• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magneto-elastic dynamics and bifurcation of rotating annular plate?

    2017-08-30 08:25:54YuDaHu胡宇達(dá)JiangMinPiao樸江民andWenQiangLi李文強(qiáng)
    Chinese Physics B 2017年9期

    Yu-Da Hu(胡宇達(dá)),Jiang-Min Piao(樸江民),and Wen-Qiang Li(李文強(qiáng))

    1 School of Civil Engineering and Mechanics,Yanshan University,Qinhuangdao 066004,China

    2 Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures of Hebei Provincial, Yanshan University,Qinhuangdao 066004,China

    Magneto-elastic dynamics and bifurcation of rotating annular plate?

    Yu-Da Hu(胡宇達(dá))1,2,?,Jiang-Min Piao(樸江民)1,2,and Wen-Qiang Li(李文強(qiáng))1,2

    1 School of Civil Engineering and Mechanics,Yanshan University,Qinhuangdao 066004,China

    2 Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures of Hebei Provincial, Yanshan University,Qinhuangdao 066004,China

    In this paper,magneto-elastic dynamic behavior,bifurcation,and chaos of a rotating annular thin plate with various boundary conditions are investigated.Based on the thin plate theory and the Maxwell equations,the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle.Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions.By numerical analysis,the bifurcation diagrams with magnetic induction,amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides,simply supported sides,and clamped-one-side combined with simply-another-side.Poincaré maps,time history charts,power spectrum charts,and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed.The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion,which is accompanied by intermittent chaos,when the bifurcation parameters change.If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower,the system can be more prone to chaos.

    magneto-elastic,rotating annular plate,Bessel function,bifurcation and chaos

    1.Introduction

    In the fields of aerospace,nuclear industry,large generator,computer storage devices,turbine engines,and electromagnetic sensor device,the rotating annular plate as the basic component is widely utilized.Especially transverse vibration of a high-speed rotating circular plate in conductive electromagnetic environment will be unstable when subjected to small disturbance,and even lead to huge harm to electromechanical system.Thus,it is most significant to study magnetoelastic dynamics of rotating conductive annular plate.

    Leo et al.[1]presented approximately linear dynamic differential equation of a circular plate with multiple circular holes by means of Rayleigh method,and used Bessel functions to get the vibration response equation of the system.Based on shear deformation theory of circular plate,Malekzadeh et al.[2]obtained vibration equation of the annular plate in thermal environment,and analyzed the effects of temperature,inner diameter,outer diameter,and other parameters on natural frequency of the annular plate.According to the linear deformation theory,Saidi et al.[3]derived and solved the vibration control equations in different boundary conditions. Allahverdizadeh et al.[4]got the vibration equation of rotating circular plate by using Galerkin method,and obtained more accurate solutions by means of semi-analytic differential perturbation method.Ratko[5]utilized calculus to study the transverse vibration and stability of a rotating circular plate. Hashemi et al.[6]have made the research on the transverse vibration and the stability of rotating circular plates with the finite element method.

    For vibration of a conductor in electromagnetic field, many researchers have got results.Zheng et al.[7]studied bend and vibration problems of a cantilever conductive plate in magnetic field,and found that there is unstable vibration of the circular conductive plate under specific transverse excitation load.Gao et al.[8]obtained the analytical solution of a circular plate combined with Maxwell’s equations,and analyzed the resonance characteristics.Hasanyan and Librescu[9]investigated vibration of a beam-plate in magnetic field,and discussed the influence of magnetic induction intensity and boundary conditions on the free vibration by using numerical analysis.Hu and Wang[10]studied magneto-elastic free vibration of a rotating circular plate in static magnetic field. Li et al.[11]obtained the three-dimensional analytical solution for functionally graded the magneto-electro-elastic circular plates subjected to uniform load through a step-by-step integration scheme,with five integral constants determinable from the boundary conditions at the cylindrical surface in the Saint Venant’s sense.Alaimo et al.[12]and Razavi and Shooshtari[13]respectively accomplished static and free vibration analyses of the magneto-electro-elastic multilayeredplates based on the first-order shear-deformation plate theory.

    Bifurcation and chaos are very common issues in research and application of many fields.Lu et al.[14]investigated dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam,and obtained the solutions.Hu and Zhang[15]deliberated the bifurcation characteristics of axially moving plate in magnetic field,derived bifurcation equation and transition set corresponding to the universal unfolding,and discussed the impacts of bifurcation control parameters on bifurcation and chaos.For a functionally graded circular plate,Hu et al.[16]investigated unfolding problems of bifurcation equation,and plotted bifurcation diagrams.Hu and Zhang[17]analyzed bifurcation of the circular functionally graded plate with combination resonances.In response to geometrically nonlinear problem of a circular plate, Touzé et al.[18]derived ordinary differential equations by using Galerkin method,and plotted the bifurcation diagrams and Poincaré maps.Coman[19]analyzed the influence of initial tension on the non-axisymmetric bifurcation of the circular plate system.Shahverdi and Khalaf i[20]investigated the bifurcation problems of functionally graded plate under hypersonic aerodynamic loads.Zhao and Zhang[22]analyzed bifurcation and chaos for aeroelastic airfoil with freeplay structural nonlinearity in pitch by using the Poincaré map method.

    In this paper,Bessel functions are used as vibration mode functions to solve magneto-elastic vibration equation.The bifurcations diagrams,response charts,power spectrum charts, phase diagrams,Poincaré maps,and time history diagrams of the system are explored in different bifurcation control parameters,such as magnetic induction intensity,excitation amplitude and frequency.The influence of different control parameters and boundary conditions on the bifurcation and chaos are discussed.

    2.Fundamental equations

    Consider a isotropic conductive annular plate rotating in magnetic field with magnetic field intensity B0z,which rotates at a constant angular speed ?.The plate has a uniform thickness h,outer radius b,and inner radius a.The Young’s modulus,the Poisson ratio,and the density of the disk are E,μ,and ρ,respectively,as shown in Fig.1.

    Fig.1.Rotating annular plate in magnetic field.

    2.1.Kinetic energy and deformation potential

    A fixed cylindrical coordinate system(r,θ,z)is used in the model.The displacement vector of any point in the plate is assumed as

    where urand uθare the radial and circumferential displacement in the middle plane,respectively;w is the transverse displacement;u1=??w/?r and v1=??w/(?θr)are angular displacements;r,θ,and z are radial,circumferential,and normal coordinates,respectively;and t is the time variable.

    The kinetic energy of the rotating annular plate can be obtained as

    The deformation potential caused by bending deformation of the plate can be given as

    where Mrand Mθare bending moments,Mrθis torque,κrand κθare curvatures,and κrθis torsion.

    The potential energy of strain in the middle plane of the plate can be given as

    where Nθand Nrθare internal forces in the middle plane,εr, εθ,and εrθare strains in the middle plane.

    2.2.External virtual work

    It is assumed that the plate is loaded in a transverse excitation P.Thus,the expression of external virtual work δUPis written as

    where δw is the transverse virtual displacement.

    2.3.Virtual work of the electromagnetic force

    Current density vector of the conductive plate in magnetic if eld is written as

    where σ0,E,V,and B are conductivity,electric field intensity vector,absolute speed vector,and magnetic induction intensity vector,respectively.

    Lorentz force loading on the annular plate is written as

    In transverse magnetic field with magnetic induction B0z, electromagnetic force can be obtained as

    where Fr,Fθ,and Fzare radial,circumferential,and normal electromagnetic force on unit area,respectively;mrand mθare radial and circumferential electromagnetic torque on unit area,respectively.

    Thus,the virtual work of the electromagnetic force is written as

    2.4.Magneto-elastic dynamic equation

    Based on Hamilton principle

    and combined with Eqs.(3)—(9),considering geometric nonlinear condition and neglecting the effect of the longitudinal displacement on the transverse vibration of the plate,the magneto elasticity vibration equation of the annular plate can be obtained as

    3.Mode shape function and Galerkin method

    3.1.Mode shape function

    In order to solve the annular plate transverse nonlinear vibration equation,a solution of the liner transverse free vibration equation is employed to assume the transverse displacement w(r,θ,t)of the system(11).

    Here,the liner transverse free vibration equation is introduced as

    where DM=E h3/[12(1?μ2)]is the flexural rigidity.

    Obviously,the solution of Eq.(12)can be put in the following form by the method of separation of variables:

    where Wn(r)are displacement functions,which are given in terms of Bessel functions and modified Bessel functions of order n.Considering symmetric vibration problem(n=0), Wn(r)can be rewritten as

    where K,A,B,C,and D are determined by boundary conditions and a normalizing condition.

    Based on different boundary conditions,the mode shape functions of Eq.(14)are given respectively.

    (i)Clamped boundary conditions

    The boundary conditions for the annular plate,which is clamped by the collar(r=a)and rim(r=b)where the displacement and angular vanish,are given by

    Substituting Eq.(14)into boundary conditions Eq.(15), the equation of boundary conditions is rewritten as

    Since equation(16)has obviously linear correlation, which have non-trivial solutions,the determinant composed of the indeterminate coefficient is equal to zero,that is

    Here,equation(17)is transcendental equation,which contains only an unknown variable K,and thus it has infinitely many values K.Since equation(16)is a linear system,whose coefficients(A,B,C,and D)are uncertain,a normalizing method can be used to determine these coefficients.It assumed that the maximum value of W0(r)is 1,and then it is can be normalized.

    (ii)Simplified boundary conductions

    The boundary conditions for the annular plate simplified at the collar(r=a)and rim(r=b)are expressed as

    Introducing Eq.(14)into Eq.(18),similar to the clamped boundary condition,equations must satisfy

    where

    Hence,the value K and the relationship of coefficients can be obtained by solving Eq.(19),and then the value of the coefficients can be determined by normalizing condition too.

    (iii)Other boundary conditions

    When the boundary conditions of the annular plate are clamped-inner and simply-outer or clamped-outer and simply-inner,the normalizing method can also be utilized to determine the value of K.

    3.2.Galerkin method

    When there is only first order mode shape in the system, modal function may be in the form

    where W(r)is the mode shape function in different boundary conditions,whose first-order can be used in following calculation.

    The sinusoidal excitation force is

    where P0and ω are the amplitude and frequency of the excitation force,respectively.

    For axisymmetric problems,equation(11)can be reduced to

    where DN=E h/(1?μ2)is the tensile stiffness.

    Substituting Eq.(20)into Eq.(22),the nonlinear differential equation of a rotating annular plate in magnetic field is presented by means of Galerkin method,as

    where

    4.Numerical analysis of bifurcation and chaos

    Here,we take some result comparison which contains a result of a free vibration mode of a ring-shape thin plate on the elastic base and a result of the finite dynamic element of rotating circular disks.

    It is assumed that we do not consider the impacts of magnetic induction intensity,excitation,rotational speed and nonlinearity.We use the same parameters as Ref.[22]:the mass density ρ=7800 kg/m3,Young’s modulus E=200 GPa Poisson ratioμ=0.3,conductivity σ=3.63×107(?·m)?1,the thickness h=0.002 m,the outer radius b=1.2 m,and the ratio of outer radius and inner radius k=b/a.The natural frequency of the system varying with the ratio of outer radius and inner radius k is plotted in Fig.2.When k=3,the natural frequency is ω0=106.4960 rad/s.This result coincides with the result(ω0=106.7019 rad/s)of Ref.[22],which does not consider the impact of the base modulus.

    Fig.2.The natural frequency of the system varying with the ratio of outer radius and inner radius k.

    Here we do not consider the impacts of magnetic induction intensity and excitation,and use the same parameters as Ref.[23]:the mass density ρ=7800 kg/m3,Young’s modulus E=1.961 MPa,Poisson ratioμ=0.3,the thickness h=0.004 m,the inner radius a=0.1 m,and outer radius b=1.0 m.The natural frequency of this system varying with rotational speed is plotted in Fig.3,where the natural frequency of the system increases extremely slowly with the increase of rotational speed.This change of the natural frequency is similar to the results with rotational speed 0–2500 r/min in Ref.[23].

    Fig.3.The natural frequency of the system varying with the rotational speed.

    Consider the rotating annular plate under the sinusoidal excitation load,which is made of aluminum with the mass density ρ=2670 kg/m3,Young’s modulus E=71 GPa,Poisson ratioμ=0.34,conductivity σ=3.63×107(?·m)?1,the thickness h=0.001 m,the inner radius a=0.050 m,and outer radius b=0.150 m.

    Parameter K and the corresponding mode function in different boundary conditions are separately as follows:

    Introducing K=47.15895 with simply supported boundary conditions into Eqs.(18)and(19),the corresponding mode function is obtained as

    Introducing K=32.195 with clamped supported boundary conditions into Eqs.(16)and(17),the corresponding mode function is obtained as

    Similarly,when K=38.055,the corresponding mode function with clamped-outer and simply-inner boundary conditions is obtained as

    When K=41.026,the corresponding mode function with clamped-inner and simply-outer boundary conditions is shown as

    Sequentially,considering magnetic induction intensity, excitation amplitude,and excitation frequency as the bifurcation control parameters,the analysis of nonlinear dynamic behavior of the annular plate is presented.

    4.1.Magnetic induction intensity as a bifurcation control parameter

    Bifurcation diagram with simply supported inner–outer sides is plotted in Fig.4,where magnetic induction intensity is a bifurcation control parameter.Here,fundamental parameters are the rotation speed ?=10000 r/min and excitation amplitude P0=40 kN/m2.

    Fig.4.Bifurcation diagram of the system(23)for ?=10000 r/min and P0=40 kN/m2 with simply supported inner–outer sides,whose control parameter is the magnetic induction intensity B0z.Here 4 kinds of typical regions are selected to analyze.

    When the magnetic induction intensity increases,the vibration amplitude of the system is reduced,and the motion of the system is a kind of alternating-periodic motion between period doubling motion and chaotic motion.Here,within some specific regions,there are some unique phenomena,as shown in Fig.4.

    As shown in Fig.5,when the magnetic induction intensity is small(Region 1 in Fig.4),there is a closed curve in the Poincaré map lattice section.Moreover,it is found that vibrational energy is mainly distributed in about 3.5 times frequency from the power spectrum chart(Fig.5(c)).Thus,there is a quasi-period motion in this system.

    When the magnetic induction intensity B0z=0.6 T(Region 2 in Fig.4),as shown in Fig.6,the motion of this system converts from quasi-period motion to double-period motion, and vibration energy is mainly concentrated in the 3.5 times frequency(Fig.6(c)).

    Continuing to increase magnetic induction intensity to 0.7 T<Boz<2.0 T(Region 3 in Fig.4),the motion of the system repeatedly converts from multi-period motion to chaos motion.The amplitude of the system is almost a constant,and the response of the system is similar,shown in Fig.7 when the magnetic induction intensity B0z=0.7 T.

    Fig.5.In region 1 of Fig.4,the motion of the system is a quasi-period motion when B0z=0.5 T,which is reflected in(a)Poincaré map that is a mapping circle formed by a number of points,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.6.In region 2 of Fig.4,the motion of the system is a double-period motion when B0z=0.6 T,which is reflected in(a)Poincaré map that obtains two mapping points,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.7.In region 3 of Fig.4,the motion of the system is a chaotic motion when B0z=0.7 T,which is reflected in(a)Poincaré map that is a lattice,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.8.In region 4 of Fig.4,the motion of the system becomes a quasi-period motion again when B0z=3 T,which is reflected in(a)Poincaré map that is mapping circle formed by a number of points,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    As shown in Fig.8,when the magnetic induction intensity B0z=3 T(Region 4 in Fig.4),the motion of this system is quasi-period motion,where vibration of the system has been extremely closed to single-period motion as shown in Fig.8(b).The amplitude of the system significantly decreases, which is compared with the phase diagram and time history diagram when B0z=0.6 T(Figs.6(b)and 6(d)).

    When magnetic induction intensity is a bifurcation control parameter,bifurcation diagrams with clamped supported sides(Fig.9(a))and clamped-outer and simply-inner supported sides(Fig.9(b))are also plotted.The motions of two systems are both the repeated-period phenomena from chaotic motion to multi-period motion and to chaotic motion.The chaotic region of the two systems is smaller and multi-period region is larger,compared with Fig.4.

    Fig.9.Bifurcation diagram of the system(23)varying with control parameter B0z when ?=10000 r/min and P0=40 kN/m2(a)in bothclamped supported sides and(b)in clamped-outer and simply-inner supported sides.

    4.2.Excitation amplitude as the bifurcation control parameter

    In order to reflect the effect of excitation amplitude on the system,global bifurcation diagram with simply supported sides is obtained,when B0z=2.0 T,?=10000 r/min,and ω=1.02ω0,where ω0is natural frequency of undamped linear system.Here,the amplitude of the excitation force is a bifurcation control variable,as shown in Fig.10.Amplitude of the system increases with the increase of excitation force and the vibration form of the system is basically a kind of periodic motion when P0is small(0<P0<50 kN/m2).Nevertheless,when the amplitude of the excitation force is large (50 kN/m2<P0<170 kN/m2),amplitude of the system increases with the increase of excitation force,whose vibration form is chaotic motion mixed with multi-period motion.Then, when the amplitude of the excitation force continues to increase(P0>170 kN/m2),amplitude of the system contains a constant,and motion of the system mainly is a chaotic motion with a small number of doubling-period motion.

    Fig.10.Bifurcation diagram varying with excitation amplitude P with both simply supported sides when B0z=2.0 T,?=10000 r/min,and ω=1.02ω0,where ω0 is natural frequency of undamped linear system.

    The motion of system is single-period motion when P0= 12 kN/m2,as shown in Fig.11.There are different frequencies shown in Fig.11(c),where vibrational energy is mainly concentrated in the single-frequency and successively decreases with increase of the frequency multiple.

    When P0continuously increases,the motion of system is a motion from single-period motion to multi-period motion shown in Fig.12.When P0=15 kN/m2,the motion of system is quadruple-period motion.Frequency of the system is composed of multiple and 1/3 times frequency shown in Fig.12(c).

    When P0=20 kN/m2,there is chaotic motion in this system,shown in Fig.13.Poincaré map,existing as a mask form, converts from several discrete points into a lattice where there is a certain geometric feature.The motion of the system begins to be a kind of irregular reciprocating motion,as shown in time history diagram(Fig.13(b)).At this point,the proportion of the single-frequency power is greater than other frequency powers,and there are some continuous impulse response nearly 1/3 times and double frequency(Fig.13(c)). The phase locus of the system is a complex and messy curve (Fig.13(d)).

    When excitation amplitude is large,the motion of the system is mainly chaotic motion mixed with some periodic motions,shown in Fig.10.For example,the motion of system is chaotic motion when P0=50 kN/m2(Fig.14),but singleperiod motion when P0=64 kN/m2(Fig.15).Moreover,as shown in Figs.14(c)and 15(c),the power of the system are both centralized at the single and triple frequencies.

    Fig.11.The motion of the system is a single-period motion when P0=12 kN/m2,which is reflected in(a)Poincaré map that obtains a mapping point,(b) time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.12.The motion of the system is a quadruple-period motion when P0=15 kN/m2,which is reflected in(a)Poincaré map that obtains four mapping points,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.13.The motion of the system is a chaotic motion when P0=20 kN/m2,which is reflected in(a)Poincaré map that is a mapping lattice existing as a mask form,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.14.The motion of the system is still a chaotic motion when P0=50 kN/m2,which is reflected in(a)Poincaré map that is a mapping lattice,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.15.The motion of the system is a single-period motion again when P0=64 kN/m2,which is reflected in(a)Poincaré map that obtains a mapping point, (b)time history diagram,(c)power spectrum,and(d)phase diagram.

    In order to reflect the effect of magnetic induction intensity on bifurcation motion,we plot the bifurcation diagrams in different cases,where bifurcation control parameter is still the excitation amplitude P0(P0is less than that in Fig.10), shown in Fig.16.We obtain that the motions of the system are mainly multi-period motion and quasi-period motion,when magnetic induction intensity is relatively small(B0z=0 T and B0z=1.0 T).Moreover at this point the system is more likely to develop the quasi-period motion and chaotic motion by changing the excitation amplitude compared with Fig.10.

    Fig.16.Brifurcation diagram varying with excitation amplitude P0 for(a) B0z=0 T and(b)B0z=1 T with ?=10000 r/min and ω=1.02ω0,where ω0 is natural frequency of undamped linear system.

    In order to analyze the effect of force on bifurcation with the other boundary conditions,the bifurcation diagrams varying with excitation amplitude are plotted with clamped supported conditions(Fig.17(a))and with clamped-outer and simply-inner boundary conditions(Fig.17(b)).In comparison with the diagrams in Figs.4 and 11(b),the system subjected to nonlinear effect will be smaller and less prone to show the chaotic motion,as there is a clamped side in the system.

    4.3.Excitation frequency as the bifurcation control parameter

    Global bifurcation diagram(?=10000 r/min,B0z= 2.0 T,and P0=40 kN/m2)with simply supported sides is plotted shown in Fig.18.Here,ˉω as a dimensionless parameter is the ratio of excitation frequency and natural frequency of undamped linear system.

    Fig.17.Brifurcation diagram varying with excitation amplitude P0(a)in both-clamped supported sides and(b)in clamped-outer and simply-inner sides.Here,B0z=2 T,?=10000 r/min,and ω=1.02ω0,where ω0 is natural frequency of undamped linear system.

    Fig.18.Bifurcation diagram of the system varying with control parameter ˉω with both-simply supported sides.Here,?=10000 r/min,B0z=2.0 T, and P0=40 kN/m2.

    Figure 18 embodies the motions of the system varying with dimensionless parameterˉω.For example,whenˉω=0.2, the motion of the system is single-period motion shown in Figs.19(a)and 19(d),and the energy of the system mainly focuses on the single-frequency.However,whenˉω=0.3 (Fig.20),the motion of the system is chaotic motion.At this point,Poincaré map is an array of lattice with the special geometry(Fig.20(a)),and there are some noise signals in power spectrum(Fig.20(c)),but the power of the system is still centralized at single frequency compared with that in Fig.19(c).

    Fig.19.The motion of the system is a single-period motion when=0.2,which is reflected in(a)Poincaré map that obtains one mapping point,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    In order to reflect the effect of the boundary conditions on the system,the bifurcation diagram is plotted with the selection of two kind of boundary conditions and keeping other parameter sun changed,shown in Fig.21,whereˉω is still bifurcation control parameter.The motions of the system are mainly quasi-period motion and multi-period motion,and there are slight chaotic motions only in the 1/3 subharmonics region (=3)For instance,the response diagrams of the system in primary resonance region(=1)and subharmonics resonance region(=3)are plotted in Figs.22 and 23,respectively.When=1,the motion of the system is quasi-period motion,but single period when=3.

    Fig.21.Bifurcation diagram varying with control parameter with bothclamped supported sides and other things being the same as Fig.18.

    Fig.22.The motion of the system is a quasi-period motion when=1,which is reflected in(a)Poincaré map that is a mapping special shapes,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    Fig.23.The motion of the system is a single-period motion when=3,which is reflected in(a)Poincaré map that is a mapping point,(b)time history diagram,(c)power spectrum,and(d)phase diagram.

    5.Conclusion

    In this paper,Bessel functions as mode shape functions are utilized to solve the magneto-elasticity nonlinear vibration equation of the annular plate.The bifurcations diagrams,response charts power spectrum charts,phase diagrams,Poincaré maps,and time history diagram of the systems are obtained with different bifurcation control parameters by numerical calculating.When magnetic induction,excitation amplitude,or frequency respectively reaches a specific value,there may be bifurcations and chaos in the system, which are very sensitive to the control parameters.In addition,there are multi-period motions between the chaos fields in the system.In most cases,with the increases of the bifurcation control parameters,the motions of the system are repeatedly from multi-period motion to chaotic motion and to multi-period motion.Moreover,when magnetic induction intensity increases to some degree,the motion of the system may be multi-period motion or quasi-period motion rather chaotic motion.

    [1]Leo A,Saeedi K and Rama B 2012 J.Mech.Sci.Technol.26 1439

    [2]Malekzadeh P,Haghighi M R G and Atashi M M 2011 Acta Mech.46 893

    [3]Saidi A R,Baferani A and Jomehzadeh E 2011 Acta Mech.219 309

    [4]Allahverdizadeh A,Naei M H and Bahrami M N 2008 J.Sound Vib. 310 966

    [5]Ratko M 2005 J.Sound Vib.280 467

    [6]Hashemi S H,Farhadi S and Carra S 2009 J.Sound Vib.323 366

    [7]Zheng X J,Zhang J P and Zhou Y H 2005 Int.J.Solid.Struct.42 2417

    [8]Gao Y,Xu B and Huh H 2010 Acta Mech.210 99

    [9]Hasanyan D J and Librescu L 2005 Comput.Struct.83 1205

    [10]Hu Y D and Wang T 2016 Nonlinear Dyn.85 1825

    [11]Li X Y,Ding H J and Chen W Q 2008 Compos.Struct.83 381

    [12]Alaimo A,Benedetti I and Milazzo 2014 Compos.Struct.107 643

    [13]Razavi S and Shooshtari A 2015 Compos.Struct.119 377

    [14]Lu Q S,To C W S and Huang K L 1995 J.Sound Vib.181 873

    [15]Hu Y D and Zhang Z Q 2011 Chaos Soliton.Fract.44 739

    [16]Hu Y D,Hu P and Zhang J Z 2015 J.Comput.Nonlinear Dyn.10 021010

    [17]Hu Y D and Zhang Z Q 2012 Nonlinear Dyn.67 1779

    [18]Touzé C,Thomas O and Amabili M 2011 Int.J.Non-Linear Mech.46 234

    [19]Coman C D 2013 Mech.Res.Commun.47 11

    [20]Shahverdi H and KhalafiV 2016 Compos.Struct.146 84

    [21]Zhao D M and Zhang Q C 2010 Chin.Phys.B 19 030518

    [22]Li S and Zhang J Y 1997 Metal Forming Technol.15 34(in Chinese)

    [23]Zhang Y S,Gao D P and Yin L Y 1989 J.Nanjing Aerount.Inst.21 18 (in Chinese)

    22 November 2016;revised manuscript

    26 April 2017;published online 11 August 2017)

    10.1088/1674-1056/26/9/094302

    ?Project supported by the National Natural Science Foundation of China(GrantNo.11472239),the Hebei Provincial Natural Science Foundation of China(Grant No.A2015203023),and the Key Project of Science and Technology Research of Higher Education of Hebei Province of China(Grant No.ZD20131055).

    ?Corresponding author.E-mail:huyuda03@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    少妇高潮的动态图| 日韩亚洲欧美综合| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲一区二区三区欧美精品| 高清视频免费观看一区二区| 嘟嘟电影网在线观看| 91在线精品国自产拍蜜月| 街头女战士在线观看网站| 国产精品.久久久| 久久久久久人妻| 大香蕉97超碰在线| 男女国产视频网站| 日产精品乱码卡一卡2卡三| 国产伦在线观看视频一区| 亚洲美女搞黄在线观看| 男人爽女人下面视频在线观看| 日日爽夜夜爽网站| 少妇的逼好多水| 国内揄拍国产精品人妻在线| 亚洲国产精品一区二区三区在线| 日韩在线高清观看一区二区三区| 国产91av在线免费观看| 丝袜脚勾引网站| 六月丁香七月| 夫妻午夜视频| 极品人妻少妇av视频| 午夜日本视频在线| 久久国产精品大桥未久av | 精品一区二区免费观看| 国产精品国产三级专区第一集| 99久久中文字幕三级久久日本| 国产精品无大码| 久久鲁丝午夜福利片| 国产日韩欧美亚洲二区| 成年人午夜在线观看视频| 国产综合精华液| 国产男人的电影天堂91| 日韩伦理黄色片| 日韩一本色道免费dvd| 高清午夜精品一区二区三区| 亚洲国产精品999| 黄色欧美视频在线观看| 久久久久久人妻| 人妻系列 视频| 一本大道久久a久久精品| 国产精品女同一区二区软件| 啦啦啦在线观看免费高清www| 免费观看a级毛片全部| 天天操日日干夜夜撸| 亚洲成人av在线免费| 高清视频免费观看一区二区| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级国产av玫瑰| 国产午夜精品久久久久久一区二区三区| 三级国产精品欧美在线观看| 精品酒店卫生间| 国产又色又爽无遮挡免| 国产色爽女视频免费观看| 久久精品久久久久久久性| 在线 av 中文字幕| 黄色毛片三级朝国网站 | 国产精品99久久99久久久不卡 | 国内少妇人妻偷人精品xxx网站| 插逼视频在线观看| 国产探花极品一区二区| 赤兔流量卡办理| 99热这里只有是精品50| 欧美 日韩 精品 国产| 国产中年淑女户外野战色| 亚洲va在线va天堂va国产| 国产av国产精品国产| 精品久久国产蜜桃| 日本vs欧美在线观看视频 | 国产亚洲一区二区精品| 热99国产精品久久久久久7| 精品国产国语对白av| 91在线精品国自产拍蜜月| 黑人猛操日本美女一级片| 欧美精品国产亚洲| 久久久久久伊人网av| 精品国产乱码久久久久久小说| 国产黄频视频在线观看| 天天躁夜夜躁狠狠久久av| 美女脱内裤让男人舔精品视频| 免费大片黄手机在线观看| 国产伦理片在线播放av一区| 少妇的逼水好多| 午夜免费观看性视频| 91成人精品电影| 美女视频免费永久观看网站| 简卡轻食公司| 丰满少妇做爰视频| 久久国产亚洲av麻豆专区| 久久人人爽av亚洲精品天堂| 成人影院久久| √禁漫天堂资源中文www| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲不卡免费看| 熟妇人妻不卡中文字幕| 热re99久久精品国产66热6| 人妻系列 视频| a 毛片基地| 国产淫片久久久久久久久| 国产av国产精品国产| 国产高清有码在线观看视频| 午夜免费鲁丝| 校园人妻丝袜中文字幕| 成人漫画全彩无遮挡| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久久电影| 五月开心婷婷网| 黄色一级大片看看| 精品人妻熟女毛片av久久网站| 欧美老熟妇乱子伦牲交| 日韩在线高清观看一区二区三区| 日韩欧美一区视频在线观看 | 久久久久久伊人网av| 亚洲综合色惰| 成人国产av品久久久| 国产一区二区在线观看日韩| 久久99蜜桃精品久久| 国产极品天堂在线| 高清午夜精品一区二区三区| 欧美区成人在线视频| 精品国产露脸久久av麻豆| 女人久久www免费人成看片| 久久av网站| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人精品一区二区| 欧美老熟妇乱子伦牲交| 国产精品国产av在线观看| 欧美变态另类bdsm刘玥| 亚洲人成网站在线观看播放| 人妻 亚洲 视频| 亚洲人成网站在线观看播放| 亚洲精品一二三| 国产毛片在线视频| 久久99蜜桃精品久久| 全区人妻精品视频| 全区人妻精品视频| av.在线天堂| 三级国产精品欧美在线观看| 中文天堂在线官网| 久久人妻熟女aⅴ| 边亲边吃奶的免费视频| 一级,二级,三级黄色视频| 亚洲真实伦在线观看| 日本色播在线视频| av福利片在线| 日本vs欧美在线观看视频 | 久久久久久人妻| 精品亚洲成a人片在线观看| 精品亚洲成国产av| 大又大粗又爽又黄少妇毛片口| 日韩欧美一区视频在线观看 | 有码 亚洲区| 成人特级av手机在线观看| 一级二级三级毛片免费看| 高清不卡的av网站| 国产精品久久久久久av不卡| 国语对白做爰xxxⅹ性视频网站| 美女cb高潮喷水在线观看| 在现免费观看毛片| 国产精品99久久99久久久不卡 | 精品国产一区二区久久| 国产精品国产三级国产av玫瑰| 一边亲一边摸免费视频| 国产亚洲最大av| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站 | 国产精品一区二区在线观看99| 99视频精品全部免费 在线| 国产免费福利视频在线观看| 大话2 男鬼变身卡| 日日啪夜夜撸| 欧美日韩精品成人综合77777| 亚洲伊人久久精品综合| 国产男人的电影天堂91| 国产精品女同一区二区软件| 国产成人a∨麻豆精品| 2021少妇久久久久久久久久久| 国产成人aa在线观看| 国产精品99久久99久久久不卡 | 国产一区二区在线观看av| 又粗又硬又长又爽又黄的视频| 欧美国产精品一级二级三级 | 91精品一卡2卡3卡4卡| 九草在线视频观看| 夜夜看夜夜爽夜夜摸| 中文天堂在线官网| 欧美日韩在线观看h| 久久久久久伊人网av| 亚洲欧洲日产国产| 视频中文字幕在线观看| 午夜91福利影院| 欧美精品亚洲一区二区| 欧美 日韩 精品 国产| 国产色爽女视频免费观看| 久久久欧美国产精品| 伦理电影大哥的女人| 欧美三级亚洲精品| 国产亚洲5aaaaa淫片| 又大又黄又爽视频免费| 国产成人精品婷婷| 观看美女的网站| 一本久久精品| 人妻系列 视频| 十八禁高潮呻吟视频 | 午夜激情久久久久久久| 久久午夜综合久久蜜桃| 精品少妇内射三级| 水蜜桃什么品种好| 国产91av在线免费观看| 成人综合一区亚洲| 亚洲在久久综合| 午夜福利在线观看免费完整高清在| 只有这里有精品99| 99久久精品热视频| 国产亚洲午夜精品一区二区久久| 最近中文字幕高清免费大全6| 高清欧美精品videossex| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频 | 国产亚洲午夜精品一区二区久久| 亚洲精品久久午夜乱码| 日韩亚洲欧美综合| 91精品国产九色| 国产成人精品一,二区| 18+在线观看网站| 色94色欧美一区二区| 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 国产亚洲一区二区精品| 建设人人有责人人尽责人人享有的| 男人狂女人下面高潮的视频| 一级爰片在线观看| 亚洲欧美日韩东京热| 国产女主播在线喷水免费视频网站| 日本午夜av视频| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 国产淫片久久久久久久久| 国产欧美日韩一区二区三区在线 | 欧美精品高潮呻吟av久久| 午夜福利,免费看| 全区人妻精品视频| 国产 一区精品| 国产精品免费大片| 嫩草影院入口| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 亚洲国产日韩一区二区| 男的添女的下面高潮视频| 免费播放大片免费观看视频在线观看| 色哟哟·www| 午夜老司机福利剧场| 男人狂女人下面高潮的视频| 日韩电影二区| 久久国产精品大桥未久av | 亚洲精品成人av观看孕妇| 精品人妻一区二区三区麻豆| 欧美激情国产日韩精品一区| 边亲边吃奶的免费视频| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜| 成年人午夜在线观看视频| 乱人伦中国视频| 一个人看视频在线观看www免费| 男的添女的下面高潮视频| 亚洲综合色惰| 日本爱情动作片www.在线观看| 欧美精品亚洲一区二区| 在线观看人妻少妇| 女人久久www免费人成看片| 亚洲真实伦在线观看| 2018国产大陆天天弄谢| 王馨瑶露胸无遮挡在线观看| 日韩一区二区三区影片| 男女无遮挡免费网站观看| 成人亚洲欧美一区二区av| 日本午夜av视频| 中国国产av一级| 久久久久精品性色| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 久久久午夜欧美精品| 国产亚洲91精品色在线| 精品国产国语对白av| 18禁动态无遮挡网站| 熟女av电影| 久久免费观看电影| 亚洲,一卡二卡三卡| 男人狂女人下面高潮的视频| 男女无遮挡免费网站观看| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 丁香六月天网| 2022亚洲国产成人精品| 黄色毛片三级朝国网站 | 中文精品一卡2卡3卡4更新| 亚洲国产av新网站| 国产男人的电影天堂91| 国产成人a∨麻豆精品| 99热这里只有是精品在线观看| 亚洲国产毛片av蜜桃av| 三级经典国产精品| 国产精品成人在线| 97在线视频观看| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 你懂的网址亚洲精品在线观看| 免费观看a级毛片全部| 国产亚洲午夜精品一区二区久久| 日本欧美国产在线视频| 三上悠亚av全集在线观看 | 亚洲精品国产成人久久av| 国内精品宾馆在线| 九九爱精品视频在线观看| 国产毛片在线视频| 亚洲精品aⅴ在线观看| 各种免费的搞黄视频| 午夜福利视频精品| 三级国产精品片| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 日本av免费视频播放| 少妇猛男粗大的猛烈进出视频| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 亚洲精品久久久久久婷婷小说| 亚洲综合色惰| 一级二级三级毛片免费看| 一本大道久久a久久精品| 三级国产精品片| 精品亚洲成国产av| 欧美激情国产日韩精品一区| 日本-黄色视频高清免费观看| 日韩伦理黄色片| 久久久精品94久久精品| 亚洲欧美清纯卡通| 国产69精品久久久久777片| 久久精品熟女亚洲av麻豆精品| 看免费成人av毛片| 午夜日本视频在线| 久久久久视频综合| 亚洲色图综合在线观看| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 伊人久久精品亚洲午夜| 国产永久视频网站| 极品人妻少妇av视频| 国产日韩一区二区三区精品不卡 | 国产极品天堂在线| 在线观看三级黄色| 91精品国产九色| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 人妻人人澡人人爽人人| 精品亚洲成a人片在线观看| 久久久国产精品麻豆| 人人妻人人澡人人看| 18禁在线播放成人免费| 久久精品久久久久久久性| 国产成人一区二区在线| 国产精品国产三级专区第一集| 九色成人免费人妻av| 人妻人人澡人人爽人人| 亚洲av综合色区一区| 久久婷婷青草| 精品国产一区二区三区久久久樱花| 国产免费一级a男人的天堂| 国产一区二区在线观看av| 91精品国产国语对白视频| 国产精品蜜桃在线观看| 尾随美女入室| 亚洲精品aⅴ在线观看| 日韩大片免费观看网站| 美女福利国产在线| 性色av一级| 少妇被粗大的猛进出69影院 | 日本与韩国留学比较| 日韩av免费高清视频| 精品国产国语对白av| 欧美成人精品欧美一级黄| 免费看不卡的av| 国产极品天堂在线| 多毛熟女@视频| 久久久久网色| 丁香六月天网| 国产男女超爽视频在线观看| 26uuu在线亚洲综合色| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 看非洲黑人一级黄片| 久久97久久精品| 久久久久久人妻| 高清视频免费观看一区二区| 日本与韩国留学比较| 我要看日韩黄色一级片| 亚洲欧美日韩另类电影网站| 少妇的逼水好多| 久久免费观看电影| 成人特级av手机在线观看| 五月天丁香电影| 一级爰片在线观看| 我的老师免费观看完整版| 777米奇影视久久| 精品一区二区三区视频在线| 精品久久久噜噜| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 十八禁高潮呻吟视频 | 有码 亚洲区| 久久精品夜色国产| 少妇的逼水好多| 亚洲一区二区三区欧美精品| 综合色丁香网| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 一级毛片aaaaaa免费看小| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 亚洲精品视频女| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 日本午夜av视频| 亚洲av免费高清在线观看| 亚洲精华国产精华液的使用体验| 日韩不卡一区二区三区视频在线| 亚洲精品日本国产第一区| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 少妇熟女欧美另类| 久久久久久久久久人人人人人人| 黑人猛操日本美女一级片| 熟妇人妻不卡中文字幕| 亚洲av日韩在线播放| 久久午夜综合久久蜜桃| 精品人妻一区二区三区麻豆| 国产黄色免费在线视频| 国模一区二区三区四区视频| 国产成人午夜福利电影在线观看| 国产精品秋霞免费鲁丝片| 纵有疾风起免费观看全集完整版| 久久这里只有精品19| 麻豆乱淫一区二区| 国产一区二区三区在线臀色熟女 | 成年女人毛片免费观看观看9 | 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 狠狠狠狠99中文字幕| 国产99久久九九免费精品| 男女无遮挡免费网站观看| 操出白浆在线播放| av免费在线观看网站| 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 伊人久久大香线蕉亚洲五| 视频在线观看一区二区三区| 91九色精品人成在线观看| 亚洲av美国av| 婷婷丁香在线五月| 亚洲国产成人一精品久久久| 国产精品 国内视频| 久久精品国产综合久久久| 久久av网站| 一级片'在线观看视频| 91字幕亚洲| 超色免费av| 女性被躁到高潮视频| 大香蕉久久网| 精品一区在线观看国产| 免费黄频网站在线观看国产| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 亚洲精品国产精品久久久不卡| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 如日韩欧美国产精品一区二区三区| 五月天丁香电影| 女性生殖器流出的白浆| 欧美大码av| 日韩 欧美 亚洲 中文字幕| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 亚洲欧美精品自产自拍| 99国产精品99久久久久| 1024香蕉在线观看| 中文精品一卡2卡3卡4更新| 老熟女久久久| 成人黄色视频免费在线看| 国产精品免费视频内射| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| a级片在线免费高清观看视频| 精品久久蜜臀av无| 乱人伦中国视频| 久久香蕉激情| 亚洲欧美激情在线| 交换朋友夫妻互换小说| 国产在视频线精品| 女人久久www免费人成看片| 9色porny在线观看| 欧美黑人精品巨大| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 久久中文看片网| 多毛熟女@视频| 欧美97在线视频| 国产精品亚洲av一区麻豆| 18禁观看日本| 亚洲天堂av无毛| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| 一区二区三区四区激情视频| 欧美黄色片欧美黄色片| av一本久久久久| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| 热99re8久久精品国产| 在线亚洲精品国产二区图片欧美| 两性夫妻黄色片| 亚洲三区欧美一区| 免费看十八禁软件| 水蜜桃什么品种好| 精品福利永久在线观看| www日本在线高清视频| 免费观看av网站的网址| 人妻人人澡人人爽人人| 久久国产精品大桥未久av| 美女福利国产在线| 欧美激情极品国产一区二区三区| 国产成人av激情在线播放| 欧美黄色片欧美黄色片| 久久影院123| 国产一卡二卡三卡精品| 欧美精品av麻豆av| 国产欧美日韩一区二区三 | 老熟妇乱子伦视频在线观看 | 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 一本—道久久a久久精品蜜桃钙片| 精品人妻1区二区| 性少妇av在线| 新久久久久国产一级毛片| 夜夜夜夜夜久久久久| 精品人妻一区二区三区麻豆| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| av片东京热男人的天堂| 男女午夜视频在线观看| 女人精品久久久久毛片| 久久久国产欧美日韩av| 国产成人欧美在线观看 | 色综合欧美亚洲国产小说| 美女午夜性视频免费| 欧美日韩亚洲国产一区二区在线观看 | 亚洲少妇的诱惑av| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 成人三级做爰电影| 午夜免费观看性视频| 男女国产视频网站| 精品乱码久久久久久99久播| 人人澡人人妻人| 久久久水蜜桃国产精品网| 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 老熟妇乱子伦视频在线观看 | 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院| 中国国产av一级| 一二三四社区在线视频社区8| 日日爽夜夜爽网站| 精品久久久久久久毛片微露脸 | 亚洲精品一区蜜桃| 首页视频小说图片口味搜索| 精品国产一区二区三区四区第35| √禁漫天堂资源中文www| kizo精华| 淫妇啪啪啪对白视频 | 一区在线观看完整版| 好男人电影高清在线观看| 国产区一区二久久| 美女中出高潮动态图| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 中文字幕av电影在线播放| 99精国产麻豆久久婷婷| 老司机影院成人| 国产黄色免费在线视频| 美女视频免费永久观看网站|