• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A scheme for Sagnac-effect quantum enhancement with Fock state light input?

    2017-08-30 08:25:50KunChen陳坤ShuXinChen陳樹新DeWeiWu吳德偉ChunYanYang楊春燕andQiangMiao苗強
    Chinese Physics B 2017年9期
    關(guān)鍵詞:陳坤

    Kun Chen(陳坤),Shu-Xin Chen(陳樹新),De-Wei Wu(吳德偉), Chun-Yan Yang(楊春燕),and Qiang Miao(苗強)

    Information and Navigation College,Airforce Engineering University,Xi’an 710077,China

    A scheme for Sagnac-effect quantum enhancement with Fock state light input?

    Kun Chen(陳坤),Shu-Xin Chen(陳樹新)?,De-Wei Wu(吳德偉), Chun-Yan Yang(楊春燕),and Qiang Miao(苗強)

    Information and Navigation College,Airforce Engineering University,Xi’an 710077,China

    Sagnac effect enhancement can improve optical gyro precision.For a certain input intensity,we suggest that the other input port of beam splitter(BS)should be fed with some quantum light to break through shot noise limit(SNL)to improve Sagnac effect without increasing radiation-pressure noise(NRP).We design a Sagnac effect quantum enhancement criterion (SQEC)to judge whether some quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme that utilizing Fock state light and parity measurement technique to extract the output phase.The results of the theoretical analysis show that the maximum sensitivity can be reached at θ=0,and the phase precision can break through SNL and even achieve Heisenberg limit(HL).When the Fock state average photon number n is far less than coherent state,the minimum measurable angular rate is improved withtimes,which can deduce shot noise and increase NRP little.

    optical gyro,radiation-pressure noise,parity measurement,Heisenberg limit

    1.Introduction

    The enhancement scheme of Sagnac effect which is the physical basis of gyroscope,is an interesting topic for the improvement of gyroscope precision.[1–4]Many melioration schemes have been proposed via atoms[5–7]and trapped ions.[8,9]In optical regime,the optical gyroscope fed with laser in coherent states,[10]of which the phase sensitivity is restricted by shot noise limit(SNL)whereis the total mean photon number in the interferometer.The gyroscope precision can be improved mainly by increasing the laser power(increasing),whereas radiation-pressure noise(NRP)will dominate and nonlinear effects will be introduced.[12]An effective method is to improve the precision under a certain source power.

    Quantum metrology pointed out that some entanglement properties of input states(N00N state,twin-Fock state,Yurke state,etc.)can be used to break through SNL and even reach the fundamental limit,[13]Heisenberg limit(HL),showing a new way to improve gyroscope precision with quantum techniques.Bertocchi et al.firstly studied Sagnac quantum effect at the single-photon level whose results are no below SNL due to that there is no entanglement in the input states.[14]Kolkiran et al.obtained the HL by entering two-photon entangled states generated via parametric down-conversion.However,in such technical applications,high intensity sources are needed.[15]Caves suggested that sub-shot noise uncertainty can be achieved when a high-intensity coherent state in one input port and the other input port fed with a low-intensity squeezed vacuum state in an interferometer.[16]We utilized the squeezed vacuum light and quantum balanced homodyne detection technique to improve the phase precision obviously[17]and further discussed the optimal measurement method for the coherent state and the squeezed vacuum state in the Sagnac interferometer.[18]However,the squeezed vacuum technique cannot achieve the highest sensitivity at θ=0 unless introducing phase biasing technique.In this paper,we discuss whether there are other useful states in the other input port which can obtain sub-shot-noise phase sensitivity.We design a Sagnac effect quantum enhancement criterion(SQEC)to judge whether a quantum state is useful and develop a Fock state scheme for Sagnac effect enhancement.

    This manuscript is organized as follows.In Section 2, we make a theoretical description for Sagnac effect and design the SQEC based on quantum Fisher information(QFI). In Section 3,we use the SQEC to judge some common quantum states,such as coherent state,Fock state,squeezed vacuum state,and coherent superposition state.In Section 4,we present a Sagnac effect enhancement scheme with Fock state light input and parity measurement technique to extract the output phase.In Section 5,we make an analysis of the scheme. Finally,we discuss the physics underlying phase sensitivity improvement with Fock state light and draw a conclusion.

    2.Sagnac effect quantum enhancement criterion

    Due to the phaseθ precision restricted with shotnoise,for the improvement of measurement precision,we suggest thatthe other input port should be fed with some quantum light. We make a brief theoretical description for Sagnac effect,and then design the SQEC to judge whether a quantum state is useful.

    2.1.Theoretical description for Sagnac effect

    Sagnac effect was first proposed by Georges Sagnac in 1913 for rotation detection in inertial space with optical systems.[19]As illustrated in Fig.1,if Sagnac interferometer rotates with an angular rate ? along the clockwise direction, the two parts of light split at point A will take different time for a circle along clockwise and anti-clockwise direction separately and the time difference is Δt=4πr2?/c2(λ is wavelength,r is the radius of interferometer,and c is the speed of light).Accordingly,the optical path difference is

    Furthermore,we can obtain a linear relation between the relative phase θ and rotation rate ? as[20]

    where L is the optical path length.The accuracy of rotating rate ? depends on the measurement precision of phase θ.Therefore,Sagnac effect enhancement is to improve the precision of phase θ essentially.

    Fig.1.A schematic diagram of Sagnac effect.[17]

    Next,we describe the Sagnac effect in the Schwinger representation with quantum theory.[21]When the two input quantum states|in〉inject into the input ports P1and P2of the Sagnac interferometer depicted in Fig.2 respectively, they are both split into two beams by the beam splitter(BS) and mix with each other.The state upon leaving the BS is |?〉=exp(?iπ/2Jx)|in〉where Jx≡(a+b+b+a)/2 is an angular momentum operator.The quantum state|?〉accumulates a relative phase θ due to the interferometer rotation and becomes|?′〉=exp(?iθJz)|?〉where Jz≡(a+a?b+b)/2. |?′〉joins at the BS and leaves the interferometer.The output state is|out〉=exp(iπ/2Jx)|?′〉.We can obtain the relationship between input and output states as

    Fig.2.A schematic diagram of Sagnac interferometer.

    2.2.SQEC design

    The current optical gyro is fed with coherent light into one input port of BS and detected at another output port.In fact,the other input port is fed with vacuum instead of nothing, which restricts the phase precision at the SQL theoretically,as shown below.

    When the Sagnac interferometer shown in Fig.2 has two input ports injected with quantum states,the relationship between input and output ports in Eq.(3)can be written in a density matrix as

    where ρaand ρbare density operators of the quantum state entering into input ports P1and P2,respectively.The estimation precision of phase θ can be described with quantum Cramer–Rao bound(QCR)[22]

    where FQis the so-called QFI,which can be calculated by maximizing the Fisher information over all possible positive operator valued measures(POVM)[23]

    where{E(ε)}are a set of Hermitian positive-operators and Lθis the Hermitian operator of symmetric logarithmic derivative (SLD),defined as

    If ρaand ρbare pure states,we can obtain the relation ρout(θ)=ρout(θ)2from Eq.(4),of which the derivative of θ is?θρout(θ)=?θρout(θ)2=[?θρout(θ)]ρout(θ)+ ρout(θ)[?θρout(θ)].Comparing with Eq.(7)of the SLD def inition,we have

    and then

    With further calculation,we can obtain the QFI

    In the system,the total photon number,the SNL and HL are defined respectively as

    Substituting Eq.(10)into Eq.(5)and comparing with Eq.(12),we can obtain the SQEC,namelyIf SQEC is satisfied,the phase precision can break through SNL and Sagnac effect can be enhanced with certain light power.If one conditionis satisfied,HL can be achieved.If only one quantum state enters into the interferometer,whatever ρaor ρb,it is easy to verify that the system can only achieve SNL.This agrees with the conclusion of Caves that if only one quantum state enters into the BS,the other input port will introduce vacuum fluctuation restricting the parameter estimation precision.

    3.SQEC analysis of quantum states

    In order to improve the Sagnac phase accuracy and break through SNL with a fixed total photon number,we need to choose a suitable quantum state entering the input port b to satisfy SQEC and make Θ?as large as possible.We will make an analysis of some common quantum states such as coherent state,Fock state,squeezed vacuum state,and coherent superposition state,which can be produced in experiment.

    3.1.Coherent state|β〉

    If coherent state|β〉fed into the input port P2,where β= |β|e?i?β,we can obtainandwhich does not satisfy SQEC.It can be found that QFI cannot be improved by entering a coherent state into the other port. Therefore,the coherent state cannot enhance the Sagnac effect.

    3.2.Fock state|n〉

    The Fock state,also known as the photon number state,is in extensive research for quantum metrology which can be produced through parametric down-conversion in experiment.[24]If port P2fed with Fock state|N〉,we obtain Θ?=0 andwhich suggests that the Fock state in port b can improve QFI.If the power of coherent state|α〉is much higher than Fock state|N〉,namelywe getand the phase precisionwhich means that the phase precision increases effectively as the photon number of Fock state increases.

    3.3.Squeezed vacuum state|ξ〉

    The squeezed vacuum state has been extensively studied in quantum communication,gravitational wave detection, and precision measurement due to that the quantum fluctuation of a quadrature component is smaller than vacuum fluctuation,and can be produced through a parametric amplifier or a four-wave mixing experimentally.[25]If port P2fed with squeezed vacuum state|ξ〉,we getandwhich satisfy SQEC and the precision increases with the squeezed strength r exponentially.In particular,owing towhen,we obtainandwhich reaches HL.It is obvious that the squeezed vacuum state can enhance Sagnac effect effectively, which have been discussed in detail in Ref.[17].

    3.4.Coherent superposition state

    The coherent superposition state|αb〉,or Schrodinger cat state,is defined as[26]

    where|αb〉is called even coherent state when φ=0;when φ=π/2,|αb〉is called Yurke–Stoler coherent state;when φ=π,|αb〉is called odd coherent state.Without loss of generality,we take α0as a real number.When selecting the optimal phase matching condition ?=π/2,we have

    When|αb〉is the odd or even coherent state,Θ?=When|αb〉is the Yurke–Stoler coherent state,Θ?=When,we can obtain≈and

    When the coherent superposition state is fed into the input port P2,the sub-shot-noise uncertainty can be approached and the QFI isIn particular,whenwe havewhich means that the coherent superposition state can also achieve an HL-like squeezed vacuum state.The coherent superposition state is also a kind of macroscopic superposition states,which is conducive to enhance the Sagnac effect in experiment.

    Through the analysis above,the other input port of Sagnac BS fed with some quantum light in Fock state, squeezed vacuum state,or coherent superposition state can break through SNL and increase phase precision to a certain degree in theory.Here,we choose Fock state light to enter into the BS for Sagnac effect enhancement(the enhancement scheme based on coherent superposition state input will be published elsewhere).Nevertheless,the QCR and SQEC are obtained based on POVM,which is a difficult task for design in experiment.How to design a POVM or implement optimal measurement to reach QCR experimentally is still an open question.The key problem is how to effectively extract the phase information of the output light.Parity measurement technique is suggested as follows.

    4.Parity measurement for Fock state input

    In the Sagnac effect enhancement scheme with Fock state light inputas shown in Fig.3,coherent state|α〉and Fock state |N〉respectively enter into the input ports P1and P2of BS.As the BS will be used twice as input and output,we set an optical circulator under port P2for input and output isolation.

    Parity measurement technique was firstly put forward by Bollinger et al.for spectrum measurement,and then introduced into the optical interferometry.[27]As experimenters only need to measure the parity of the photon number at one of the output ports,parity measurement is easy for manipulation. For any mode a,the parity operator can be expressed as[28]

    Generally,it is difficult to calculate parity operator expectation〈Π〉directly.As the expectation〈Π〉is proportional to the value of the Wigner function of output quantum state at the origin of the phase space,it can be obtained by calculating the Wigner function of the output state.

    Fig.3.Sagnac effect enhanced scheme.

    The Wigner function of the input state ρa?ρbin Eq.(4) is the product of two Wigner functions of ρaand ρb[29]

    where Wρa(αi)and Wρb(βi)are Wigner functions of input state ρaand ρbrespectively.When ρaand ρbare coherent state and Fock state,there are

    where the Laguerre polynomials Ln(·)is written in the form of its generation function[30]

    for convenient calculation later.For the two output ports αfand βfin the interferometer,substituting the input and output relation[31]

    and Eq.(17)into Eq.(16),we can obtain the Wigner function of the output state as

    As we measure the photon number parity at the output port af,the origin of the Wigner function value of output state of port afis needed.Integrating βfof Eq.(19)and setting αf=0,we can obtain

    In Eq.(21),when θ→0,〈Π〉→(?1)nwhich corresponds to the parity operator expectation of Fock state and indicates that the output is Fock state without coherent state;when θ→π,which corresponds to parity operator expectation of coherent state and indicates that the output is coherent state without Fock state.This can be understood that the output state is the statistical mixture between Fock state and coherent state modulated by the relative phase θ.

    When cosθ=0(θ=π/2 or 3π/2),the parity operator expectation is

    The parity operator expectation with different average photon numbers of Fock state is shown in Fig.4,where the average photon number of coherent state is|α|2=2.The peak of parity operator expectation is at θ=0,at which we can reach the highest sensitivity.When Fock state injectsinto the Sagnac interferometer,even if there is only one photon,the wave crest becomes steeper,which indicates that the phase sensitivity has been improved effectively.Figures 4(b)and 4(c)respectively describe the relationships between parity operator expectation and the average photon number n of Fock state which changes from 0 to 20.It can be clearly found that the wave crest becomes steeper and steeper as n increases.Next to the wave crest,the expectation curve exists a fluctuation and then is relatively stable in a rather long phase scope(Fig.4(c)).The sensitivity of wave crest and wave trough increase as n increases, and there is more large angle range with low sensitivity.In the next section,theory analysis is given.

    Fig.4.(color online)Parity operator expectation against phase θ for different mean photon numbers of Fock state n(the mean photon number of coherent state|α|2=2).(a)The curve of parity operator expectation for different n;(b)the three-dimensional(3D)plot of parity operator expectation against phase θ as n increases;(c)the 3D plot of parity operator expectation against phase θ as n decreases.

    5.Performance analysis

    As the laguerre polynomials can be written as

    which can achieve QCR and indicate the phase with the highest sensitivity at θ=0.Although the error achieves QCR, showing that the parity measurement is a kind of optimal measurement method,we cannot break through SNL without Fock state input,as shown in Fig.5.

    Fig.5.(color online)The curve of phase error with only coherent light input.

    When n≥1,the derivative of parity operator expectation is

    If there is only Fock state input,namely|α|2=0,the parity operator expectation is〈Π〉=(?1)ncosnθ and its derivative is d〈Π〉/dθ=?(?1)nn cosn?1θ sinθ.We can obtain the phase error

    When θ→0 or θ→π,Δθ can reach QCR,as shown in Fig.6.We cannot break through the SNL only with Fock state input either.

    Fig.6.(color online)The curve of phase error with only Fock state light input.

    When|α|2>0,the phase error with both Fock state and coherent state input is

    When θ→0,the minimum error can be obtained as

    which suggests that the best sensitivity is at θ→0 and parity measurement can achieve HL as shown in Fig.7.Because the denominator of Eq.(27)will become 0 at several values of θ as the photon number n changes,some errors become large and several peaks emerge in the error curve,which means that the performance of this method is poor at some values of phase. The error curve is relatively flat near 0°,and reaches the minimum at 0°.To facilitate the analysis of the minimum error, we draw the error curve near 0°area as shown in Fig.7(b), where n=1.It can be found that the error indeed reaches HL which proves the validity of Eq.(28).The proposed scheme can reach the highest sensitivity when θ→0 directly.

    Fig.7.(color online)Phase errors of coherent state and Fock state input (the mean photon number of coherent state|α|2=2).(a)The phase error at different values of θ and mean photon number of Fock state; (b)the phase error curve near 0°area.

    The analysis above indicates that parity measurement technique is a feasible and optimal method to reach QCR and break through SNL.As a result of the Fock state input, compared with only increasing the pure coherent light photon number(power),one extra item 2n|α|2emerges in the denominator of Eq.(28),which is the key role to improve the phase accuracy under the same power,as shown in Fig.8.

    Fig.8.(color online)The phase error comparison between suggested scheme and SNL.

    Specifically,we take the fiber optic gyro(FOG)for example to discuss the performance with this technique as follows. The measurable minimum angular rate is a very important indicator.Usually,the best phase sensitivity corresponds to the measurable minimum angular rate

    where h is the Planck constant,e is electron energy,and c is the speed of light.For a FOG of the wavelength λ= 1550 nm,the length of optical fiber L=5 km,coil diameter D=0.2 m,detector responsivity PD=1 A/W,signal bandwidth Δf=0.01 Hz,the optical power P=250μW,and phase bias ?b=3π/4.We can obtain the minimum detectable angular rate ?min=4.2×10?5(°)/h with the first equation.

    When the mean photon number of coherent state and Fock state respectively are|α|2and n,the phase SNL isCombining with Eqs.(28)and(29),we have

    where ?′can reach the minimum valuewhen|α|2=n.If the optical power P=250μW,according to the formula P=hcn/λ,the average photon number is 1.9×1015approximately and n=9.5×1014.We can calculate the minimum detectable angular rate in the proposed schemewhich is enhanced 7 orders without any input power increase.

    The dynamic range of FOG is the ratio of the maximum input angular rate to the minimum angular rate.The dynamic range of the classical method can achieve π/Δ?SNL,and this proposed method can increasetimes,which shows that the dynamic range is increased with the square root of the average photon number of Fock state.

    Although it is difficult to make the power of Fock state equal to coherent state,the precision of gyro can be improved under the same power by entering the Fock state into the interferometer.When the Fock state average photon number is far less than that of coherent state,there iswhich means that the minimum detectable angular rate can be improved with a factor ofFor example,as long as the input Fock state average photon number reaches 50,the accuracy can be improved with 10 times while NRP increases little.

    6.Discussion

    What is the essential physics for phase sensitivity improvement in the interferometer?In the Sagnac linear interferometer,it is the particle entanglement of input states that provide sub-shot-noise phase uncertainty.Pezze pointed out that not all the entangled states can overcome SNL,but the one,and only one,which satisfied with the sufficient condition for entanglement judgeIf the sufficient condition is satisfied,the input states ρinare entangled and can achieve the sub-shot-noise phase uncertainty Δθmin=suggesting ρinare useful for Sagnac effect enhancement.When the input states are coherent state ρaand Fock state|N〉,we can calculate the QFI of input states ρin=ρa?|N〉〈N|and obtainindicating that the input states are in entangled states and can overcome SNL.The squeezed vacuum state and coherent superposition state mentioned above can both be in the useful entangled states with coherent state.

    In particular,when passing through the BS,the quantum states ρin=ρa?|N〉〈N|are transformed as

    where D(α)=exp(αa+?α?a)is the displacement operator. It is easy to find that|?〉Nhas strong correlations between the displaced Fock states of the two modes,[33]which is similar to the macroscopic maximally entangled state,entangled coherent state.The distinction is that the entangled coherent state is entangled between coherent state and vacuum state,as|?〉Nis statistical mixture with the entangle states between displaced Fock states.When entering a Fock state with only one photon, equation(31)can be simplified as

    which is entangled between coherent state(displaced vacuum state)and displaced Fock state.It is the one input photon that produces an entangled state with large photon numbers, which is the physical reason why 2.4 dB sensitivity gain can be achieved with only one photon injection.

    If the other input port fed with coherent state|β〉, the input quantum states|α〉|β〉will be transformed intoafter the BS,which is direct product state of two coherent states but not entangled.This is distinct from Fock state input.Obviously,coherent state is not able to increase phase sensitivity,which is consistent to the conclusion of SQEC.

    Through the analysis above,the most important reason for Sagnac effect enhanced with Fock state input is that the quantum states after BS in two modes are entangled,which can provide sub-shot-noise phase sensitivity with appropriate measurement method at the output.

    7.Conclusions

    We design a SQEC to judge whether the quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme by utilizing Fock state light and parity measurement technique to extract the output phase.The results of the theoretical analysis show that the maximum sensitivity can be reached at θ=0,and the phase precision can break through SNL and even achieve Heisenberg limit(HL). When the Fock state average photon number n is far less than that of coherent state,the minimum measurable angular rate is improved withtimes,which can deduce the shot noise and increase NRP little.We can achieve much higher accuracy with a relative small power of Fock state input.The proposed scheme is an effective way to improve the precision of gyro.

    [1]Joseph S 2014 Gen.Relativ.Gravit.46 1710

    [2]Jing J,Li Y,Zhang Z C,Wu C X and Song N F 2016 Chin.Phys.B 25 084213

    [3]Wu Q,Yu J L,Wang J,Wang W R,Jia S,Huang G B,Hei K F and Li L J 2015 Acta Phys.Sin.64 044205(in Chinese)

    [4]Liu J,Zhang T E,Zhang W,Lei L H,Xue C Y,Zhang W D and Tang J 2015 Acta Phys.Sin.64 107802(in Chinese)

    [5]Luo C,Huang J,Zhang X and Lee C 2017 Phys.Rev.A 95 023608

    [6]Gauguet A,Canuel B,Leveque T,Chaibi W and Landragin A 2009 Phys.Rev.A 80 063604

    [7]Tackmann G,Berg P,Schubert C,Abend S,Gilowski M,Ertmer W and Rasel E M 2012 New J.Phys.14 015002

    [8]Rico-Gutierrez L M,Spiller T P and Dunningham J A 2015 New J. Phys.17 043022

    [9]Campbell W C and Hamilton P 2016 arXiv:1609.00659

    [10]Schreiber K U,Klugel T,Wells J P R,Hurst R B and Gebauer A 2011 Phys.Rev.Lett.107 173904

    [11]Giovanetti V,Lloyd S and Maccone L 2011 Nat.Photon.5 222

    [12]William N P and Jonathan P D 2010 New.J.Phys.12 083014

    [13]Xiang G Y and Guo G C 2013 Chin.Phys.B 22 110601

    [14]Bertocchi G,Alibart O,Ostrowsky D B,Tanzilli S and Baldi P 2006 J. Phys.B 39 1011

    [15]Kolkiran and Agarwal G S 2007 Opt.Express 15 679

    [16]Caves C M 1981 Phys.Rev.D 23 1693

    [17]Chen K,Chen S X,Wu D W,Yang C Y and Wu H 2016 Acta Phys.Sin. 65 054203(in Chinese)

    [18]Chen K,Chen S X,Wu D W,Yang C Y,Wang X,Li X,Wu H and Liu Z W 2016 Acta Phys.Sin.65 194203(in Chinese)

    [19]Barrett B,Geiger R and Dutta I 2014 C.R.Physique 15 875

    [20]Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge:Cambridge University Press)pp.101–106

    [21]Yurke B,McCall S L and Klauder J R 1986 Phys.Rev.A 33 4033

    [22]Alex M 2006 Phys.Rev.A 73 033821

    [23]Luca P and Augusto S 2014 arXiv:1411.5164v1[quant-ph]

    [24]Luca P and Augusto S 2013 Phys.Rev.Lett.110 163604

    [25]Baune C,Gniesmer J,Sch?nbeck A,Vollmer C E,Fiurasek J and Schnabel R 2015 Opt.Express 23 16035

    [26]Jaewoo J,Kimin P,Hyunseok J,William J M,Kae N and Timothy P S 2012 Phys.Rev.A 86 043828

    [27]Gerry C C 2000 Phys.Rev.A 61 043811

    [28]Campos R A,Gerry C C and Benmoussa A 2003 Phys.Rev.A 68 023810

    [29]Hu L Y,Wei C P,Fang J,Huang J H and Liu C J 2014 Opt.Commun. 323 68

    [30]Xu X F and Fan H Y 2015 Chin.Phys.B 24 010301

    [31]Tan Q S,Liao J Q,Wang X G and Franco N 2014 Phys.Rev.A 89 053822

    [32]Luca P and Augusto S 2009 Phys.Rev.Lett.102 100401

    [33]Windhagera A,Suda M,Pacher C,Peev M and Poppe A 2011 Opt. Commun.284 1907

    19 December 2016;revised manuscript

    23 May 2017;published online 2 August 2017)

    10.1088/1674-1056/26/9/094212

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61573372 and 61603413).

    ?Corresponding author.E-mail:chenshuxin68@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    陳坤
    Microwave frequency downshift in the timevarying collision plasma
    陳坤:行走的力量
    陳坤從二次元中看世界
    100張碟片成就
    做人與處世(2016年6期)2016-04-20 06:02:26
    陳坤演繹“小鮮肉”的完美進化
    "老中醫(yī)"陳坤
    愛你(2015年16期)2015-11-15 06:05:39
    把花瓶身份再升華一下陳坤
    電影故事(2015年51期)2015-01-11 09:17:20
    那些陳坤喜歡的道理,年輕人們意見紛紛
    壹讀(2014年16期)2014-09-04 09:21:50
    陳坤:在行走中傳遞大愛
    陳坤:打開胸給你看
    海峽姐妹(2014年5期)2014-02-27 15:09:18
    高清在线视频一区二区三区| 全区人妻精品视频| 免费黄网站久久成人精品| 狂野欧美白嫩少妇大欣赏| 如何舔出高潮| 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| 日本一二三区视频观看| 又黄又爽又刺激的免费视频.| 久久久久国产网址| 国产亚洲5aaaaa淫片| 各种免费的搞黄视频| 在线观看免费高清a一片| 久久久久性生活片| 男女下面进入的视频免费午夜| 国产成人福利小说| 精品人妻熟女av久视频| 少妇的逼水好多| 肉色欧美久久久久久久蜜桃 | 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 亚洲在久久综合| 小蜜桃在线观看免费完整版高清| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 美女高潮的动态| 熟妇人妻不卡中文字幕| av天堂中文字幕网| av免费观看日本| 夫妻午夜视频| 成年人午夜在线观看视频| 97在线人人人人妻| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 国内精品宾馆在线| 亚洲av成人精品一区久久| 国产男女超爽视频在线观看| 七月丁香在线播放| 国产精品久久久久久精品电影小说 | 一级黄片播放器| tube8黄色片| .国产精品久久| 在线观看一区二区三区| 午夜福利视频精品| 国产日韩欧美亚洲二区| 夫妻性生交免费视频一级片| 在线观看一区二区三区| 亚洲欧美清纯卡通| 男女无遮挡免费网站观看| 欧美xxⅹ黑人| 国产国拍精品亚洲av在线观看| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 欧美精品国产亚洲| 最近的中文字幕免费完整| 成人欧美大片| 制服丝袜香蕉在线| 久久久国产一区二区| 成人无遮挡网站| 亚洲久久久久久中文字幕| 国产探花极品一区二区| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 直男gayav资源| 一个人看视频在线观看www免费| 成人黄色视频免费在线看| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 久久久精品免费免费高清| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人爽人人片va| 久久久久国产精品人妻一区二区| 欧美人与善性xxx| 男人舔奶头视频| 激情五月婷婷亚洲| 久热久热在线精品观看| 国产毛片a区久久久久| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 国产精品国产三级国产专区5o| 国产在线男女| 日日啪夜夜撸| 18禁在线播放成人免费| 国产乱人偷精品视频| .国产精品久久| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 国产91av在线免费观看| 久久女婷五月综合色啪小说 | 亚洲精品成人av观看孕妇| 小蜜桃在线观看免费完整版高清| 欧美日韩视频精品一区| 欧美激情在线99| 狠狠精品人妻久久久久久综合| 亚洲精华国产精华液的使用体验| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 在线看a的网站| 少妇的逼好多水| 国内精品宾馆在线| 国产成人午夜福利电影在线观看| 国产精品福利在线免费观看| 国产精品久久久久久av不卡| 久久久a久久爽久久v久久| 天堂中文最新版在线下载 | 别揉我奶头 嗯啊视频| 插逼视频在线观看| 搡老乐熟女国产| 少妇熟女欧美另类| 亚洲精品一二三| 欧美日韩在线观看h| 午夜免费鲁丝| 欧美极品一区二区三区四区| 大话2 男鬼变身卡| 激情 狠狠 欧美| 一级黄片播放器| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 晚上一个人看的免费电影| 麻豆成人av视频| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 国产精品人妻久久久久久| 亚洲成人中文字幕在线播放| 精品久久久精品久久久| 成年女人在线观看亚洲视频 | 欧美高清性xxxxhd video| 亚洲av二区三区四区| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 天天一区二区日本电影三级| 亚洲国产欧美在线一区| 国产v大片淫在线免费观看| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 99热全是精品| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 欧美国产精品一级二级三级 | 精品久久久精品久久久| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 搡老乐熟女国产| 成年免费大片在线观看| 久久久久久久久久人人人人人人| 国产精品三级大全| 在线亚洲精品国产二区图片欧美 | 一级黄片播放器| 国产毛片a区久久久久| 爱豆传媒免费全集在线观看| 亚洲精品成人av观看孕妇| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 人人妻人人看人人澡| 日本色播在线视频| 日韩欧美精品免费久久| 国产在线男女| 日日撸夜夜添| 狂野欧美白嫩少妇大欣赏| 九草在线视频观看| 成人特级av手机在线观看| 人妻系列 视频| 亚洲人成网站在线观看播放| 国产成人freesex在线| 国产成人免费无遮挡视频| 老司机影院成人| 18禁动态无遮挡网站| 18禁动态无遮挡网站| av在线老鸭窝| 80岁老熟妇乱子伦牲交| 国产黄片美女视频| 高清午夜精品一区二区三区| 亚洲av中文av极速乱| eeuss影院久久| 一级a做视频免费观看| 嫩草影院新地址| a级毛色黄片| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 在线免费十八禁| 免费少妇av软件| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 精品久久久久久久末码| 成年av动漫网址| 一个人看的www免费观看视频| 街头女战士在线观看网站| 深爱激情五月婷婷| 韩国av在线不卡| a级一级毛片免费在线观看| 婷婷色麻豆天堂久久| 一级二级三级毛片免费看| 韩国高清视频一区二区三区| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 国产成人91sexporn| 久久这里有精品视频免费| 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 好男人视频免费观看在线| 九九爱精品视频在线观看| 特级一级黄色大片| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 亚洲av欧美aⅴ国产| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| 色综合色国产| 又大又黄又爽视频免费| 青青草视频在线视频观看| 日本欧美国产在线视频| 美女被艹到高潮喷水动态| 蜜臀久久99精品久久宅男| 久久99热这里只频精品6学生| 免费看日本二区| 亚洲色图av天堂| 高清日韩中文字幕在线| 大片免费播放器 马上看| 国产精品国产三级国产专区5o| 亚洲av成人精品一区久久| 一级毛片黄色毛片免费观看视频| 国内少妇人妻偷人精品xxx网站| 欧美日韩精品成人综合77777| 欧美少妇被猛烈插入视频| 精品久久久久久久末码| 国产精品久久久久久久久免| 久久久欧美国产精品| 在线天堂最新版资源| 精品国产三级普通话版| 久久久精品94久久精品| 亚洲欧美清纯卡通| 亚洲国产精品国产精品| 亚洲经典国产精华液单| 汤姆久久久久久久影院中文字幕| 国产精品人妻久久久影院| 精品久久久久久久末码| 香蕉精品网在线| 伊人久久精品亚洲午夜| 男的添女的下面高潮视频| 一级片'在线观看视频| 18禁裸乳无遮挡免费网站照片| 联通29元200g的流量卡| 我的老师免费观看完整版| 日本午夜av视频| av卡一久久| 狠狠精品人妻久久久久久综合| 日本熟妇午夜| 亚洲精品亚洲一区二区| 国产男女内射视频| 亚洲国产精品成人综合色| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 国产精品久久久久久精品古装| 三级经典国产精品| 国产男人的电影天堂91| 亚洲精品第二区| 国产成人一区二区在线| 少妇人妻一区二区三区视频| 久久6这里有精品| 精品久久久久久电影网| 久久久精品欧美日韩精品| 日韩一区二区三区影片| 免费大片黄手机在线观看| 亚洲综合色惰| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 国产在视频线精品| 亚洲美女搞黄在线观看| 精品视频人人做人人爽| 国产乱人视频| 有码 亚洲区| 97精品久久久久久久久久精品| 久久久久久久久久成人| 视频区图区小说| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 亚洲av福利一区| 亚洲精品中文字幕在线视频 | 亚洲国产欧美在线一区| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 啦啦啦在线观看免费高清www| 免费黄色在线免费观看| 国产黄片美女视频| xxx大片免费视频| 国产v大片淫在线免费观看| 国产免费福利视频在线观看| 少妇的逼好多水| 晚上一个人看的免费电影| 免费av不卡在线播放| 美女国产视频在线观看| 精品国产三级普通话版| 免费观看的影片在线观看| 国产精品国产av在线观看| 视频区图区小说| 国产老妇伦熟女老妇高清| 人妻一区二区av| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 欧美激情在线99| 熟妇人妻不卡中文字幕| 大陆偷拍与自拍| 亚洲av免费在线观看| 欧美激情在线99| 国产高清三级在线| 国产一区二区在线观看日韩| 久久精品综合一区二区三区| 成年av动漫网址| 久久热精品热| 97热精品久久久久久| 日韩一区二区视频免费看| 亚洲精品自拍成人| 免费观看无遮挡的男女| 久久这里有精品视频免费| 精品国产三级普通话版| 久久人人爽人人片av| 91狼人影院| 久久久成人免费电影| 一二三四中文在线观看免费高清| 国产精品伦人一区二区| 伦理电影大哥的女人| 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 一本久久精品| 亚洲国产精品999| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 日本一本二区三区精品| 免费大片黄手机在线观看| 日本黄大片高清| 免费大片18禁| 免费黄网站久久成人精品| 国内少妇人妻偷人精品xxx网站| 又粗又硬又长又爽又黄的视频| 国产毛片在线视频| 欧美极品一区二区三区四区| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 中文欧美无线码| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 观看免费一级毛片| 亚洲真实伦在线观看| 亚洲国产欧美人成| 精品99又大又爽又粗少妇毛片| 久久久久久久大尺度免费视频| 蜜桃亚洲精品一区二区三区| .国产精品久久| 男女国产视频网站| 日韩免费高清中文字幕av| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 熟妇人妻不卡中文字幕| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 国产av码专区亚洲av| 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久| 精品人妻视频免费看| 免费在线观看成人毛片| 99视频精品全部免费 在线| 久久久精品欧美日韩精品| 国产日韩欧美亚洲二区| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 欧美+日韩+精品| 国产精品偷伦视频观看了| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 肉色欧美久久久久久久蜜桃 | 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 精品一区二区免费观看| 亚洲自偷自拍三级| 国产免费一级a男人的天堂| 久久久久久国产a免费观看| 一级av片app| 久久精品熟女亚洲av麻豆精品| 日本免费在线观看一区| 我要看日韩黄色一级片| 久久韩国三级中文字幕| 国产精品熟女久久久久浪| 赤兔流量卡办理| 久久久午夜欧美精品| 91在线精品国自产拍蜜月| av专区在线播放| 国产精品秋霞免费鲁丝片| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 中国国产av一级| 2021天堂中文幕一二区在线观| 国产精品人妻久久久影院| 麻豆乱淫一区二区| av.在线天堂| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 日韩av不卡免费在线播放| 麻豆成人午夜福利视频| 亚洲av日韩在线播放| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| av播播在线观看一区| 乱系列少妇在线播放| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 精品一区二区三卡| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 色网站视频免费| 亚洲av免费在线观看| 国产精品国产三级国产专区5o| 又黄又爽又刺激的免费视频.| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡 | 国产v大片淫在线免费观看| 国产探花极品一区二区| 精品久久久久久久久av| 女的被弄到高潮叫床怎么办| 久久热精品热| 亚洲婷婷狠狠爱综合网| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 嫩草影院精品99| 精品人妻熟女av久视频| 国产av码专区亚洲av| 在线观看三级黄色| 久久精品夜色国产| 在线a可以看的网站| 国产精品爽爽va在线观看网站| 日韩欧美精品v在线| 水蜜桃什么品种好| 男的添女的下面高潮视频| 在线 av 中文字幕| 欧美区成人在线视频| 天天躁日日操中文字幕| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 国产一级毛片在线| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 亚洲欧美一区二区三区黑人 | 成人无遮挡网站| 午夜免费男女啪啪视频观看| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 亚洲国产日韩一区二区| 国产男女内射视频| 欧美3d第一页| 纵有疾风起免费观看全集完整版| 国模一区二区三区四区视频| h日本视频在线播放| av在线播放精品| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 美女被艹到高潮喷水动态| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 亚洲国产av新网站| 极品教师在线视频| 国产亚洲5aaaaa淫片| 国产视频内射| 亚洲精品自拍成人| a级毛色黄片| 亚洲精品aⅴ在线观看| 亚洲av免费高清在线观看| 亚洲欧美日韩东京热| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 久久久色成人| 岛国毛片在线播放| 天天躁日日操中文字幕| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| av在线亚洲专区| 校园人妻丝袜中文字幕| 人妻 亚洲 视频| 久久久久久久午夜电影| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 国产视频首页在线观看| 人妻一区二区av| 免费观看性生交大片5| 天天一区二区日本电影三级| 久久人人爽av亚洲精品天堂 | 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站 | 蜜桃久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性bbbbbb| 欧美精品一区二区大全| 下体分泌物呈黄色| 久久久久久久国产电影| 看非洲黑人一级黄片| 91精品国产九色| 日韩不卡一区二区三区视频在线| 尤物成人国产欧美一区二区三区| 美女主播在线视频| 久热久热在线精品观看| 精品熟女少妇av免费看| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 天天一区二区日本电影三级| 欧美激情在线99| 久久女婷五月综合色啪小说 | 亚洲va在线va天堂va国产| 老司机影院毛片| 最近手机中文字幕大全| 夫妻性生交免费视频一级片| 性色avwww在线观看| 成人亚洲欧美一区二区av| 中文字幕久久专区| 十八禁网站网址无遮挡 | 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 国产毛片a区久久久久| 亚洲精品影视一区二区三区av| 成年女人看的毛片在线观看| 中文乱码字字幕精品一区二区三区| 永久免费av网站大全| 亚洲精品成人av观看孕妇| 只有这里有精品99| 干丝袜人妻中文字幕| 日韩伦理黄色片| 中文字幕人妻熟人妻熟丝袜美| 国产成人91sexporn| 午夜精品一区二区三区免费看| 中文欧美无线码| 国产精品国产三级国产av玫瑰| 免费黄色在线免费观看| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 久久精品国产自在天天线| 中文字幕免费在线视频6| 精品久久久久久电影网| 亚洲丝袜综合中文字幕| 亚洲精品久久午夜乱码| 精品国产露脸久久av麻豆| 亚洲人与动物交配视频| 看非洲黑人一级黄片| 男女那种视频在线观看| 国产高清国产精品国产三级 | 小蜜桃在线观看免费完整版高清| 精品少妇久久久久久888优播| 三级男女做爰猛烈吃奶摸视频| 中文乱码字字幕精品一区二区三区| 免费看a级黄色片| 亚洲精品国产av蜜桃| 18禁裸乳无遮挡动漫免费视频 | 亚洲自偷自拍三级| 美女被艹到高潮喷水动态| 激情 狠狠 欧美| 久久精品国产亚洲av涩爱| 青春草亚洲视频在线观看| 国产成人freesex在线| 六月丁香七月| 成人毛片60女人毛片免费| 国产视频首页在线观看| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 国产黄片视频在线免费观看| 全区人妻精品视频| 99热全是精品| www.色视频.com| 80岁老熟妇乱子伦牲交| av在线播放精品| 三级国产精品欧美在线观看| 老司机影院成人| av国产免费在线观看| 成人二区视频| 99热网站在线观看| 国产探花在线观看一区二区| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 欧美最新免费一区二区三区| 中文乱码字字幕精品一区二区三区| 免费看a级黄色片| 国产在线一区二区三区精| 亚洲人成网站在线观看播放|