortcuts. Compared with the STIRAP scheme,the STA scheme we proposed greatly shortens the operation time.The STA scheme needs to neither interpolate the system Hamiltonian nor add auxiliary driving pulses.Besides,the driving pulses are two harmonic pulses which can be obtained very easily in experiment.In addition,the adequate numerical simulations show that the STA scheme is robust against variations in control parameters and decoherence caused by SQs energy relaxations and CPWRs photon leakages.Although the scheme is somewhat sensitive to SQs dephasing,the GHZ state among three SQs can still be achieved with a relatively high final fidelity by adopting recent experimental parameters.

    [1]Zhao Z,Chen Y A,Zhang A N,Yang T,Briegel H J and Pan J W 2004 Nature 430 54

    [2]Peres A and Terno D 2004 Rev.Mod.Phys.76 93

    [3]Hillery M,Buzek V and Berthiaume A 1999 Phys.Rev.A 59 1829

    [4]Shor P W 1996 Proceedings of the 37th Symposium on the Foundations of Computer Science(FOCS)(Los Alamitos:IEEE Press)p.56

    [5]Knill E 2005 Nature 434 39

    [6]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information(Cambridge:Cambridge University Press)

    [7]Zeilinger A,Horne M A,Weinfurter H and Zukowski M 1997 Phys. Rev.Lett.78 3031

    [8]Zheng S B 2001 Phys.Rev.Lett.87 230404

    [9]Leibfried D,Knill E,Seidelin S,Britton J,Blakestad R B,Chiaverini J,Hume D B,Itano W M,Jost J D,Langer C,Ozeri R,Reichle R and Wineland D J 2005 Nature 438 639

    [10]Su X L,Tan A H,Jia X J,Zhang J,Xie C D and Peng K C 2007 Phys. Rev.Lett.98 070502

    [11]Raimond J M,Brune M and Haroche S 2001 Rev.Mod.Phys.73 565

    [12]Su S L,Chen L,Guo Q,Wang H F,Zhu A D and Zhang S 2015 Chin. Phys.B 24 020305

    [13]Bishop L S,Tornberg L,Price D,Ginossar E,Nunnenkamp A,Houck A A,Gambetta J M,Koch J,Johansson G,Girvin S M and Schoelkopf R J 2009 New J.Phys.11 073040

    [14]Wang Y D,Chesi S,Loss D and Bruder C 2010 Phys.Rev.B 81 104524

    [15]Aldana S,Wang Y D and Bruder C 2011 Phys.Rev.B 84 134519

    [16]Yang C P 2011 Phys.Rev.A 83 062302

    [17]Yang C P,Su Q P and Han S 2012 Phys.Rev.A 86 022329

    [18]Makhlin Y,Sch?n G and Shnirman A 2001 Rev.Mod.Phys.73 357

    [19]Yu Y,Han S,Chu X,Chu S I and Wang Z 2002 Science 296 889

    [20]Vion D,Aassime A,Cottet A,Joyez P,Pothier H,Urbina C,Esteve D and Devoret M H 2002 Science 296 886

    [21]Pashkin Y A,Yamamoto T,Astafiev O,Nakamura Y,Averin D V and Tsai J S 2003 Nature 421 823

    [22]Bergmann K,Theuer H and Shore B W 1998 Rev.Mod.Phys.70 1003

    [23]Král P,Thanopulos I and Shapiro M 2007 Rev.Mod.Phys.79 53

    [24]Zhang C L and Chen M F 2015 Chin.Phys.B 24 070310

    [25]Song P J,Lü X Y,Si L G and Yang X X 2011 Chin.Phys.B 20 050308

    [26]Hao S Y,Xia Y,Song J and An N B 2013 J.Opt.Soc.Am.B 30 468

    [27]Zhang C L and Chen M F 2013 Chin.Phys.B 22 050307

    [28]Zhang C L,Li W Z and Chen M F 2014 Opt.Commun.312 269

    [29]Wu J L,Song C,Xu J,Yu L,Ji X and Zhang S 2016 Quantum Inf. Process.15 3663

    [30]Chen X,Lizuain I,Ruschhaupt A,Guéry-Odelin D and Muga J G 2010 Phys.Rev.Lett.105 123003

    [31]Chen X,Torrontegui E and Muga J G 2011 Phys.Rev.A 83 062116

    [32]Chen X and Muga J G 2012 Phys.Rev.A 86 033405

    [33]del Campo A 2013 Phys.Rev.Lett.111 100502

    [34]Torrontegui E,Ibá?ez S,Martínez-Garaot S,Modugno M,del Campo A,Guéry-Odelin D,Ruschhaupt A,Chen X and Muga J G 2013 Adv. At.Mol.Opt.Phys.62 117

    [35]Martínez-Garaot S,Torrontegui E,Chen X and Muga J G 2014 Phys. Rev.A 89 053408

    [36]Ibá?ez S,Chen X,Torrontegui E,Muga J G and Ruschhaupt A 2012 Phys.Rev.Lett.109 100403

    [37]Ibá?ez S,Chen X and Muga J G 2013 Phys.Rev.A 87 043402

    [38]Ibá?ez S,Li Y C,Chen X and Muga J G 2015 Phys.Rev.A 92 062136

    [39]Song X K,Ai Q,Qiu J and Deng F G 2016 Phys.Rev.A 93 052324

    [40]Chen Y H,Xia Y,Wu Q C,Huang B H and Song J 2016 Phys.Rev.A 93 052109

    [41]Baksic A,Ribeiro H and Clerk A A 2016 Phys.Rev.Lett.116 230503

    [42]Kang Y H,Chen Y H,Wu Q C,Huang B H,Xia Y and Song J 2016 Sci.Rep.6 30151

    [43]Kang Y H,Huang B H,Lu P M and Xia Y 2017 Laser Phys.Lett.14 025201

    [44]Chen Y H,Wu Q C,Huang B H,Song J and Xia Y 2016 Sci.Rep.6 38484

    [45]Chen Y H,Xia Y,Chen Q Q and Song J 2014 Phys.Rev.A 89 033856

    [46]Chen Y H,Xia Y,Chen Q Q and Song J 2014 Laser Phys.Lett.11 115201

    [47]Chen Y H,Xia Y,Chen Q Q and Song J 2015 Phys.Rev.A 91 012325

    [48]Wu J L,Ji X and Zhang S 2016 Sci.Rep.6 33669

    [49]Wu J L,Ji X and Zhang S 2016 J.Opt.Soc.Am.B 33 2026

    [50]Song C,Su S L,Wu J L,Wang D Y,Ji X and Zhang S 2016 Phys.Rev. A 93 062321

    [51]Song C,Su S L,Bai C H,Ji X and Zhang S 2016 Quantum Inf.Process. 15 4159

    [52]Zhang J,Kyaw T H,Tong D M,Sj?qvist E and Kwek L C 2015 Sci. Rep.5 18414

    [53]Liang Y,Wu Q C,Su S L,Ji X and Zhang S 2015 Phys.Rev.A 91 032304

    [54]Liang Y,Song C,Ji X and Zhang S 2015 Opt.Express 23 23798

    [55]Liang Y,Ji X,Wang H F and Zhang S 2015 Laser Phys.Lett.12 115201

    [56]Chen Y H,Xia Y,Song J and Chen Q Q 2015 Sci.Rep.5 15616

    [57]Shan W J,Xia Y,Chen Y H and Song J 2016 Quantum Inf.Process.15 2359

    [58]Huang B H,Chen Y H,Wu Q C,Song J and Xia Y 2016 Laser Phys. Lett.13 105202

    [59]Zhang X,Chen Y H,Wu Q C,Shi Z C,Song J and Xia Y 2017 Laser Phys.27 015202

    [60]Ye L X,Lin X,Chen X,He J,Yang R C and Liu H Y 2016 Quantum Inf.Process.15 4159

    [61]Huang X B,Chen Y H and Wang Z 2016 Sci.Rep.5 25707

    [62]Kang Y H,Chen Y H,Shi Z C,Song J and Xia Y 2016 Phys.Rev.A 94 052311

    [63]Kang Y H,Chen Y H,Wu Q C,Huang B H,Song J and Xia Y 2016 Sci.Rep.6 36737

    [64]Yu L,Xu J,Wu J L and Ji X 2017 Chin.Phys.B 26 060306

    [65]Lewis H R and Riesenfeld W B 1969 J.Math.Phys.10 1458

    [66]Kuklinski J R,Gaubatz U,Hioe F T and Bergmann K 1989 Phys.Rev. A 40 6741

    [67]Xiang Z L,Ashhab S,You J Q and Nori F 2013 Rev.Mod.Phys.85 623

    17 March 2017;revised manuscript

    4 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090301

    ?Project supported by the National Natural Science Foundation of China(Grant No.11464046).

    ?Corresponding author.E-mail:jixin@ybu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    国产男人的电影天堂91| 麻豆一二三区av精品| 夫妻性生交免费视频一级片| 一级av片app| 99国产精品一区二区蜜桃av| 黑人高潮一二区| 亚洲乱码一区二区免费版| 国产精品久久久久久久电影| 男女那种视频在线观看| 精品人妻熟女av久视频| 嫩草影院新地址| 午夜a级毛片| 人体艺术视频欧美日本| 成人一区二区视频在线观看| 秋霞在线观看毛片| 99久久无色码亚洲精品果冻| 亚洲综合色惰| 免费观看在线日韩| 亚洲欧美成人精品一区二区| 精品99又大又爽又粗少妇毛片| 最近手机中文字幕大全| 亚洲精品色激情综合| 麻豆久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 亚洲精品乱码久久久v下载方式| 人妻少妇偷人精品九色| 亚洲av熟女| 国产伦精品一区二区三区视频9| 国产精品综合久久久久久久免费| 欧美激情久久久久久爽电影| 中文在线观看免费www的网站| 国产中年淑女户外野战色| 免费搜索国产男女视频| 黑人高潮一二区| 国产一区二区在线观看日韩| 日本黄色视频三级网站网址| 欧美成人午夜免费资源| 成人av在线播放网站| 日韩成人av中文字幕在线观看| 国产高清视频在线观看网站| 少妇人妻一区二区三区视频| 国产午夜福利久久久久久| 赤兔流量卡办理| 亚洲精品一区蜜桃| 非洲黑人性xxxx精品又粗又长| 97热精品久久久久久| 日本免费a在线| 最近视频中文字幕2019在线8| 国产精品爽爽va在线观看网站| 亚洲欧美日韩卡通动漫| 免费搜索国产男女视频| 久久久国产成人免费| 国产精品美女特级片免费视频播放器| 国产亚洲一区二区精品| 色视频www国产| 亚洲精品乱码久久久v下载方式| 国产综合懂色| 国产成人a区在线观看| 成人综合一区亚洲| 岛国毛片在线播放| 亚洲欧美精品自产自拍| 国产精品综合久久久久久久免费| 久久久午夜欧美精品| 亚洲自拍偷在线| 亚洲精品成人久久久久久| 哪个播放器可以免费观看大片| 亚洲av.av天堂| 淫秽高清视频在线观看| 国产免费视频播放在线视频 | 日韩av在线免费看完整版不卡| 天天躁夜夜躁狠狠久久av| 久久精品人妻少妇| 日韩欧美 国产精品| 精品人妻偷拍中文字幕| 国产 一区精品| av又黄又爽大尺度在线免费看 | 国语对白做爰xxxⅹ性视频网站| 国产真实乱freesex| 嘟嘟电影网在线观看| 又黄又爽又刺激的免费视频.| 日韩成人伦理影院| 国产高清不卡午夜福利| 亚洲欧美精品自产自拍| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品专区久久| 久久欧美精品欧美久久欧美| 1000部很黄的大片| 高清午夜精品一区二区三区| 不卡视频在线观看欧美| 亚洲av二区三区四区| 在线观看66精品国产| 亚洲国产精品合色在线| 熟妇人妻久久中文字幕3abv| 日韩,欧美,国产一区二区三区 | 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 中文字幕av成人在线电影| 亚洲精品aⅴ在线观看| 欧美日韩综合久久久久久| 伦理电影大哥的女人| 搞女人的毛片| 麻豆成人av视频| 成人一区二区视频在线观看| 可以在线观看毛片的网站| 亚洲av中文字字幕乱码综合| 欧美日本视频| 九草在线视频观看| 小说图片视频综合网站| 中文亚洲av片在线观看爽| 国产精品久久久久久久电影| 大话2 男鬼变身卡| 久久热精品热| 纵有疾风起免费观看全集完整版 | 国产精品麻豆人妻色哟哟久久 | 观看免费一级毛片| 久久久a久久爽久久v久久| 日韩视频在线欧美| 国产在线男女| 内射极品少妇av片p| 一个人看视频在线观看www免费| 国产亚洲精品av在线| 国产毛片a区久久久久| 亚洲精品aⅴ在线观看| 国产精品国产三级专区第一集| av在线观看视频网站免费| 国产av在哪里看| 国产一区二区三区av在线| 美女大奶头视频| 精华霜和精华液先用哪个| 最新中文字幕久久久久| 久久精品夜夜夜夜夜久久蜜豆| 免费不卡的大黄色大毛片视频在线观看 | 欧美成人免费av一区二区三区| 亚洲美女搞黄在线观看| 国产大屁股一区二区在线视频| 乱码一卡2卡4卡精品| 一级爰片在线观看| 国产又黄又爽又无遮挡在线| 午夜久久久久精精品| av在线老鸭窝| 在线播放无遮挡| 国产高清不卡午夜福利| 亚洲电影在线观看av| 久久这里只有精品中国| 日本色播在线视频| 国产淫语在线视频| 欧美另类亚洲清纯唯美| 18禁动态无遮挡网站| 直男gayav资源| 高清在线视频一区二区三区 | 精品国产一区二区三区久久久樱花 | 中文天堂在线官网| 国产精品国产高清国产av| 国产精品野战在线观看| 日韩欧美国产在线观看| 亚洲av电影不卡..在线观看| 青春草国产在线视频| 国产美女午夜福利| 毛片一级片免费看久久久久| a级毛片免费高清观看在线播放| 国产不卡一卡二| 国产精品无大码| 波多野结衣高清无吗| 亚洲欧美精品自产自拍| 在线a可以看的网站| 日本熟妇午夜| 国产成人午夜福利电影在线观看| 欧美97在线视频| 精品99又大又爽又粗少妇毛片| 欧美丝袜亚洲另类| 六月丁香七月| 亚洲av电影在线观看一区二区三区 | 日本wwww免费看| 深夜a级毛片| 久久久午夜欧美精品| 午夜福利在线观看免费完整高清在| 成年版毛片免费区| 黄色配什么色好看| 国产成人一区二区在线| kizo精华| 看片在线看免费视频| 看片在线看免费视频| 午夜精品一区二区三区免费看| 真实男女啪啪啪动态图| 亚洲国产精品久久男人天堂| 国产精品久久电影中文字幕| 成年免费大片在线观看| 午夜激情欧美在线| 中文乱码字字幕精品一区二区三区 | 国产老妇女一区| 日韩成人伦理影院| 久久久久免费精品人妻一区二区| 亚洲欧美成人精品一区二区| 国产亚洲精品av在线| 欧美日本视频| kizo精华| 久久久久久久久中文| 精品久久久久久久人妻蜜臀av| 可以在线观看毛片的网站| 日韩一区二区视频免费看| 亚洲三级黄色毛片| 十八禁国产超污无遮挡网站| av黄色大香蕉| 亚洲人成网站高清观看| 欧美一级a爱片免费观看看| 别揉我奶头 嗯啊视频| 亚洲美女搞黄在线观看| 亚洲美女搞黄在线观看| 女的被弄到高潮叫床怎么办| av线在线观看网站| 国产毛片a区久久久久| 五月伊人婷婷丁香| 国产免费视频播放在线视频 | 亚洲va在线va天堂va国产| 国产单亲对白刺激| 啦啦啦观看免费观看视频高清| 小说图片视频综合网站| 国产精品无大码| 欧美性猛交黑人性爽| 18禁在线无遮挡免费观看视频| 九九爱精品视频在线观看| 麻豆成人av视频| 黄色配什么色好看| 国产精品无大码| 日本色播在线视频| 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 麻豆成人午夜福利视频| 国产乱人偷精品视频| 国产成人一区二区在线| av.在线天堂| 丰满人妻一区二区三区视频av| 天美传媒精品一区二区| 1024手机看黄色片| 天堂网av新在线| 久久精品国产亚洲av涩爱| 人人妻人人澡欧美一区二区| 亚洲内射少妇av| 亚洲人与动物交配视频| 免费人成在线观看视频色| 日韩精品青青久久久久久| 亚洲综合精品二区| 精品久久久久久久人妻蜜臀av| 人人妻人人澡欧美一区二区| 亚洲最大成人av| 国产美女午夜福利| 麻豆一二三区av精品| 亚洲精品aⅴ在线观看| 久久久久久久午夜电影| 国产乱来视频区| 中国美白少妇内射xxxbb| 22中文网久久字幕| 欧美精品国产亚洲| 18禁在线无遮挡免费观看视频| 国产精品一二三区在线看| 真实男女啪啪啪动态图| 岛国毛片在线播放| 波多野结衣高清无吗| 亚洲av成人av| 亚洲国产最新在线播放| 女的被弄到高潮叫床怎么办| 国产精品不卡视频一区二区| 身体一侧抽搐| www.色视频.com| 91在线精品国自产拍蜜月| 简卡轻食公司| 又黄又爽又刺激的免费视频.| 亚洲色图av天堂| 少妇人妻一区二区三区视频| 91久久精品国产一区二区三区| 久久久久网色| 国产色爽女视频免费观看| 成年版毛片免费区| 哪个播放器可以免费观看大片| 一级毛片电影观看 | 青春草国产在线视频| 国产精品电影一区二区三区| 国产av码专区亚洲av| 午夜a级毛片| 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 精品久久久久久久人妻蜜臀av| 国产免费福利视频在线观看| 高清日韩中文字幕在线| 欧美zozozo另类| 桃色一区二区三区在线观看| 美女被艹到高潮喷水动态| 日本-黄色视频高清免费观看| 99久久精品热视频| 成人午夜高清在线视频| 免费看av在线观看网站| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 亚洲av中文字字幕乱码综合| av福利片在线观看| 美女黄网站色视频| 插阴视频在线观看视频| 黄色欧美视频在线观看| 国产三级中文精品| 亚洲av一区综合| 国产69精品久久久久777片| 搞女人的毛片| 久久99蜜桃精品久久| 亚洲av一区综合| 超碰97精品在线观看| 亚洲av中文字字幕乱码综合| 亚洲欧美精品专区久久| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| av国产免费在线观看| 精品免费久久久久久久清纯| 99热全是精品| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 国产黄色小视频在线观看| 三级毛片av免费| 国产在线男女| 国产av在哪里看| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 亚洲成色77777| 国产高清视频在线观看网站| 午夜激情福利司机影院| 久久亚洲国产成人精品v| 日本色播在线视频| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 亚洲国产欧洲综合997久久,| 免费黄色在线免费观看| 麻豆成人av视频| 国产精品av视频在线免费观看| 春色校园在线视频观看| 天堂影院成人在线观看| 永久网站在线| 日韩强制内射视频| 超碰97精品在线观看| 国产精品.久久久| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 久久99蜜桃精品久久| 免费搜索国产男女视频| 老女人水多毛片| 亚洲av中文av极速乱| 99国产精品一区二区蜜桃av| 精品久久久噜噜| 国产精品国产三级专区第一集| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 国内精品美女久久久久久| 亚洲欧洲日产国产| 欧美成人免费av一区二区三区| 国产av码专区亚洲av| 舔av片在线| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 午夜福利在线观看吧| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影小说 | 亚洲欧美中文字幕日韩二区| 国产免费男女视频| 国产成人精品婷婷| 久热久热在线精品观看| 亚洲av日韩在线播放| 亚洲国产高清在线一区二区三| 变态另类丝袜制服| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 日韩中字成人| 日韩 亚洲 欧美在线| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 麻豆一二三区av精品| 久久久久久伊人网av| 国产69精品久久久久777片| av.在线天堂| 国产黄片视频在线免费观看| 久久久精品大字幕| 美女大奶头视频| 在现免费观看毛片| 岛国毛片在线播放| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 91狼人影院| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 国产一级毛片七仙女欲春2| 色播亚洲综合网| 免费av观看视频| 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 国产高清不卡午夜福利| 搡老妇女老女人老熟妇| 免费观看精品视频网站| 亚洲av成人精品一二三区| 最近的中文字幕免费完整| 亚洲成人av在线免费| 亚洲av一区综合| 久久久精品大字幕| 精华霜和精华液先用哪个| 久久国内精品自在自线图片| 亚洲,欧美,日韩| 高清av免费在线| 国产乱人偷精品视频| 午夜日本视频在线| 狠狠狠狠99中文字幕| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 国产成人福利小说| 青春草国产在线视频| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 毛片一级片免费看久久久久| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 日本免费a在线| 观看免费一级毛片| 波多野结衣高清无吗| av在线播放精品| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看| 日韩欧美国产在线观看| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频 | 亚洲av不卡在线观看| 成年女人看的毛片在线观看| 国产一区二区在线av高清观看| 精品人妻熟女av久视频| 亚洲在久久综合| 热99在线观看视频| 水蜜桃什么品种好| 久久精品91蜜桃| 长腿黑丝高跟| 啦啦啦啦在线视频资源| 熟女电影av网| 国产精品精品国产色婷婷| 国产乱人偷精品视频| 日韩一本色道免费dvd| 日日干狠狠操夜夜爽| 黄色欧美视频在线观看| av播播在线观看一区| 日本一二三区视频观看| av在线亚洲专区| 免费电影在线观看免费观看| 麻豆精品久久久久久蜜桃| 欧美日韩综合久久久久久| 综合色av麻豆| 精品人妻一区二区三区麻豆| 日韩精品青青久久久久久| 国产成人a∨麻豆精品| 看片在线看免费视频| 搡女人真爽免费视频火全软件| 亚洲成人久久爱视频| 亚洲色图av天堂| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 人人妻人人澡欧美一区二区| 精品欧美国产一区二区三| 黄色一级大片看看| 长腿黑丝高跟| 成年av动漫网址| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 91精品一卡2卡3卡4卡| 高清日韩中文字幕在线| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 欧美激情在线99| 精品国内亚洲2022精品成人| www日本黄色视频网| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 国产精品熟女久久久久浪| 亚洲电影在线观看av| 国产在视频线精品| 熟女电影av网| 久久韩国三级中文字幕| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 国产精品野战在线观看| 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 亚洲精品一区蜜桃| 午夜a级毛片| 成人亚洲精品av一区二区| 国产一区二区三区av在线| 成年免费大片在线观看| 国产极品天堂在线| 国产麻豆成人av免费视频| 日本黄大片高清| 插阴视频在线观看视频| 国产精品1区2区在线观看.| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| av在线亚洲专区| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 精品人妻视频免费看| 国产亚洲一区二区精品| 国产精品综合久久久久久久免费| 亚洲av免费高清在线观看| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 欧美精品国产亚洲| 观看免费一级毛片| 九九久久精品国产亚洲av麻豆| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看| 亚洲四区av| 在线天堂最新版资源| 亚洲五月天丁香| 亚洲国产精品合色在线| 亚洲av一区综合| 亚洲精华国产精华液的使用体验| 国产成年人精品一区二区| 国产成人a区在线观看| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 麻豆av噜噜一区二区三区| 蜜臀久久99精品久久宅男| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 波野结衣二区三区在线| 女人十人毛片免费观看3o分钟| 国产精品电影一区二区三区| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 久久国产乱子免费精品| 国产精品一二三区在线看| 久久久午夜欧美精品| 久久久久性生活片| 国产乱人视频| 99热全是精品| 亚洲av中文av极速乱| 久久精品国产亚洲网站| 国产乱人视频| 人妻系列 视频| 日日啪夜夜撸| 热99re8久久精品国产| 久久99精品国语久久久| 99久国产av精品| 免费观看a级毛片全部| 国产一级毛片在线| 97人妻精品一区二区三区麻豆| 婷婷色av中文字幕| 国产 一区精品| 国产精品伦人一区二区| 最新中文字幕久久久久| 老司机福利观看| 国产真实伦视频高清在线观看| 久久久国产成人免费| 亚洲电影在线观看av| 久久国内精品自在自线图片| 伦理电影大哥的女人| 女人十人毛片免费观看3o分钟| 网址你懂的国产日韩在线| 69av精品久久久久久| 黄色一级大片看看| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 毛片女人毛片| 精品一区二区三区人妻视频| 亚洲国产精品成人久久小说| 日韩欧美 国产精品| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 国产精品美女特级片免费视频播放器| 久久热精品热| 免费黄色在线免费观看| 日本五十路高清| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 内地一区二区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 亚洲av不卡在线观看| 久久婷婷人人爽人人干人人爱| 国产在视频线在精品| av免费在线看不卡| 亚洲三级黄色毛片| 久久精品影院6| 在线播放无遮挡| 综合色丁香网| 亚洲色图av天堂| 大香蕉97超碰在线| 午夜福利高清视频| 国产亚洲一区二区精品|