• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal?

    2017-08-30 08:25:56GuanTingLiu劉官?gòu)dandLiYingYang楊麗英
    Chinese Physics B 2017年9期

    Guan-Ting Liu(劉官?gòu)d)and Li-Ying Yang(楊麗英)

    1 College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China

    2 College of Sciences,Inner Mongolia Agricultural University,Hohhot 010018,China

    Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal?

    Guan-Ting Liu(劉官?gòu)d)1,?and Li-Ying Yang(楊麗英)2

    1 College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China

    2 College of Sciences,Inner Mongolia Agricultural University,Hohhot 010018,China

    By means of analytic function theory,the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied.The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained.They indicate that the stress concentration occurs at the dislocation source and the tip of the crack,and the value of the stress increases with the number of the dislocations increasing.These results are the development of interaction among the finitely many defects of quasicrystals,which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal.

    quasicrystals,infinitely many dislocations,semi-infinite crack,interaction

    1.Introduction

    Quasicrystal(QC)is a novel structure of solid discovered by Shechtman et al.in 1984,which is orientationally ordered, but noncrystallo-graphic.[1]Due to this discovery,Shechtman won the 2011 Nobel prize for chemistry.Since the quasicrys-tal was found,generalized elasticity theory of quasicrystals has been formulated,[2–8]and many analytical solutions for defect problems of QCs have been obtained.[9–15]As far as the problems of finitely many defects in QCs are concerned,there are some research papers about them.[16–24]But few results about the interaction among infinitely many defects in QCs have been reported.For QC,these problems become more complicated than conventional material due to the introduction of phason field.The purpose of this paper is to consider the interaction of more defects in one-dimensional(1D)hexagonal QCs by complex variable function method.First,the analytic solutions of elastic field of dislocation in the material are studied in the form of complex variable function;then the interaction force of parallel dislocations are given.Second, the analytic solutions of elastic field of a semi-infinite crack in the material are obtained by the Muskhelishvili method.Finally,the elastic fields of interaction between infinitely many parallel dislocations and a semi-infinite crack are given,which offer the basis of theory to discuss dislocation emission on the top of the crack,dislocation screen and crack shielding in 1D hexagon.Meanwhile,these theories are the development of the corresponding parts of classical elastic theory to QCs.

    2.Basic equations

    From Ref.[3],basic equations of the elasticity of QCs are given by

    where σij,εij,and uidenote the phonon stress,phonon strain, and the displacement of phonon field respectively;Hij,ωij, and wirepresent the phason stress,phason strain,and the displacement of phason field respectively;Cijkl,Kijkl,and Rijklrefer to the independent elastic constants of phonon field,phason field,and the coupling phonon–phason field respectively, i,j=1,2,3.

    For 1D hexagonal QC,taking its quasi-periodic axis as x3axis,using the symmetry of point group 6 mm,the generalized Hooke’s laws of the elasticity problem of 1D hexagonal QCs with point group 6 mm can be rewritten as follows:

    where Cijdenotes the independent elastic constants of phonon field,Kirepresents the independent elastic constants of phason field,and Rirefers to the coupling elastic constants of phonon field and phason field.

    When the straight dislocations are parallel to the quasiperiodic axis of 1D hexagonal QCs or the cracks penetrate along the quasi-periodic direction of 1D hexagonal QCs,the geometric properties of the materials will not change with quasi-periodic direction,then

    Substituting Eq.(5)into Eqs.(2)–(4),the above problem turns into two independent problems as follows.

    Problem I

    This is an anti-plane elasticity problem of coupling phonon and phason fields.

    Problem II

    This is like plane elasticity problem of general crystal, which was studied in detail in Ref.[19].We omitted its solving here.

    For problem I,substituting Eq.(9)into Eqs.(6)–(8),then substituting the obtained results into Eq.(10),the equilibrium equations in terms of displacements are obtained as follows:

    Equation(17)indicates that the terminal governing equations of problem I finally turn into two harmonic equations.

    3.Solutions of the elastic field of infinitely many dislocations

    The dislocation of QC is described by Burgers vector in higher-dimensional space.[9]The dislocation of 1D QC can be expressed by Burgers vector in four-dimensional space.Supposing that there is an infinitely long straight screw dislocation parallel to the quasi-periodic direction in an infinite 1D hexagonal QC body,by means of symmetry of the body,it is enough to investigate any plane perpendicular to the quasiperiodic direction of 1D hexagonal QCs body.Let the dislocation be located at ξ point in x1x2-plane and its Burgers vector be(b1,b2,b3,b⊥),then by means of superposition principle,(b1,b2,b3,b⊥)=(b1,b2,0,0)+(0,0,b3,b⊥).The (0,0,b3,b⊥)together with problem I constitutes a boundary problem of anti-plane elasticity of coupling phonon and phason field,whereas(b1,b2,0,0)together with problem II forms a boundary problem of plane elasticity.

    Next,we will solve problem I only.Its dislocation condition is given by

    where λ denotes the Burgers contour surrounding the dislocation ξ.Note that the two integrals both hold in physical space.

    First complex representation of all field variables will be given.By means of properties of analytic function,from Eq.(17),we have

    where η(z)and ζ(z)are two arbitrary analytic functions.Substituting Eq.(19)into Eqs.(6)–(8),through some derivation, then the complex representations of stresses are obtained as follows:

    or

    Substituting Eq.(19)into the dislocation conditions(18),integrating by means of Cauchy residue theorem in complex variable function theory,yields

    From Eqs.(24)–(26),we have

    where integral constants which denote rigid body motion are omitted.

    From Eqs.(24)–(26),we have

    Equations(27)and(28)give the analytic solutions of elasticfields of a dislocation in 1D hexagonal QC.

    Supposing that there are infinitely many parallel screw dislocations located at points ξi(i=1,2,3,...),and their Burgers vectors areusing superposition principles,the action forces of the dislocations ξi(i=1,2,3,...),to arbitrary point z in x1x2-plane are

    Hence,equation(29)gives the analytic solutions of the elastic field of infinitely many parallel screw dislocations in 1D hexagonal QC.However,unlike the case of finite many dislocations,equation(29)is two infinite series,so we need to study their convergence.According to a comparison test of series,we have the following theorem.

    Theorem Suppose that there is a sequence of parallel screw dislocations located at points ξi(i=1,2,3,...)in z-plane of 1D hexagonal QC,and their Burgers vectors are(i=1,2,3,...).If the Burgers vectors are bounded and the seriesis absolutely converged,then the stresses(Eq.(29))resulting from the sequence of dislocations are finite for any zξn.

    For example,let a sequence of parallel screw dislocations be located at points ξn=n2+i/n2in z-plane of 1D hexagonal QC,then their Burgers vectors will be bounded.Since the seriesis absolutely convergent,from the above theorem,we have the stresses

    4.Solutions of a semi-infinite crack problem

    In this section,the problem of a semi-infinite crack throughout the elastic body of 1D hexagonal QC along the quasi-periodic direction will be investigated.Due to symmetry,it is enough only to consider the periodic plane of the QCs. We postulate that a crack which is in complex plane x1+i x2(namely periodic plane)occupies the negative real axis,and the tip of the crack is taken to be the origin,thus building up a coordinate system,see Fig.1.The boundary conditions are given by

    Equations(30)–(32)together with problem I constitute a coupling anti-plane boundary problem,which is Riemann–Hilbert boundary problem.According to Muskhelishvili’s method,[25]we have

    Equations(33)and(34)give the stress fields corresponding to problem I.

    5.Interaction between infinitely many parallel dislocations and a semi-infinite crack

    We now study the interaction between infinitely many parallel dislocations and a semi-infinite crack in 1D hexagonal QC.The configuration that will be investigated is a semiinfinite crack through out elastic body of 1D hexagonal QC along the quasi-periodic direction and a sequence of infinitely long straight screw dislocations parallel to the quasi-periodic direction in it,see Fig.1.Like the last sections,it is enough only to consider the periodic plane.Let the crack on the complex plane x1+i x2(namely periodic plane)occupy the negative real axis,and the tip of the crack be taken as the origin, the sequence of infinitely long straight screw dislocations is located at points ξi(i=1,2,3,...),and suppose that Burgers vector of ξiis(see Fig.1,Interaction between semi-infinite crack and infinite dislocations).

    Fig.1.Interaction between a semi-infinite crack and a sequence of dislocations.

    Since the crack surface is free,the stresses generated by the dislocation ξiin the crack surface must be can celled by a distribution of stress sources on the crack surface at t.From Section 3,the distribution of sources are given by

    Substituting Eqs.(35)and(36)into Eqs.(33)and(34)respectively,we have

    Integrating by means of the substitution rule and integration of rational functions,the stress fields of the extra distribution of sources are obtained as

    and then the stress fields of the extra distribution of sources in turn are added to the stress fields of the sequence of dislocations obtained in Section 3,resulting in stress fields of the interaction between infinitely many parallel screw dislocations and a semi-infinite crack,which are given by

    From Ref.[26],we have C44=50 GPa,R3=1.20 GPa,and K2=0.30 GPa.Taking all Burgers vectors as 10?9m in magnitude,and letting ξ1=1,ξ2=2,ξ3=3,and ξ4=4,the stress fields of the interaction between a sequence of dislocations and a semi-infinite crack in 1D hexagonal QC are plotted in Figs.2 and 3,which show that the stress of phonon field and the stress of phason field vary with the position of point z,and the stress concentration occurs at the dislocation source and the tip of the crack.Figures 2 and 3 also illustrate that the stress of phason is very small compared with the phonon field. This is mainly because the magnitude of the elastic constant of the phonon field is about 100 times as large as that of phasonifeld.

    Fig.2.Stress of phonon field varying with the position of point z.

    Fig.3.Stress of phason field varying with the position of point z.

    6.Conclusions and discussion

    Finally,we summarize the overall conclusions and analyze the results obtained above.

    (I)The interaction problems of infinitely many defects in one-dimensional hexagonal quasicrystals are studied first.The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal QC are obtained,which offer the basis of theory to discuss arrays of discrete and continuously distributed dislocations in one-dimensional hexagon.

    (II)Equations(41)and(42)indicate that the stress concentration occurs at the dislocation source and the tip of the crack.The interaction stress is bigger and bigger with increasing the component of Burgers vector,and smaller and smaller with increasing far from the distance of dislocations.

    [1]Shechtman D,Blech I,Gratias D and Cahn J W 1984 Phys.Rev.Lett. 53 1951

    [2]Ding D H,Yang W G,Hu C Z and Wang R H 1993 Phys.Rev.B 48 7003

    [3]Wang R H,Yang W G,Hu C Z,et al.1997 J.Phys.:Condens.Matter 9 2411

    [4]Liu G T,Fan T Y and Guo R P 2004 Int.J.Solid Struct.41 3949

    [5]Fan T Y 2011 Mathematical Theory of Elasticity of Quasicrystals and its Applications.(Science Press:Beijing and Springer-Verlag:Berlin Heidelberg)

    [6]Li L H and Liu G T 2012 Phys.Lett.A 376 987

    [7]Gao Y,Xu S P and Zhao B S 2007 Pramana J.Phys.68 803

    [8]Gao Y and Ricoeur 2011 A Proceedings of the Royal Society AMathematical,Physical and Engineering Sciences 467 2622

    [9]Ding D H,Wang R H,Yang W G,Hu H Z and Qin Y L 1995 Phil. Mag.Lett.72 353

    [10]Fan T Y,Li X F and Sun Y F 1999 Acta Phys.Sin.(Overseas Edn.)8 288(in Chinese)

    [11]Li X F and Fan T Y 1999 Phys.Stat.B 212 19

    [12]Edagawa K 2001 Mater.Sci.Eng.A 309–310 528

    [13]Li L H 2013 Chin.Phys.B 22 016102

    [14]Li L H 2013 Chin.Phys.B 22 116101

    [15]Guo J H and Liu G T 2008 Appl.Math.Mech.29 485

    [16]Liu G T,Guo R P and Fan T Y 2003 Chin.Phys.2 1149

    [17]Guo J H,Yu J and Si R 2013 Appl.Math.Comp.219 7445

    [18]Guo J H,Yu J and Xing Y M 2013 Mech.Res.Commun.52 40

    [19]Guo J H and Lu Z X 2011 Appl.Math.Comp.217 9397

    [20]Jiang L J and Liu G T 2017 Chin.Phys.B 26 044601

    [21]Li L H 2010 Chin.Phys.B 19 046101

    [22]Li L H and Liu G T 2012 Acta Phys.Sin.61 086103(in Chinese)

    [23]Li L H and Liu G T 2013 Phil.Mag.Lett.93 142

    [24]Liu X and Guo J H 2016 Theor.Appl.Fract.Mec.86 225

    [25]Muskhelishvili N I 1953 Singular Integral Equations Noordhoff, Groningen.

    [26]Li X Y,Li P D,Wu T H,Shi M X and Zhu Z W 2014 Phys.Lett.A 378 826

    20 March 2017;revised manuscript

    20 April 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/094601

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11462020,11262017,and 11262012)and the Key Project of Inner Mongolia Normal University,China(Grant No.2014ZD03).

    ?Corresponding author.E-mail:guantingliu@imnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    日本a在线网址| 中文亚洲av片在线观看爽| 天天躁狠狠躁夜夜躁狠狠躁| 级片在线观看| 欧美黑人欧美精品刺激| 亚洲成人免费av在线播放| 看免费av毛片| 老司机福利观看| 亚洲av美国av| 国产精品国产高清国产av| 欧美成人免费av一区二区三区| 亚洲中文av在线| 欧美+亚洲+日韩+国产| 亚洲精品国产一区二区精华液| 国产精品九九99| www日本在线高清视频| 欧美日韩一级在线毛片| 国产伦人伦偷精品视频| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| 国产成人系列免费观看| 久久久久国产精品人妻aⅴ院| 国产精品 欧美亚洲| 十八禁人妻一区二区| 在线免费观看的www视频| 咕卡用的链子| 亚洲一区高清亚洲精品| 欧美成人性av电影在线观看| 亚洲国产毛片av蜜桃av| 国产精品电影一区二区三区| www.熟女人妻精品国产| 国产成人精品久久二区二区91| 久久久国产欧美日韩av| 麻豆一二三区av精品| 99精品久久久久人妻精品| 五月开心婷婷网| 国产99白浆流出| 一级毛片女人18水好多| 国产成人影院久久av| 国产欧美日韩一区二区三| 亚洲国产中文字幕在线视频| 中文欧美无线码| 国产av精品麻豆| 中文字幕人妻丝袜一区二区| 久久香蕉精品热| 在线国产一区二区在线| 欧美丝袜亚洲另类 | 国产精品爽爽va在线观看网站 | 亚洲av电影在线进入| 又黄又粗又硬又大视频| 国产精品久久电影中文字幕| 亚洲七黄色美女视频| 男人舔女人下体高潮全视频| 成人av一区二区三区在线看| 久久青草综合色| 一个人观看的视频www高清免费观看 | 国产99久久九九免费精品| 久久午夜亚洲精品久久| 1024视频免费在线观看| 国产xxxxx性猛交| 不卡一级毛片| 一二三四在线观看免费中文在| 久久人妻av系列| 大型av网站在线播放| 日韩精品免费视频一区二区三区| 亚洲中文字幕日韩| 搡老熟女国产l中国老女人| 91麻豆av在线| 亚洲一码二码三码区别大吗| 午夜福利一区二区在线看| 国产亚洲av高清不卡| 国产高清videossex| tocl精华| 成人免费观看视频高清| 久久久久亚洲av毛片大全| 色老头精品视频在线观看| 黑人猛操日本美女一级片| 欧美精品一区二区免费开放| 亚洲人成77777在线视频| 啦啦啦免费观看视频1| 侵犯人妻中文字幕一二三四区| 韩国av一区二区三区四区| 久久午夜综合久久蜜桃| 久久久久国内视频| 淫秽高清视频在线观看| 村上凉子中文字幕在线| 欧美 亚洲 国产 日韩一| 精品日产1卡2卡| 亚洲av第一区精品v没综合| 国产精品久久久人人做人人爽| 色哟哟哟哟哟哟| 搡老乐熟女国产| 1024视频免费在线观看| www.999成人在线观看| 亚洲少妇的诱惑av| 久热爱精品视频在线9| 亚洲中文日韩欧美视频| 欧美久久黑人一区二区| bbb黄色大片| 他把我摸到了高潮在线观看| 高潮久久久久久久久久久不卡| 久久久久九九精品影院| 亚洲,欧美精品.| 天天影视国产精品| 麻豆久久精品国产亚洲av | 夫妻午夜视频| 高清毛片免费观看视频网站 | 国产亚洲欧美在线一区二区| 国产精品久久久av美女十八| 9191精品国产免费久久| 久久久久国产一级毛片高清牌| 在线观看免费日韩欧美大片| 精品久久久久久久毛片微露脸| 精品国产一区二区三区四区第35| 亚洲 欧美 日韩 在线 免费| 久久精品亚洲熟妇少妇任你| 国产aⅴ精品一区二区三区波| 后天国语完整版免费观看| 日本a在线网址| 日韩精品免费视频一区二区三区| 免费在线观看影片大全网站| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一出视频| 亚洲精品国产色婷婷电影| 极品人妻少妇av视频| 18禁美女被吸乳视频| avwww免费| 久久香蕉精品热| 亚洲专区字幕在线| av国产精品久久久久影院| 高清毛片免费观看视频网站 | 悠悠久久av| 亚洲av五月六月丁香网| 国产免费男女视频| 中文欧美无线码| 天天添夜夜摸| 亚洲久久久国产精品| 亚洲国产精品sss在线观看 | 亚洲精品在线美女| 九色亚洲精品在线播放| 成人18禁高潮啪啪吃奶动态图| 国产亚洲欧美98| 精品人妻在线不人妻| a级毛片黄视频| 人人澡人人妻人| 一级,二级,三级黄色视频| 女性生殖器流出的白浆| 日韩三级视频一区二区三区| 久久国产乱子伦精品免费另类| 亚洲 国产 在线| 亚洲欧美日韩另类电影网站| 精品卡一卡二卡四卡免费| 多毛熟女@视频| 两人在一起打扑克的视频| 日韩高清综合在线| 黄频高清免费视频| 欧美日本中文国产一区发布| 亚洲,欧美精品.| 久久精品aⅴ一区二区三区四区| 神马国产精品三级电影在线观看 | 久久中文字幕一级| 久久天堂一区二区三区四区| 波多野结衣av一区二区av| 欧美成人午夜精品| 久久久久久久久免费视频了| 国产人伦9x9x在线观看| 亚洲情色 制服丝袜| 国产人伦9x9x在线观看| 在线播放国产精品三级| 久久国产亚洲av麻豆专区| 国产成人啪精品午夜网站| x7x7x7水蜜桃| 午夜免费激情av| 免费搜索国产男女视频| 丝袜美腿诱惑在线| 黄色视频不卡| 一区二区日韩欧美中文字幕| 免费看a级黄色片| 不卡av一区二区三区| 丁香六月欧美| 丰满迷人的少妇在线观看| 99久久精品国产亚洲精品| 久久久久九九精品影院| 国产成人精品久久二区二区91| 成人亚洲精品一区在线观看| 久久久国产精品麻豆| 视频区欧美日本亚洲| 天堂中文最新版在线下载| 国产成人精品在线电影| 长腿黑丝高跟| 80岁老熟妇乱子伦牲交| 热re99久久精品国产66热6| 久久久久国产精品人妻aⅴ院| 好看av亚洲va欧美ⅴa在| 可以在线观看毛片的网站| netflix在线观看网站| 久久人人爽av亚洲精品天堂| 国内久久婷婷六月综合欲色啪| 操美女的视频在线观看| 精品无人区乱码1区二区| 一级,二级,三级黄色视频| 母亲3免费完整高清在线观看| 国产成人精品无人区| 五月开心婷婷网| 天堂动漫精品| 另类亚洲欧美激情| 最好的美女福利视频网| 一进一出抽搐gif免费好疼 | 男男h啪啪无遮挡| 两人在一起打扑克的视频| 久久性视频一级片| 狂野欧美激情性xxxx| 久久草成人影院| 国产极品粉嫩免费观看在线| 在线观看日韩欧美| tocl精华| 欧美丝袜亚洲另类 | 日本撒尿小便嘘嘘汇集6| 中文字幕人妻熟女乱码| 一区在线观看完整版| 成人手机av| 亚洲人成电影观看| 一区二区三区精品91| 国产极品粉嫩免费观看在线| 欧美黄色片欧美黄色片| 亚洲,欧美精品.| 国产精品一区二区三区四区久久 | 欧美乱码精品一区二区三区| 可以免费在线观看a视频的电影网站| 国产麻豆69| 少妇的丰满在线观看| 久久性视频一级片| 99香蕉大伊视频| 久久香蕉激情| 如日韩欧美国产精品一区二区三区| 麻豆av在线久日| 国产精品成人在线| 丝袜人妻中文字幕| 一级片免费观看大全| 1024视频免费在线观看| 日韩三级视频一区二区三区| 少妇粗大呻吟视频| 亚洲一区二区三区不卡视频| www.熟女人妻精品国产| 欧美中文日本在线观看视频| 亚洲人成电影观看| 欧美激情极品国产一区二区三区| 成人国产一区最新在线观看| 热re99久久国产66热| 性欧美人与动物交配| 狠狠狠狠99中文字幕| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 男女做爰动态图高潮gif福利片 | 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 丰满饥渴人妻一区二区三| 麻豆一二三区av精品| 国产高清国产精品国产三级| 免费在线观看日本一区| 女同久久另类99精品国产91| 少妇粗大呻吟视频| 国产真人三级小视频在线观看| www.999成人在线观看| 性色av乱码一区二区三区2| 久久九九热精品免费| 国产区一区二久久| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 国产av在哪里看| 美女高潮到喷水免费观看| 国产一区二区在线av高清观看| 97碰自拍视频| 91成人精品电影| 国产视频一区二区在线看| 亚洲中文字幕日韩| 久久精品91蜜桃| 免费在线观看影片大全网站| ponron亚洲| 日本五十路高清| 久久国产乱子伦精品免费另类| 亚洲成人免费av在线播放| 久久狼人影院| 久久香蕉国产精品| 51午夜福利影视在线观看| 在线免费观看的www视频| 啦啦啦 在线观看视频| 亚洲av电影在线进入| 久久久久久大精品| 露出奶头的视频| 国产伦人伦偷精品视频| 18禁裸乳无遮挡免费网站照片 | 久久久久久亚洲精品国产蜜桃av| 美女 人体艺术 gogo| 久久草成人影院| av天堂久久9| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲精品不卡| 国产欧美日韩一区二区三| 少妇裸体淫交视频免费看高清 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av成人不卡在线观看播放网| 婷婷六月久久综合丁香| 久久精品影院6| 淫秽高清视频在线观看| 欧美人与性动交α欧美精品济南到| 成人亚洲精品av一区二区 | 天堂影院成人在线观看| 91九色精品人成在线观看| 久久香蕉精品热| 国产蜜桃级精品一区二区三区| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 可以免费在线观看a视频的电影网站| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费高清a一片| 手机成人av网站| 亚洲国产欧美日韩在线播放| 人人妻,人人澡人人爽秒播| 99国产精品免费福利视频| 最近最新中文字幕大全免费视频| 女人精品久久久久毛片| 一级毛片高清免费大全| 亚洲成人久久性| 老汉色∧v一级毛片| 日韩欧美国产一区二区入口| 欧美午夜高清在线| 中文字幕人妻丝袜一区二区| 久久99一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 亚洲视频免费观看视频| 午夜福利,免费看| 国产成人影院久久av| 中文字幕最新亚洲高清| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区综合在线观看| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 日本黄色视频三级网站网址| 国产高清激情床上av| 亚洲av成人av| 欧美在线一区亚洲| 久久草成人影院| 亚洲在线自拍视频| 国产伦一二天堂av在线观看| 乱人伦中国视频| 91成年电影在线观看| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| 亚洲九九香蕉| 色播在线永久视频| 国产精品二区激情视频| 欧美成人免费av一区二区三区| 成人av一区二区三区在线看| 日韩大码丰满熟妇| 99精品在免费线老司机午夜| 久久狼人影院| 亚洲一区二区三区欧美精品| 曰老女人黄片| 99国产综合亚洲精品| 国产成人av激情在线播放| 午夜福利欧美成人| 免费在线观看黄色视频的| 久久国产精品影院| 国产伦人伦偷精品视频| 国产成人精品久久二区二区免费| 亚洲成av片中文字幕在线观看| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 国产精品一区二区三区四区久久 | 欧美乱色亚洲激情| 国产三级黄色录像| 伦理电影免费视频| 午夜影院日韩av| 国产精品 国内视频| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 性欧美人与动物交配| 欧美亚洲日本最大视频资源| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 又黄又爽又免费观看的视频| 纯流量卡能插随身wifi吗| 午夜免费观看网址| 91av网站免费观看| av网站在线播放免费| 午夜激情av网站| 欧美老熟妇乱子伦牲交| 成人手机av| 美女福利国产在线| 男女午夜视频在线观看| 18禁美女被吸乳视频| 高清在线国产一区| 色哟哟哟哟哟哟| 国产成人精品在线电影| 老司机午夜福利在线观看视频| 日韩免费高清中文字幕av| 一区福利在线观看| 久久精品国产99精品国产亚洲性色 | 天堂中文最新版在线下载| 9191精品国产免费久久| 长腿黑丝高跟| 精品无人区乱码1区二区| 身体一侧抽搐| 99riav亚洲国产免费| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看| av网站在线播放免费| 最好的美女福利视频网| 三级毛片av免费| 一区二区三区激情视频| www.www免费av| 国产精品98久久久久久宅男小说| 国产有黄有色有爽视频| 国产1区2区3区精品| 欧美午夜高清在线| 一区在线观看完整版| 成人永久免费在线观看视频| 十八禁网站免费在线| 窝窝影院91人妻| 欧美中文日本在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产91精品成人一区二区三区| 欧美一级毛片孕妇| 久久人人97超碰香蕉20202| 日韩av在线大香蕉| 亚洲精品久久午夜乱码| 午夜免费观看网址| 身体一侧抽搐| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| ponron亚洲| 日本撒尿小便嘘嘘汇集6| 天天影视国产精品| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲中文日韩欧美视频| 少妇裸体淫交视频免费看高清 | 日韩成人在线观看一区二区三区| 在线观看日韩欧美| 成年版毛片免费区| 99国产精品免费福利视频| 性少妇av在线| 超碰97精品在线观看| 99国产综合亚洲精品| 9色porny在线观看| 成人三级黄色视频| 欧美日韩福利视频一区二区| 午夜福利影视在线免费观看| 久久中文字幕一级| 国产一区二区激情短视频| 久久精品国产99精品国产亚洲性色 | 久久久久久大精品| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 午夜免费激情av| 日韩大尺度精品在线看网址 | 男女午夜视频在线观看| 中文欧美无线码| 老司机深夜福利视频在线观看| 国产成年人精品一区二区 | 免费看a级黄色片| 国产精品成人在线| 又黄又粗又硬又大视频| 亚洲狠狠婷婷综合久久图片| 91大片在线观看| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 女性生殖器流出的白浆| 两个人看的免费小视频| 丁香欧美五月| 很黄的视频免费| 国产欧美日韩一区二区三区在线| 欧美精品一区二区免费开放| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 一区二区三区精品91| 在线观看免费视频日本深夜| 亚洲人成77777在线视频| 一区二区三区国产精品乱码| 十八禁网站免费在线| 制服人妻中文乱码| a级片在线免费高清观看视频| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区| 欧美中文综合在线视频| 亚洲欧美日韩无卡精品| 极品人妻少妇av视频| 精品人妻1区二区| 人人妻人人澡人人看| 久久久久久人人人人人| 国产精品偷伦视频观看了| 亚洲色图av天堂| 香蕉丝袜av| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区| 成人三级做爰电影| 97碰自拍视频| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 国产又色又爽无遮挡免费看| 真人一进一出gif抽搐免费| 精品国产国语对白av| 日韩精品免费视频一区二区三区| 日韩高清综合在线| 午夜福利影视在线免费观看| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 另类亚洲欧美激情| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻熟女乱码| 少妇 在线观看| 母亲3免费完整高清在线观看| 国产免费男女视频| 午夜福利在线免费观看网站| netflix在线观看网站| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 亚洲成人久久性| 亚洲人成电影观看| 国产精品98久久久久久宅男小说| 一级,二级,三级黄色视频| 超碰成人久久| 精品久久久久久久毛片微露脸| 一级毛片精品| 日韩三级视频一区二区三区| av天堂久久9| 男女做爰动态图高潮gif福利片 | 久久天堂一区二区三区四区| 国产成人欧美在线观看| 97碰自拍视频| 精品日产1卡2卡| 欧美精品亚洲一区二区| 黄频高清免费视频| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区精品| 麻豆久久精品国产亚洲av | 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 亚洲国产精品合色在线| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频 | 在线永久观看黄色视频| 免费av中文字幕在线| 一级a爱片免费观看的视频| 国产成人一区二区三区免费视频网站| 悠悠久久av| 国产精品久久久久久人妻精品电影| 9191精品国产免费久久| 他把我摸到了高潮在线观看| 91麻豆av在线| 日韩欧美国产一区二区入口| 91国产中文字幕| 精品卡一卡二卡四卡免费| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 久久中文看片网| 久久午夜综合久久蜜桃| 亚洲视频免费观看视频| 国产片内射在线| 黄片小视频在线播放| 两个人看的免费小视频| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 国产精品影院久久| 真人一进一出gif抽搐免费| 亚洲熟女毛片儿| 免费看十八禁软件| 一级黄色大片毛片| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 99精品久久久久人妻精品| 老汉色∧v一级毛片| www.www免费av| www日本在线高清视频| 久久中文字幕一级| 老司机深夜福利视频在线观看| 久久久水蜜桃国产精品网| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品第一综合不卡| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼 | 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 日韩av在线大香蕉| 欧美不卡视频在线免费观看 | 免费高清在线观看日韩| 美国免费a级毛片| 国产有黄有色有爽视频| 女性被躁到高潮视频| 亚洲七黄色美女视频| 色老头精品视频在线观看| 午夜福利在线观看吧| 999久久久精品免费观看国产| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 成人亚洲精品av一区二区 | 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 免费不卡黄色视频|